首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Götte M  Lazar T 《Protoplasma》1999,209(1-2):9-18
Vacuoles are ubiquitous organelles in the fungal and plant kingdoms. They serve a variety of functions and are important for cell homeostasis. A constant turnover of proteins and membranes makes vacuoles dynamic organelles. Various transport pathways share the vacuole as their joint destination. The trafficking pathways are regulated independently. In yeast cells many components of the protein and membrane transport machinery are known. Recent years have seen much progress in our understanding of the protein-sorting pathways and the biogenesis of this organelle. Improvements of our understanding of the vesicular transport pathways and vacuolar membrane fusion are reviewed.  相似文献   

2.
M. G?tte  T. Lazar 《Protoplasma》1999,209(3-4):9-18
Summary Vacuoles are ubiquitous organelles in the fungal and plant kingdoms. They serve a variety of functions and are important for cell homeostasis. A constant turnover of proteins and membranes makes vacuoles dynamic organelles. Various transport pathways share the vacuole as their joint destination. The trafficking pathways are regulated independently. In yeast cells many components of the protein and membrane transport machinery are known. Recent years have seen much progress in our understanding of the protein-sorting pathways and the biogenesis of this organelle. Improvements of our understanding of the vesicular transport pathways and vacuolar membrane fusion are reviewed.  相似文献   

3.
Listeria monocytogenes is a bacterial pathogen that replicates within the cytosol of infected host cells. The ability to rapidly escape the phagocytic vacuole is essential for efficient intracellular replication. In the murine model of infection, the pore-forming cytolysin listeriolysin O (LLO) is absolutely required for vacuolar dissolution, as LLO-deficient (ΔLLO) mutants remain trapped within vacuoles. In contrast, in many human cell types ΔLLO L. monocytogenes are capable of vacuolar escape at moderate to high frequencies. To better characterize the mechanism of LLO-independent vacuolar escape in human cells, we conducted an RNA interference screen to identify vesicular trafficking factors that play a role in altering vacuolar escape efficiency of ΔLLO L. monocytogenes . RNA interference knockdown of 18 vesicular trafficking factors resulted in increased LLO-independent vacuolar escape. Our results suggest that knockdown of one factor, RABEP1 (rabaptin-5), decreased the maturation of vacuoles containing ΔLLO L. monocytogenes . Thus, we provide evidence that increased vacuolar escape of ΔLLO L. monocytogenes in human cells correlates with slower vacuolar maturation. We also determined that increased LLO-independent dissolution of vacuoles during RABEP1 knockdown required the bacterial broad-range phospholipase C (PC-PLC). We hypothesize that slowing the kinetics of vacuolar maturation generates an environment conducive for vacuolar escape mediated by the bacterial phospholipases.  相似文献   

4.
J Saraste  E Kuismanen 《Cell》1984,38(2):535-549
The effect of reduced temperature on synchronized transport of SFV membrane proteins from the ER via the Golgi complex to the surface of BHK-21 cells revealed two membrane compartments where transport could be arrested. At 15 degrees C the proteins could leave the ER but failed to enter the Golgi cisternae and accumulated in pre-Golgi vacuolar elements. At 20 degrees C the proteins passed through Golgi stacks but accumulated in trans-Golgi cisternae, vacuoles, and vesicular elements because of a block affecting a distal stage in transport. Both blocks were reversible, allowing study of the synchronous passage of viral membrane proteins through the Golgi complex at high resolution by immunolabeling in electron microscopy. We propose that membrane proteins enter the Golgi stack via tubular extensions of the pre-Golgi vacuolar elements which generate the Golgi cisternae. The proteins pass across the Golgi apparatus following cisternal progression and enter the post-Golgi vacuolar elements to be routed to the cell surface.  相似文献   

5.
Functional Specialization of Vacuoles in Sugarcane Leaf and Stem   总被引:1,自引:0,他引:1  
Plant vacuoles are frequently targeted as a storage site for novel products. We have used environment-sensitive fluorescent dyes and the expression of vacuolar marker proteins to characterize the vacuoles in different organs and cell types of sugarcane. The results demonstrated that the lumen of the vacuole in the parenchyma cells of the stem is acidic (<pH 5) and contains active proteases, characteristic of lytic vacuoles. Western blots and tissue labelling with antibodies to vacuolar H+-ATPase suggest that this proton pump is involved in acidification of the vacuolar lumen. Quantitative real-time PCR was used to show that the expression of vacuolar proteases and a vacuolar sorting receptor is also coordinately regulated. In contrast to the stem parenchyma cells, the cells of sugarcane leaves contain diverse types of vacuoles. The pH of these vacuoles and their capacity to hydrolyze protease substrates varies according to cell type and developmental stage. Sugarcane suspension-cultures contain cells with vacuoles that resemble those of stem parenchyma cells and are thus a useful model system for investigating the properties of the vacuole. Understanding the growth and development of storage capacity will be useful in designing strategies to maximize the production of sucrose or alternative bioproducts.  相似文献   

