首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neurosteroids have been reported to modulate memory processes in rodents. Three analogues of dehydroepiandrosterone (DHEA), two of them previously described (7β-aminoDHEA and 7β-amino-17-ethylenedioxy-DHEA), and a new one (3β-hydroxy-5α-androstane-6,17-dione) were synthesized, and their effects were evaluated on memory. This study examined their effects on long term and short term memory in male (6 weeks old) NMRI mice in comparison with the reference drug. Long term memory was assessed using the passive avoidance task and short term memory (spatial working memory) using the spontaneous alternation task in a Y maze. Moreover, the effects of DHEA and its analogues on spontaneous locomotion were measured. In all tests, DHEA and analogues were injected at three equimolar doses (0.300–1.350–6.075 μM/kg). DHEA and its three analogues administered immediately post-training at the highest doses (6.075 μM/kg, s.c.) improved retention in passive avoidance test. Without effect per se in the spatial working memory task, the four compounds failed to reverse scopolamine (1 mg/kg, i.p.)-induced deficit in spontaneous alternation. These data suggested an action of DHEA and analogues in consolidation of long term memory particularly when emotional components are implied. Moreover, data indicated that pharmacological modulation of DHEA as performed in this study provides derivatives giving the same mnemonic profile than reference molecule.  相似文献   

2.
The effect of 7-oxo-DHEA acetate on memory in young and old C57BL/6 mice   总被引:8,自引:0,他引:8  
Shi J  Schulze S  Lardy HA 《Steroids》2000,65(3):124-129
7-Oxo-dehydroepiandrosterone, which can be formed from dehydroepiandrosterone (DHEA) by several mammalian tissues, is more effective than its parent steroid as an inducer of thermogenic enzymes when administered to rats. Using the Morris water maze procedure, we tested DHEA and its 7-oxo-derivative for their ability to reverse the memory abolition induced by scopolamine in young C57BL/6 mice, and for their effect on memory in old mice. A single dose of 7-oxo-DHEA-acetate at 24 mg/kg b.w. completely reversed the impairment caused by 1 mg of scopolamine per kg b.w. (P < 0.001). DHEA (20 mg/kg) was also effective (P < 0.01). In old mice given the same single doses followed by feeding 0.05% of the respective steroid in the diet, memory of the water maze training was retained through a four week test period in mice receiving 7-oxo-DHEA-acetate (P < 0.05) but not in the control or DHEA-treated groups. When old mice were not tested until five weeks after being trained 7-oxo-DHEA exerted a slight, but statistically insignificant, improvement in memory retention. The possible effect of 7-oxo-DHEA in human memory problems deserves investigation.  相似文献   

3.
DHEA-treatment exerts a dual effect, prooxidant or antioxidant, depending on the dosage and, therefore, on the tissue concentration reached. In agreement with previous studies showing a prooxidant effect of DHEA, here we show that pharmacological doses of DHEA produce increased H(2)O(2) levels and a marked reduction of GSH content in rat liver. DHEA, also increases both catalase (by 30%) and cytochrome-C-reductase (by 30%) activities in the liver cytosol. The effectiveness of the state of increased oxidative stress is also documented by changes in fatty acid pattern of the microsomal membranes. Moreover, DHEA, at high doses, enhances beta-oxidation, as demonstrated by an increase of acyl-CoA-oxidase activity and of cytochrome P450 4A content, confirming that it acts as a PPARs inducer. Both PPARs induction and proxidant effects completely disappear when DHEA is administered at lower doses. Seven days treatment (4 or 10 mg) is unable to affect either levels of proxidant species and of antioxidant molecules, or cytochrome P450 4A content and beta-oxidation. Prolonged DHEA treatment (4 mg/day) for three weeks not only is unable to affect PPARs activation and beta-oxidation, but it also exerts a protective effect against ADP/Fe(2+) induced lipid peroxidation. This latter result confirms the antioxidant effects of DHEA at low doses, as already previously documented.  相似文献   

4.
The biological role of dehydroepiandrosterone (DHEA) and its less active sulphated conjugate DHEAS was investigated in two experiments using Yucatan miniature swine. In experiment 1, plasma levels of both DHEA(S) among males were greater than female pigs that ranged in age from 0.3 to 84 mo old (P < 0.0001). In males, DHEA(S) were related inversely to serum triglycerides; DHEA was positively related to triglycerides in females (P < 0.01). In experiment 2, four 2-yr old male pigs, used as their own control, showed a 5% decrease in body weight, 11% increase in energy expenditure, 88% increase in lipid, and 100% decrease in glucose utilization (P < 0.0001) in response to DHEA vs. placebo treatments when adjusted for body weight. Plasma DHEA(S) were not different between treatment conditions. Glucose tolerance and plasma insulin levels were not different from controls. In vivo response to norepinephrine indicated beta-adrenergic sensitivity was altered by DHEA. Present findings suggest DHEA and/or its hormone products are important in modulating energy expenditure and lipid utilization for energy in male animals. The role of DHEA in energy metabolism and the difference between sexes warrant further investigation.  相似文献   

