首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin and IGF-I are two related peptides performing in the mammalian body functionally different roles of the metabolic and growth hormones, respectively. Internalization of the insulin-receptor complex (IRC) is a most important chain of mechanism of the action of hormone. To elucidate differences in the main stages of internalization of the two related hormones at isolated rat hepatocytes, the internalization time course of 125I-insulin and 125I-IGF-I are traced at 37 and 12°C. There are established marked differences in the process of internalization of labeled hormones, which is stimulated by insulin and IGF-I. At 37°C the insulin-stimulated internalization, unlike the process initiated by IGF-I, did not reach the maximal level for 1 h of incubation. But essential differences in the internalization course of these two related peptides were obvious at the temperature of 12°C. The internalization level of insulin receptors at 12°C decreased by one third in spite of a significant increase of the insulin receptor binding on the hepatocyte plasma membrane. At 12°C a slight decrease of the proportion of intracellular 125I-IGF-I correlated with a decrease in the 125I-IGF-I binding to receptors on the cell membrane. Internalization of IGF-I receptors was not affected by low temperature, as neither its level, nor the rate changed at 12°C. The paradoxical decrease of the insulin-stimulated internalization at low temperature seems to represent a peculiar “inhibition mechanism” of immersion of IRC into the cell, which leads to accumulation of the complexes on the cell surface and possibly to a readjustment of the insulin biological activity. The resistance of internalization of the IGF-I receptor to action of cold seems to be related to the more ancient origin of this mechanism in the poikilothermal vertebrates.  相似文献   

2.
Summary The kidney plays a major role in the handling of circulating insulin in the blood, primarily via reuptake of filtered insulin at the luminal brush border membrane.125I-insulin associated with rat renal brush border membrane vesicles (BBV) in a time-and temperature-dependent manner accompanied by degradation of the hormone to trichloroacetic acid (TCA)-soluble fragments. Both association and degradation of125I-insulin were linearly proportional to membrane protein concentration with virtually all of the degradative activity being membrane assoicated. Insulin, proinsulin and desoctapeptide insulin all inhibited the association and degradation of125I-insulin by BBV, but these processes were not appreciably afected by the insulin-like growth factors IGF-I and IGF-II or by cytochromec and lysozyme, low molecular weight, filterable, proteins, which are known to be reabsorbed in the renal tubules by luminal endocytosis. When the interaction of125I-insulin with BBV was studied at various medium osmolarities (300–1100 mosm) to alter intravesicular space, association of the ligand with the vesicles was unaffected, but degradation of the ligand by the vesicles decreased progressively with increasing medium osmolarity. Therefore, association of125I-insulin to BBV represented binding of the ligand to the membrane surface and not uptake of the hormone or its degradation products into the vesicles. Attempts to crosslink125I-insulin to a high-affinity insulin receptor using the bifunctional reagent disuccinimidyl suberate revealed only trace amounts of an125I-insulin-receptor complex in brush border membrane vesicles in contrast to intact renal tubules where this complex was readily observed. Both binding and degradation of125I-insulin by brush border membranes did not reach saturation even at concentrations of insulin approaching 10–5 m. These results indicate the presence of low-affinity, high-capacity binding sites for125I-insulin on renal brush border membranes which can clearly distinguish insulin from the insulin-like growth factors and other low molecular weight proteins and polypeptides, but which do not differentiate insulin from its analogues ad do the biological receptors for the hormone. The properties and location of these binding sites make them attractive candidates for the sites at which insulin is reabsorbed in the renal tubule.  相似文献   

3.
Endothelial cells were cultured from bovine fat capillaries, aortae and pulmonary arteries and their interactions with 125I-IGF-I, 125I-MSA (an IGF-II), 125I-insulin and the corresponding unlabeled hormones were evaluated. Each endothelial culture showed similar binding parameters. With 125I-insulin, unlabeled insulin competed with high affinity while IGF-I and MSA were approximately 1% as potent. With 125I-MSA, MSA was greater than or equal to IGF-I in potency and insulin did not compete for binding. Using 125I-IGF-I, IGF-I was greater than or equal to MSA whereas insulin decreased 125I-IGF-I binding by up to 72%. Exposing cells to anti-insulin receptor antibodies inhibited 125I-insulin binding by greater than 90%, did not change 125I-MSA binding, while 125I-IGF-I binding was decreased by 30-44%, suggesting overlapping antigenic determinants between IGF-I and insulin receptors that were not present on MSA receptors. We conclude that cultured capillary and large vessel endothelial cells have distinct receptors for insulin, IGF-I and MSA (IGF-II).  相似文献   