6.
The multidrug resistance (MDR) is one of the main reasons for chemotherapeutic failures in cancer patients. The overexpression of mdr1 gene product, P-glycoprotein (Pgp), leads to the appearance of resistant tumor cells. In the previous paper (Erokhina, 1997) we have demonstrated that the first stages of Pgp-mediated MDR are accompanied by the reorganization of cytoskeleton elements and the vacuolar system. These data were true for two independently isolated sublines of Syrian hamster embryo fibroblasts transformed by Raus sarcoma virus. In this study, we continued the investigation of the properties of the vacuolar system in Pgp-expressing cells. Brefeldin A (BFA), which is not a Pgp substrate, affects different elements of the vacuolar system and blocks vesicular transport. Our data demonstrate that BFA has different effects on parental and resistant cells. In parental cells, the Golgi apparatus and vesicular transport are sensitive to BFA, while in resistant sublines, BFA affects the vesicular transport but not the Golgi apparatus structure. We discuss the existence of similar and different BFA targets in parental and resistant cells and their role in the evolution of multidrug resistance mechanisms.  相似文献   

7.
Transport processes of solutes across the vacuolar membrane of higher plants   总被引:23,自引:0,他引:23  
The central vacuole is the largest compartment of a mature plant cell and may occupy more than 80% of the total cell volume. However, recent results indicate that beside the large central vacuole, several small vacuoles may exist in a plant cell. These vacuoles often belong to different classes and can be distinguished either by their contents in soluble proteins or by different types of a major vacuolar membrane protein, the aquaporins. Two vacuolar proton pumps, an ATPase and a PPase energize vacuolar uptake of most solutes. The electrochemical gradient generated by these pumps can be utilized to accumulate cations by a proton antiport mechanism or anions due to the membrane potential difference. Uptake can be catalyzed by channels or by transporters. Growing evidence shows that for most ions more than one transporter/channel exist at the vacuolar membrane. Furthermore, plant secondary products may be accumulated by proton antiport mechanisms. The transport of some solutes such as sucrose is energized in some plants but occurs by facilitated diffusion in others. A new class of transporters has been discovered recently: the ABC type transporters are directly energized by MgATP and do not depend on the electrochemical force. Their substrates are organic anions formed by conjugation, e.g. to glutathione. In this review we discuss the different transport processes occurring at the vacuolar membrane and focus on some new results obtained in this field.  相似文献   

8.
Plant cells orchestrate an array of molecular mechanisms for maintaining plasmatic concentrations of essential heavy metal (HM) ions, for example, iron, zinc and copper, within the optimal functional range. In parallel, concentrations of non‐essential HMs and metalloids, for example, cadmium, mercury and arsenic, should be kept below their toxicity threshold levels. Vacuolar compartmentalization is central to HM homeostasis. It depends on two vacuolar pumps (V‐ATPase and V‐PPase) and a set of tonoplast transporters, which are directly driven by proton motive force, and primary ATP‐dependent pumps. While HM non‐hyperaccumulator plants largely sequester toxic HMs in root vacuoles, HM hyperaccumulators usually sequester them in leaf cell vacuoles following efficient long‐distance translocation. The distinct strategies evolved as a consequence of organ‐specific differences particularly in vacuolar transporters and in addition to distinct features in long‐distance transport. Recent molecular and functional characterization of tonoplast HM transporters has advanced our understanding of their contribution to HM homeostasis, tolerance and hyperaccumulation. Another important part of the dynamic vacuolar sequestration syndrome involves enhanced vacuolation. It involves vesicular trafficking in HM detoxification. The present review provides an updated account of molecular aspects that contribute to the vacuolar compartmentalization of HMs.  相似文献   