5.
The aim of the present work was to study the influence of long-term treatment with dehydroepiandrosterone (DHEA) in doses of 0.1 and 0.7 mg/kg, i.p. on the passive avoidance performance in the ovariectomized female rats of 5- and 18-month old. The results obtained indicated that DHEA administration during 7 days in dose of 0.1 mg/kg normalized the passive avoidance performance in the ovariectomized rats of 5-month old while DHEA administration during 7 days in dose of 0.7 mg/kg restored passive avoidance performance in the ovariectomized rats of 18-month old.  相似文献   

6.
This study was designed to examine respiratory-related hypoglossal nerve activity in response to activation of pulmonary C-fibers by capsaicin. Rats were anesthetized with urethane (1.2 g/kg, i.p.). Tracheostomy was performed. Catheters were introduced into the femoral vein and artery. Another catheter was placed near the entrance of the right atrium via the right jugular vein. Rats were paralyzed with gallamine triethiodide (5 mg/kg, i.v.), and ventilated artificially. Activities of the phrenic nerve (PNA) and the hypoglossal nerve (HNA) were recorded simultaneously. Varied doses of capsaicin (0.625, 1.25, and 5 µg/kg) were delivered into the right atrium to activate pulmonary C-fibers. Before bilateral vagotomy, apnea, decreases in PNA and HNA were observed in response to pulmonary C-fiber activation by the low and moderate doses of capsaicin. The high dose of capsaicin evoked an increase in PNA, an immediate tonic discharge of the hypoglossal nerve, and a decrease in phasic HNA. The onset time of HNA preceding PNA was abolished and replaced by a time lagged pattern as pulmonary C-fibers were activated. Raising CO2 concentration did not attenuate the inhibitory effect of pulmonary C-fiber activation upon PNA and HNA. After bilateral sectioning of the vagi, administration of the moderate dose of capsaicin to activate non-vagal C-fibers produced increases in PNA and HNA. These results suggest that pulmonary vagal C-fiber activation may narrow the diameter at the oropharyngeal level by a decrease in phasic HNA, which may be disadvantageous for the maintenance of a patent upper airway.  相似文献   

7.
Hexitol nucleic acids (HNAs) are nuclease resistant and provide strong hybridization to RNA. However, there is relatively little information on the biological properties of HNA antisense oligonucleotides. In this study, we compared the antisense effects of a chimeric HNA ‘gapmer’ oligonucleotide comprising a phosphorothioate central sequence flanked by 5′ and 3′ HNA sequences to conventional phosphorothioate oligonucleotides and to a 2′-O-methoxyethyl (2′-O-ME) phosphorothioate ‘gapmer’. The antisense oligomers each targeted a sequence bracketing the start codon of the message of MDR1, a gene involved in multi-drug resistance in cancer cells. Antisense and control oligonucleotides were delivered to MDR1-expressing cells using transfection with the cationic lipid Lipofectamine 2000. The anti-MDR1 HNA gapmer was substantially more potent than a phosphorothioate oligonucleotide of the same sequence in reducing expression of P-glycoprotein, the MDR1 gene product. HNA and 2′-O-ME gapmers displayed similar potency, but a pure HNA antisense oligonucleotide (lacking the phosphorothioate ‘gap’) was ineffective, indicating that RNase H activity was likely required. Treatment with anti-MDR1 HNA gapmer resulted in increased cellular accumulation of the drug surrogate Rhodamine 123 that correlated well with the reduced cell surface expression of P-glycoprotein. Thus, HNA gapmers may provide a valuable additional tool for antisense-based investigations and therapeutic approaches.  相似文献   