4.
Previous studies have suggested that transglutaminase has a role in the internalization of some polypeptide hormones and is inhibited by the antibiotic, bacitracin. Bacitracin has been used in insulin-receptor studies to inhibit extracellular degradation of 125I-labelled insulin. The aim of this study was to investigate bacitracin's effect on 125I-labelled insulin-receptor interactions in isolated rat hepatocytes. 1 g/l bacitracin increased cell-associated 125I-labelled insulin at 20, 30 and 37°C (P < 0.001, 0.0005 and 0.0005, respectively). At 5 and 15°C (internalization does not occur), bacitracin did not affect cell-associated 125I-labelled insulin. The bacitracin effect was concentration dependent, increasing to 2 g/l. Scatchard analysis showed that bacitracin did not alter insulin receptor affinity or number. 1 g/l bacitracin abolished the effect of chloroquine. The increased cell-associated radioactivity with bacitracin was surface-bound in nature. 0.5 g/l bacitracin decreased 125I-labelled insulin degradation in hepatocyte suspensions (P < 0.001) and in buffer previously incubated with hepatocytes (P < 0.0005). More 125I-labelled insulin remained associated with cells during dissociation studies at 37°C when the buffer contained 1 g/l bacitracin. Label that appeared in the buffer after 60 min was significantly more intact in the presence of bacitracin (P < 0.025). These results suggest that bacitracin retards the internalization of 125I-labelled insulin in isolated rat hepatocytes.  相似文献   

5.
Isolated rat hepatocytes were used to investigate the relationship between the effect of insulin on amino acid transport and hormone internalization. As previously observed with fibroblastic cells, 10 mM methylamine inhibited the clustering and internalization of the hormone-receptor complex in hepatocytes. Direct measurement of 125I-insulin binding indicated that methylamine did not decrease the binding capacity of the cells. When used at concentrations that did not affect the basal rate of α-aminoisobutyric acid transport, methylamine did not cause a specific decrease in the stimulation by insulin. The data indicate that the internalization of insulin is not required for the expression of its biological effect on amino acid transport.  相似文献   

6.
When hepatocytes were freshly isolated from rat liver and incubated for various periods of time at 37 degrees C, the media from the incubation, when completely separated from the cells, actively degraded 125I-insulin. THis soluble protease activity was strongly inhibited by bacitracin but was unaffected by the lysosomatropic agent ammonium chloride (NH4Cl). When hepatocytes were incubated with 125I-insulin at 37 degrees C in the presence or absence of 8 mM NH4Cl the ligand initially bound to the plasma membrane and was subsequently internalized as a function of time. When hepatocytes were incubated at 37 degrees C for 30 minutes with 125I-insulin in the presence of bacitracin and NH4Cl or bacitracin alone and the cells were washed, diluted, and the cell-bound radioactivity allowed to dissociate, the percent intact 125I-insulin in the cell pellet and in the incubation media was greater in the presence of NH4Cl at each time point of incubation. Under these same conditions a higher proportion of the cell-associated radioactivity was internalized and a higher proportion was associated with lysosomes. The data suggest that receptor-mediated internalization is required for insulin degradation by the cell, and that this process, at least in part, involves lysosomal enzymes. Furthermore, the data demonstrate that internalization is not blocked by the presence of bacitracin or NH4Cl in the incubation media, but that degradation is inhibited.  相似文献   

7.
Binding and degradation of 125I-insulin by rat hepatocytes.   总被引:33,自引:0,他引:33  
The binding and the velocity of degradation of 125I-insulin in the absence or presence of varying concentrations of native procline insulin were studied using isolated rat hepatocytes. At insulin concentrations ranging from 5 X 10(-11) to 10(-6) M, insulin degradation velocity showed a first order dependence on the total concentration of insulin bound at steady state. The overall reaction had an apparent rate constant of 0.030 +/- 0.011 min-1. Furthermore, the degradation of a given amount of 125I-insulin bound to cells was more rapid and extensive than the degradation of the same amount of insulin which had been newly exposed to fresh cells. Mid pretreatment of isolated hepatocytes with trypsin or chymotrypsin at concentrations of 5 to 20 mug/ml depressed to the same degree the amount of 125-I-insulin bound at steady state and the 125I-insulin degradation velocity. Peptide or protein hormones unrelated to insulin, including the oxidized A and B chains of insulin, failed to depress the amount of insulin bound or the velocity of insulin degradation when present at concentrations of 10-5 or 10-6 M. Over a wide range of concentrations, various synthetic insulin analogues and naturally occurring insulins depressed to the same degree the amount of 125I-insulin bound at steady state and the 125I-insulin degradation velocity. These observations suggest that insulin bound to hepatocyte plasma membranes is the substrate for insulin degradation by the liver.  相似文献   