9.
The acidification of plant vacuoles is of great importance for various physiological processes, as a multitude of secondary active transporters utilize the proton gradient established across the vacuolar membrane. Vacuolar-type H+-translocating ATPases and a pyrophosphatase are thought to enable vacuoles to accumulate protons against their electrochemical potential. However, recent studies pointed to the ATPase located at the trans-Golgi network/early endosome (TGN/EE) to contribute to vacuolar acidification in a manner not understood as of now. Here, we combined experimental data and computational modeling to test different hypotheses for vacuolar acidification mechanisms. For this, we analyzed different models with respect to their ability to describe existing experimental data. To better differentiate between alternative acidification mechanisms, new experimental data have been generated. By fitting the models to the experimental data, we were able to prioritize the hypothesis in which vesicular trafficking of Ca2+/H+-antiporters from the TGN/EE to the vacuolar membrane and the activity of ATP-dependent Ca2+-pumps at the tonoplast might explain the residual acidification observed in Arabidopsis mutants defective in vacuolar proton pump activity. The presented modeling approach provides an integrative perspective on vacuolar pH regulation in Arabidopsis and holds potential to guide further experimental work.  相似文献   

10.
1. The properties of S-adenosyl-L-methionine accumulating system for both vacuoles and spheroplasts are described. Yeast vacuoles were obtained by a modified metabolic lysis procedure from spheroplasts of Saccharomyces cerevisiae. 2. Isolated vacuoles accumulate S-adenosyl-L-methionine by means of a highly specific transport system as indicated by competition experiments with structural analogs of S-adenosyl-L-methionine. The S-adenosyl-L-methionine transport system shows saturation kinetics with an apparent Km of 68 muM in vacuoles and 11 muM in spheroplasts. 3. S-Adenosyl-L-methionine accumulation into vacuoles does not require glucose, phosphoenolpyruvic acid, ATP, ADP nor any other tri- or di-phosphorylated nucleotides. It is insensitive to azide and 2,4-dinitrophenol which strongly inhibit the glucose-dependent accumulation of S-adenosyl-L-methionine in spheroplasts. 4. The transport of S-adenosyl-L-methionine into vacuoles is optimal at pH 7.4 and is insensitive to nystatin while the uptake of S-adenosyl-L-methionine into spheroplasts is optimal at pH 5.0 and is strongly sensitive to nystatin. On this basis it has thus been possible to measure both the intracytoplasmic and the intravacuolar pool of S-adenosyl-L-methionine. 5. Our results indicate the existence of a highly specific S-adenosyl-L-methionine transport system in the vacuolar membrane which is clearly different from the one present in the plasma membrane of yeast cells.  相似文献   

11.
Membrane anchors for vacuolar targeting: application in plant bioreactors   总被引:5,自引:0,他引:5  
Transgenic plants are attractive expression systems for producing recombinant proteins. Plant cells compartmentalize and store metabolites and proteins in vacuoles, but foreign proteins need to be targeted to the correct compartments if they are to accumulate in a stable fashion. Here we present a general strategy in which unique transmembrane and cytoplasmic tail sequences are used as anchors for delivering recombinant proteins via distinct vesicular transport pathways to specific vacuolar compartments where stable accumulation can occur.  相似文献   

12.
Vacuolar transporters and their essential role in plant metabolism   总被引:4,自引:0,他引:4  
Following the unequivocal demonstration that plants contain at least two types of vacuoles, scientists studying this organelle have realized that the plant 'vacuome' is far more complex than they expected. Some fully developed cells contain at least two large vacuoles, with different functions. Remarkably, even a single vacuole may be subdivided and fulfil several functions, which are supported in part by the vacuolar membrane transport systems. Recent studies, including proteomic analyses for several plant species, have revealed the tonoplast transporters and their involvement in the nitrogen storage, salinity tolerance, heavy metal homeostasis, calcium signalling, guard cell movements, and the cellular pH homeostasis. It is clear that vacuolar transporters are an integrated part of a complex cellular network that enables a plant to react properly to changing environmental conditions, to save nutrients and energy in times of plenty, and to maintain optimal metabolic conditions in the cytosol. An overview is given of the main features of the transporters present in the tonoplast of plant cells in terms of their function, regulation, and relationships with the microheterogeneity of the vacuome.  相似文献   

13.
Seven genes in Saccharomyces cerevisiae are predicted to code for membrane-spanning proteins (designated AVT1-7) that are related to the neuronal gamma-aminobutyric acid-glycine vesicular transporters. We have now demonstrated that four of these proteins mediate amino acid transport in vacuoles. One protein, AVT1, is required for the vacuolar uptake of large neutral amino acids including tyrosine, glutamine, asparagine, isoleucine, and leucine. Three proteins, AVT3, AVT4, and AVT6, are involved in amino acid efflux from the vacuole and, as such, are the first to be shown directly to transport compounds from the lumen of an acidic intracellular organelle. This function is consistent with the role of the vacuole in protein degradation, whereby accumulated amino acids are exported to the cytosol. Protein AVT6 is responsible for the efflux of aspartate and glutamate, an activity that would account for their exclusion from vacuoles in vivo. Transport by AVT1 and AVT6 requires ATP for function and is abolished in the presence of nigericin, indicating that the same pH gradient can drive amino acid transport in opposing directions. Efflux of tyrosine and other large neutral amino acids by the two closely related proteins, AVT3 and AVT4, is similar in terms of substrate specificity to transport system h described in mammalian lysosomes and melanosomes. These findings suggest that yeast AVT transporter function has been conserved to control amino acid flux in vacuolar-like organelles.  相似文献   