8.
Djeridane Y  Touitou Y 《Steroids》2004,69(5):343-349
This study investigates the effects of acute and chronic injections of the neurosteroid dehydroepiandrosterone (DHEA) and its sulfate DHEA-S on pineal gland melatonin synthesis. Pineal melatonin production and plasma melatonin levels were investigated in young (9-week-old) and old (27-month-old) male Wistar rats. DHEA or DHEA-S have been administered acutely in a single intraperitoneal injection at a dosage of 50, 250, or 500 microg per animal, or on a long-term basis, i.e., for 8 days at a dosage of 100 microg per animal, 1 h before the onset of darkness. DHEA, at a dose of 50, 250, or 500 microg per animal, administered acutely to rats had no significant effects on pineal melatonin production whatever the age of the animals. In contrast, 500 microg DHEA-S induced a significant increase in the pineal melatonin content (15% in young animals and 35% in old animals) and the activity of N-acetyltransferase, the rate-limiting enzyme for melatonin synthesis in the pineal gland, (40% in young animals and 20% in old animals), without altering the activity of hydroxyindole-O-methyltransferase whatever the age of the animals. At lower concentrations (50 or 250 microg) DHEA-S had no effect on pineal melatonin production regardless of the age of the rats. Chronic injection of DHEA or DHEA-S at a dose of 100 microg had no effect on pineal melatonin or NAT and HIOMT activities in the two age groups. This work shows that DHEA-S (and not DHEA) is able, at pharmacological concentrations, to stimulate melatonin production by rat pineal glands regardless of the age of the animals.  相似文献   

9.
Dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulphate (DHEAS) have been reported to have memory enhancement effects in humans. A neuro-stimulatory action and an anti-cortisol mechanism of action may contribute to that relation. In order to study DHEA, DHEAS and cortisol relations to working memory and distraction, we recorded the electroencephalogram of 23 young women performing a discrimination (no working memory load) or 1-back (working memory load) task in an audio-visual oddball paradigm. We measured salivary DHEA, DHEAS and cortisol both before each task and at 30 and 60 min. Under working memory load, a higher baseline cortisol/DHEA ratio was related to higher distraction as indexed by an enhanced novelty P3. This suggests that cortisol may lead to increased distraction whereas DHEA may hinder distraction by leading to less processing of the distractor. An increased DHEA production with consecutive cognitive tasks was found and higher DHEA responses attributed to working memory load were related to enhanced working memory processing as indexed by an enhanced visual P300. Overall, the results suggest that in women DHEA may oppose cortisol effects reducing distraction and that a higher DHEA response may enhance working memory at the electrophysiological level.  相似文献   

10.
As old age results in reduced physical activity as well as less dehydroepiandrosterone (DHEA) and melatonin (MLT) production, low hormone levels may be a component of inactivity. Therefore, we studied the effects of DHEA and/or MLT supplementation on movement and resting in young and old female C57 black mice. Our results showed for the first time that old female C56BL/6 mice have significantly decreased physical activity. Their average speed and resting time were significantly higher than in young mice, whereas ambulatory time, distance traveled, and body movements when stationary (stereo time) were lower. DHEA supplementation significantly increased stereo time in old mice, while decreasing ambulatory time and distance traveled. MLT supplementation of old mice decreased average speed, resting time, and stereo time compared to untreated, old mice. Supplementation with MLT or DHEA, whose production is reduced in aging, restored physical activity levels in old mice. MLT also increased ambulatory time and distance traveled while reducing body movements of young mice.  相似文献   

11.
We report a highly sensitive enzyme immunoassay for dehydroepiandrosterone (DHEA) and its sulfate (DHEA-S) using horseradish peroxidase as the label enzyme. Separation of free and bound DHEA-peroxidase conjugate was by insolubilized antibody, prepared by coupling purified IgG of goat anti-rabbit IgG serum with Sepharose 4B or a polystyrene tube. The enzyme activity was measured by the chemiluminescence reaction using luminol and hydrogen peroxide as substrate. The faint chemiluminescence was measured by a photon counter. The sensitivity was 25 pg/assay tube for DHEA and 100 pg/assay tube for DHEA-S. Upon comparison, results obtained by radioimmunoassay and this method showed good agreement; r = 0.86 for free DHEA, r = 0.92 for acid-hydrolyzed DHEA-S and r = 0.91 for solvolyzed DHEA-S. The present method is applicable in the routine determination of DHEA and DHEA-S in biological fluid.  相似文献   