8.
The influence of a mild heat shock on the fate of the insulin-receptor complex was studied in cultured fetal rat hepatocytes whose insulin glycogenic response is sensitive to heat [Zachayus and Plas (1995): J Cell Physiol 162:330–340]. After exposure from 15 min to 2 hr at 42.5°C, the amount of 125I-insulin associated with cells at 37°C was progressively decreased (by 35% after 1 hr), while the release of 125I-insulin degradation products into the medium was also inhibited (by 75%), more than expected from the decrease in insulin binding. Heat shock did not affect the insulin-induced internalization of cell surface insulin receptors but progressively suppressed the recycling at 37°C of receptors previously internalized at 42.5°C in the presence of insulin. When compared to the inhibitory effects of chloroquine on insulin degradation and insulin receptor recycling, which were immediate (within 15 min), those of heat shock developed within 1 hr of heating. The protein level of insulin receptors was not modified after heat shock and during recovery at 37°C, while that of Hsp72/73 exhibited a transitory accumulation inversely correlated with variations in insulin binding, as assayed by Western immunoblotting from whole cell extracts. Coimmunoprecipitation experiments revealed a heat shock-stimulated association of Hsp72/73 with the insulin receptor. Affinity labeling showed an interaction between 125I-insulin and Hsp72/73 in control cells, which was inhibited by heat shock. These results suggest that increased Hsp72/73 synthesis interfered with insulin degradation and prevented the recycling of the insulin receptor and its further thermal damage via a possible chaperone-like action in fetal hepatocytes submitted to heat stress. © 1996 Wiley-Liss, Inc.  相似文献   

9.
Low temperature and the lysosomotropic agent, chloroquine, were used to study the degradation of 125I-insulin in a perfused rat liver. Insulin (1.5 × 10?9m) was removed from the perfusate at 35 °C with a T12 of 12 min, and this process was slowed to 35 min at a temperature of 17 °C. Essentially no degradation of 125I-insulin took place in the liver at 17 °C. After 90 min at that temperature 64% of the liver radioactivity had accumulated in the microsomal fraction of the tissue homogenate, while at 35 °C 60% of the radioactive material was in the supernatant fraction. Greater than 80% of the supernatant radioactivity was acid soluble. Rapid warming of a 17 °C-treated liver to 35 °C allowed the accumulated 125I-insulin in the microsomal fraction to be degraded to acid-soluble products in the normal manner. Chloroquine (0.2 mm) also caused the liver to degrade insulin more slowly. At 60 min after adding 125I-insulin to the chloroquine-treated liver, 50% of the radioactivity in the tissue was still present in the lysosome-rich fraction of the homogenate, while less than 10% was in this fraction in a control liver. The effects of low temperature show transfer of insulin to its degradative site is rate limiting for hormone catabolism and the inhibition by chloroquine suggests lysosomes have a role in insulin degradation by the liver.  相似文献   

10.
Insulin-receptor interactions in liver cell membranes   总被引:17,自引:0,他引:17  
The specific binding of 125I-insulin to liver cell membranes is a saturable process with respect to insulin. Binding is displaced by low concentrations of native insulin but not by biologically inactive insulin derivatives or by other peptide hormones. The rate constants of association (3.5 × 106 mole−1 sec−1) and of dissociation (2.7 × 10−4 sec−1) of the insulin-membrane complex can be determined independently. The dissociation constant of the complex, determined from the rate constants and from equilibrium data, is about 7 × 10−11M. Complex formation does not result in degradation of the insulin molecule. The binding interaction is a dissociable process involving a homogeneous membrane structure which is almost certainly the biologically significant receptor. The kinetic properties, and the effects of enzymic perturbations of the membrane, suggest that the insulin receptors of liver and of adipose tissue cells may be very similar structures.  相似文献   