14.
Many organelles change their shape in the course of the cell cycle or in response to environmental conditions. Lysosomes undergo drastic changes of shape during microautophagocytosis, which include the invagination of their boundary membrane and the subsequent scission of vesicles into the lumen of the organelle. The mechanism driving these structural changes is enigmatic. We have begun to analyze this process by reconstituting microautophagocytosis in a cell-free system. Isolated yeast vacuoles took up fluorescent dyes or reporter enzymes in a cytosol-, ATP-, and temperature-dependent fashion. During the uptake reaction, vacuolar membrane invaginations, called autophagic tubes, were observed. The reaction resulted in the transient formation of autophagic bodies in the vacuolar lumen, which were degraded upon prolonged incubation. Under starvation conditions, the system reproduced the induction of autophagocytosis and depended on specific gene products, which were identified in screens for mutants deficient in autophagocytosis. Microautophagic uptake depended on the activity of the vacuolar ATPase and was sensitive to GTPgammaS, indicating a requirement for GTPases and for the vacuolar membrane potential. However, microautophagocytosis was independent of known factors for vacuolar fusion and vesicular trafficking. Therefore, scission of the invaginated membrane must occur via a novel mechanism distinct from the homotypic fusion of vacuolar membranes.  相似文献   

15.
We performed electron-microscopic examination of structural diurnal changes in the lumen of sieve tubes and the vacuolar system of corresponding companion cells and changes induced by the experimental blockage of assimilate export from the leaf by its cold-girdling. For these investigations, Cucurbita pepo L. and Helianthus annuus L. plants were used, that is, plant species from groups of symplastic and apoplastic plants, which differ in the type of companion cells and a mode of phloem terminal loading. The examinations showed the complete identity of changes in the electron texture of the sieve-tube lumens and companion-cell vacuoles in both plant species in the course of a day, when the level of assimilates changed, or after export blockage. Similar changes in the structure of the vacuolar labyrinths were stated in the companion cells under normal conditions and after cold-girdling, as related to the rate of sieve-tube loading with the vacuolar exudate. Vacuolar expansion and starch accumulation developing in response to changes in the assimilate level in the evening and after cold blockage of the assimilate export occurred in different types of cells, as dependent on their position in the symplast domains. However, the rate of the process similarly depended on the balance between assimilate synthesis and export. Synchronous changes in the texture of the sieve-tube lumen and companion-cell vacuoles were observed within each complex, but asynchronous changes occurred in different complexes. We suggested this phenomenon for recognizing the particular complexes, when they are grouped in a bundle. We observed no signs of cytoplasm or protein synthetic machinery in the sieve tubes. We concluded that the sieve-tube lumen and vacuoles of companion cells are common in nature. Similar electron texture of the images of the companion-cell vacuolar labyrinth and tube lumens, their connection through the lateral sieve fields, morphological modifications of the companion-cell vacuolar system as dependent on the activity of sieve tube loading—all of these facts imply the continuity of these transport compartments and fluxes in them and the similarity in the composition of the exudates from companion-cell vacuoles and phloem tubes.  相似文献   

16.
Phytochelatins mediate tolerance to heavy metals in plants and some fungi by sequestering phytochelatin-metal complexes into vacuoles. To date, only Schizosaccharomyces pombe Hmt1 has been described as a phytochelatin transporter and attempts to identify orthologous phytochelatin transporters in plants and other organisms have failed. Furthermore, recent data indicate that the hmt1 mutant accumulates significant phytochelatin levels in vacuoles, suggesting that unidentified phytochelatin transporters exist in fungi. Here, we show that deletion of all vacuolar ABC transporters abolishes phytochelatin accumulation in S. pombe vacuoles and abrogates (35)S-PC(2) uptake into S. pombe microsomal vesicles. Systematic analysis of the entire S. pombe ABC transporter family identified Abc2 as a full-size ABC transporter (ABCC-type) that mediates phytochelatin transport into vacuoles. The S. pombe abc1 abc2 abc3 abc4 hmt1 quintuple and abc2 hmt1 double mutant show no detectable phytochelatins in vacuoles. Abc2 expression restores phytochelatin accumulation into vacuoles and suppresses the cadmium sensitivity of the abc quintuple mutant. A novel, unexpected, function of Hmt1 in GS-conjugate transport is also shown. In contrast to Hmt1, Abc2 orthologs are widely distributed among kingdoms and are proposed as the long-sought vacuolar phytochelatin transporters in plants and other organisms.  相似文献   