12.
Ageing is an inevitable biological process characterized by a general decline in various physiological functions. DHEA and DHEAS levels are maximal between the second and third life decades, then start to decline 2% per year, leaving a residual of 10–20% of the peak production by the eighth decade. Erythrocytes are exposed to frequent oxidative stress due to the oxygen radicals continuously generated by haemoglobin auto‐oxidation. We investigated DHEA chronic (10 mg/kg, subcutaneously, for 5 weeks) effects over oxidative stress markers in erythrocytes of male Wistar rats of 3, 13 and 18 month‐old. In the 13 month‐old group, we found increased lipid peroxidation (LPO), superoxide dismutase (SOD), glutathione‐S‐transferase and catalase activities when compared to the other age groups. DHEA produced a marked increase in LPO of 13 month‐old group when compared to its control. DHEA exerted this pro‐oxidant effects in all ages studied, especially in age 13 month‐old. It seems that at 13 month‐old there would be an important depletion of some specific anti‐oxidant in order to determine such susceptibility to DHEA effects. Since this approach allows a minimally invasive assessment, it would be useful as a routine method in human clinical studies investigating DHEA effects during the ageing process. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
14.
The adrenal steroid hormone dehydroepiandrosterone (DHEA) and its sulfated derivative [DHEA(S)] have been extensively studied for their potential anti-aging effects. Associated with aging, DHEA levels decline in humans, whereas other adrenal hormones remain unchanged, suggesting that DHEA may be important in the aging process. However, the effect of DHEA(S) supplementation on cardiac function in the aged has not been investigated. Therefore, we administered to young and old female mice a 60-day treatment with exogenous DHEA(S) at a dose of 0.1 mg/ml in the drinking water and compared the effects on left ventricular diastolic function and the myocardial extracellular matrix composition. The left ventricular stiffness (beta) was 0.30 +/- 0.06 mmHg/mul in the older control mice compared with 0.17 +/- 0.02 mmHg/mul in young control mice. Treatment with DHEA(S) decreased left ventricular stiffness to 0.12 +/- 0.03 mmHg/mul in the older mice and increased left ventricular stiffness to 0.27 +/- 0.04 mmHg/mul in young mice. The mechanism for the DHEA(S)-induced changes in diastolic function appeared to be associated with altered matrix metalloproteinase activity and the percentage of collagen cross-linking. We conclude that exogenous DHEA(S) supplementation is capable of reversing the left ventricular stiffness and fibrosis that accompanies aging, with a paradoxical increased ventricular stiffness in young mice.  相似文献   

15.
The naturally occurring steroid dehydroepiandrosterone (DHEA) is reported to reduce glial fibrillary acidic protein (GFAP) overexpression in a model of reactive gliosis due to its conversion to estradiol by the enzyme aromatase. In the present study we examined the biological effect of a new epimerized derivative of DHEA, 16α-iodomethyl-13α-dehydroepiandrosterone derivative (16α-iodomethyl-13α-DHEAd, 16α-iodomethyl-13α-androst-5-en-3β,17β-diol), using the same model system, and compared the 3D structure of this molecule with that of DHEA and two steroidal type aromatase inhibitors, formestane and exemestane. The synthetic compound, in contrast to the reported effect of DHEA, was able to reduce GFAP overexpression only if the enzyme aromatase was inhibited. Data obtained from computational calculations fortified by X-ray crystallography revealed that contrary to the nearly planar sterane framework of DHEA, the synthetic derivative 16α-iodomethyl-13α-DHEAd has a bent sterane skeleton, resulting in a 3D structure that is similar to that of formestane or exemestane. Moreover, 16α-iodomethyl-13α-DHEAd resulted to be metabolically more stable than DHEA.The results suggest that epimerization of the sterane skeleton of DHEA inclines the plane of the D ring, leading to a significantly altered biological activity. The synthetic molecule has a DHEA-like effect on GFAP overexpression when the enzyme aromatase is inhibited and the naturally occurring DHEA is ineffective in this respect. On the other hand, based on their structural similarity it can be hypothesized that 16α-iodomethyl-13α-DHEAd applied alone might have a biological effect similar to that of formestane or exemestane.  相似文献   

16.
17.
In a comparative row of mammals (hedgehogs, rabbits, monkeys), the role of the opioid neuropeptide Met-encephalin (ME) and the hypothalamic neurohormone vasopressin (VP) was studied in possibility of compensation of disturbed higher nervous functions in organic and functional pathologies of the higher nervous activity. Administration of ME and VP under conditions of destruction of neocortex in hedgehogs was found to restore predominantly congenital forms of the nervous activity. In rabbits, on administration of VP, a tendency is revealed for restoration of acquired forms of the nervous activity; however, it is of a limited character. On administration of ME and VP under conditions of functional pathology a similar regularity in restoration of disturbed higher nervous functions is observed. Injection of ME and VP to hedgehogs produced a more pronounced and longer effect on unconditioned reflexes. The effect of low doses of VP on HNA is of short-term, generally facilitating character. In rabbits, on the background of VP, the memory processes (trace conditioned responses) are briefly restored and are enhanced. In monkeys, the effect of ME and VP on acquired forms of the nervous activity and on various functional systems is of differential character. The VP compensatory effects are more pronounced after administration of low VP doses. The effects of ME and VP on congenital forms of the nervous activity are negligible. The established regularities are discussed and interpreted from the viewpoint of the concepts postulated by A.I. Karamyan about evolution of the compensatory brain activity, evolution of neocortex, and an increase of its neuroplasticity.  相似文献   

18.

Background

Substantial evidence suggests that increased oxidative stress in hemodialysis (HD) patients may contribute to cardiovascular complications. Oxidative modifications of human serum albumin (HSA), the largest thiol pool in plasma, alter its biological properties and may affect its antioxidant potential in HD patients.

Methods

We conducted a long-term follow-up study in a cohort of normoalbuminemic HD patients to examine the impact of redox state of serum albumin on patients’ survival by measuring the human nonmercaptoalbumin (HNA) fraction of HSA.

Results

After adjusting for potential demographic, anthropometric, and clinical confounders, a positive association of HNA level with the risk of death from cardiovascular disease (CVD) and all-cause mortality was observed in normoalbuminemic HD patients. Using stratified analysis, we found a stronger association between HNA level and the risk of death from CVD and all-cause mortality in patients with pre-existing CVD.

Conclusions

Serum HNA level is a positive predictor of mortality in normoalbuminemic HD patients, especially among those with pre-existing CVD. Increased oxidative stress resulting from biological changes in serum albumin levels could contribute to accelerated atherosclerosis and the development of cardiovascular disease in HD patients.  相似文献   

19.
Levels of dehydroepiandrosterone (DHEA) and its sulfated derivative (DHEAS) decline during aging and reach even lower levels in Alzheimer's disease (AD). DHEA is known to exhibit a variety of functional activities in the CNS, including an increase of memory and learning, neurotrophic and neuroprotective effects, and the reduction of risk of age-related neurodegenerative disorders. However, the influence of DHEA on the immune functions of glial cells is poorly understood. In this study, we investigated the effect of DHEA on activated glia. The production of inducible nitric oxide synthase (iNOS) was studied in lipopolysaccharide (LPS)-stimulated BV-2 microglia, as a model of glial activation. The results showed that DHEA but not DHEAS significantly inhibited the production of nitrite in the LPS-stimulated BV-2 cell cultures. Pretreatment of BV-2 cells with DHEA reduced the LPS-induced iNOS mRNA and protein levels in a dose-dependent manner. The LPS-induced iNOS activity in BV-2 cells was decreased by the exposure of 100 microM DHEA. Moreover, DHEA suppressed iNOS gene expression in LPS-stimulated BV-2 cells did not require de novo synthesis of new proteins or destabilize of iNOS mRNA. Since DHEA is biosynthesized by astrocytes and neurons, our findings suggest that it might have an important regulatory function on microglia.  相似文献   

20.
The purpose of this study was to determine the impact of dehydroepiandrosterone (DHEA) and corticosterone (CORT) treatment, using implants as a route of administration, on specific hormones, metabolites, and enzymes involved in energy metabolism. Sixty male Sprague-Dawley rats, 325 g initial weight, were implanted subcutaneously for 3 weeks with time-release pellets containing either DHEA or CORT at doses of 0, 10, 25, 50, or 100 mg in this 2 x 5 factorial experiment. In general, body weights and food intakes decreased as the level of steroid hormones increased. In contrast to DHEA treatment, rats receiving the 50- and 100-mg doses of CORT had lighter thymus glands and spleens and heavier epididymal and retroperitoneal fat pads than their controls. Rats treated with 100 mg of DHEA had lowered serum levels of triglycerides and lipid hydroperoxides whereas rats treated with 100 mg of CORT had higher levels of these blood lipids compared to their respective controls. In contrast to DHEA treatment, there was a dose-dependent increase in liver lipid content and the specific activities of the hepatic lipogenic enzymes glucose-6-phosphate dehydrogenase, malic enzyme, and fatty acid synthase in response to CORT treatment. Rats treated with 100 mg of DHEA had higher serum levels of IGF-1 than control rats. Conversely, rats treated with 100 mg of CORT had lower serum levels of IGF-1 and higher serum levels of testosterone, progesterone, and insulin than their controls. These data demonstrate the lipogenic actions of corticosterone in rats. Conversely, DHEA treatment reduced serum and hepatic lipids. Furthermore, these data suggest that using implants instead of bolus injections of steroids may be a more physiological approach for studying the influence of these steroids on lipid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号