17.
Protein dynamics and proteolysis in plant vacuoles   总被引:2,自引:0,他引:2  
  相似文献   

18.
A specific effect of Cu2+ eliciting selective changes in the permeability of intact Saccharomyces cerevisiae cells is described. When 100 microM CuCl2 was added to a cell suspension in a buffer of low ionic strength, the permeability barrier of the plasma membranes of the cells was lost within 2 min at 25 degrees C. The release of amino acids was partial, and the composition of the amino acids released was different from that of those retained in the cells. Mostly glutamate was released, but arginine was mainly retained in the cells. Cellular K+ was released rapidly after CuCl2 addition, but 30% of the total K+ was retained in the cells. These and other observations suggested that Cu2+ caused selective lesions of the permeability barrier of the plasma membrane but did not affect the permeability of the vacuolar membrane. These selective changes were not induced by the other divalent cations tested. A novel and simple method for differential extraction of vacuolar and cytosolic amino acid pools by Cu2+ treatment was established. When Ca2+ was added to Cu2+-treated cells, a large amount of Ca2+ was sequestered into vacuoles, with formation of an inclusion of a Ca2+-polyphosphate complex in the vacuoles. Cu2+-treated cells also showed enhanced uptake of basic amino acids and S-adenosylmethionine. The transport of these substrates showed saturable kinetics with low affinities, reflecting the vacuolar transport process in situ. With Cu2+ treatment, selective leakage of K+ from the cytosolic compartment appears to create a large concentration gradient of K+ across the vacuolar membrane and generates an inside-negative membrane potential, which may provide a driving force of uptake of positively charged substances into vacuoles. Cu2+ treatment provides a useful in situ method for investigating the mechanisms of differential solute pool formation and specific transport phenomena across the vacuolar membrane.  相似文献   

19.
Protein trafficking to two different types of vacuoles was investigated in tobacco (Nicotiana tabacum cv SR1) mesophyll protoplasts using two different vacuolar green fluorescent proteins (GFPs). One GFP is targeted to a pH-neutral vacuole by the C-terminal vacuolar sorting determinant of tobacco chitinase A, whereas the other GFP is targeted to an acidic lytic vacuole by the N-terminal propeptide of barley aleurain, which contains a sequence-specific vacuolar sorting determinant. The trafficking and final accumulation in the central vacuole (CV) or in smaller peripheral vacuoles differed for the two reporter proteins, depending on the cell type. Within 2 d, evacuolated (mini-) protoplasts regenerate a large CV. Expression of the two vacuolar GFPs in miniprotoplasts indicated that the newly formed CV was a lytic vacuole, whereas neutral vacuoles always remained peripheral. Only later, once the regeneration of the CV was completed, the content of peripheral storage vacuoles could be seen to appear in the CV of a third of the cells, apparently by heterotypic fusion.  相似文献   

20.
In many cases, secondary plant products accumulate in the large central vacuole of plant cells. However, the mechanisms involved in the transport of secondary compounds are only poorly understood. Here, we demonstrate that the transport mechanisms for the major barley (Hordeum vulgare) flavonoid saponarin (apigenin 6-C-glucosyl-7-O-glucoside) are different in various plant species: Uptake into barley vacuoles occurs via a proton antiport and is competitively inhibited by isovitexin (apigenin 6-C-glucoside), suggesting that both flavone glucosides are recognized by the same transporter. In contrast, the transport into vacuoles from Arabidopsis, which does not synthesize flavone glucosides, displays typical characteristics of ATP-binding cassette transporters. Transport of saponarin into vacuoles of both the species is saturable with a K(m) of 50 to 100 microM. Furthermore, the uptake of saponarin into vacuoles from a barley mutant exhibiting a strongly reduced flavone glucoside biosynthesis is drastically decreased when compared with the parent variety. Thus, the barley vacuolar flavone glucoside/H(+) antiporter could be modulated by the availability of the substrate. We propose that different vacuolar transporters may be responsible for the sequestration of species-specific/endogenous and nonspecific/xenobiotic secondary compounds in planta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号