11.
The physiological function of alkaline phosphatase (ALP) remains controversial. It was recently suggested that this membrane-bound enzyme has a role in the modulation of transmembranar transport systems into hepatocytes and Caco-2 cells. ALP activity expressed on the apical surface of blood-brain barrier cells, and its relationship with (125)I-insulin internalization were investigated under physiological conditions using p-nitrophenylphosphate (p-NPP) as substrate. For this, an immortalized cell line of rat capillary cerebral endothelial cells (RBE4 cells) was used. ALP activity and (125)I-insulin internalization were evaluated in these cells. The results showed that RBE4 cells expressed ALP, characterized by an ecto-oriented active site which was functional at physiological pH. Orthovanadate (100 microM), an inhibitor of phosphatase activities, decreased both RBE4-ALP activity and (125)I-insulin internalization. In the presence of L-arginine (1 mM) or adenosine (100 microM) RBE4-ALP activity and (125)I-insulin, internalization were significantly reduced. However, D-arginine (1 mM) had no significant effect. Additionally, RBE4-ALP activity and (125)I-insulin internalization significantly increased in the presence of the bioflavonoid kaempferol (100 microM), of the phorbol ester PMA (80 nM), IBMX (1 mM), progesterone (200 microM and 100 microM), beta-estradiol (100 microM), iron (100 microM) or in the presence of all-trans retinoic acid (RA) (10 microM). The ALP inhibitor levamisole (500 microM) was able to reduce (125)I-insulin internalization to 69.1 +/- 7.1% of control. Our data showed a positive correlation between ecto-ALP activity and (125)I-insulin incorporation (r = 0.82; P < 0.0001) in cultured rat brain endothelial cells, suggesting that insulin entry into the blood-brain barrier may be modulated through ALP.  相似文献   

12.
Fetal murine neuronal cells bear somatomedin receptors which can be classified according to their affinities for IGF-I, IGF-II and insulin. Binding of 125I-IGF-I is half-maximally displaced by 7 ng/ml IGF-I while 15- and 700-fold higher concentrations are required for, respectively, IGF-II and insulin. Linear Scatchard plots of competitive-binding data with IGF-I suggest one single class of type I IGF receptors (Ka = 2.6 X 10(9) M-1; Ro = 4500 sites per cell). The occurrence of IGF-II receptors appears from the specific binding of 125I-IGF-II and competition by unlabeled IGF-II; the IGF-II binding sites display a low affinity for IGF-II and no affinity for insulin. IGF-II also interacts with insulin receptors although 50- to 100-fold less potent than insulin in competing for 125I-insulin binding. The presence of distinct receptors for IGF-I, IGF-II and insulin on fetal neuronal cells is consistent with a role of these peptides in neuronal development, although our data also indicate that IGF-I receptors could mediate the growth promoting effects of insulin.  相似文献   

13.
Binding of 125I-insulin and 125I-IGF-I to partially purified receptors of lamprey skeletal muscles was studied during pre-pawning migration. It has been shown that throughout this whole period the IGF-I binding to skeletal muscle predominates over the insulin binding. Besides, a certain time dynamics was observed: the insulin binding rose since October to reach maximum in February–March, then it decreased to a minimum level in May; the IGF-I binding also increased: it rose statistically significantly in March compared to October, became maximal in April, and then decreased to a minimum. The dynamics of the receptor IGF-I binding has been shown to depend on changes of receptor affinity, whereas the change of the insulin binding was determined by binding capacity (the number of binding sites). Highly specific IGF-I receptors of the lamprey skeletal muscle bound insulin with an affinity about 1% from that of IGF-I, while insulin receptors had identical affinity for the insulin and IGF-I binding. Both peptides, insulin and IGF-I, activated autophosphorylation of beta-subunits in their receptors. The increase of the IGF-I binding from October to April could be a factor that maintains a high functional activity of lamprey skeletal muscles in the course of the pre-pawning migration. It is suggested that IGF-I promotes maintaining this activity due to its property of inhibiting apoptosis.  相似文献   

14.
The present study demonstrated that at physiological concentrations of insulin bacitracin inhibited the degradation of specifically bound insulin by enzymes located in the rat adipocyte plasma membrane. Bacitracin increased the amount of intact insulin specifically bound to the plasma membrane and potentiated the stimulation of adipocyte glucose oxidation by submaximal concentrations of the hormone. In contrast to agents such as chloroquine, which inhibit lysosomal degradation of internalized insulin, bacitracin was shown by two approaches to inhibit a degradative process localized to the adipocyte plasma membrane. Cyanide and 2,4-dinitrophenol, agents which inhibit energy requiring endocytosis, had no effect on the bacitracin inhibition of cellular degradation of 125I-insulin. Bacitracin directly inhibited 125I-insulin degradation by isolated plasma membranes at similar concentrations and to a similar extent as found with cells. The degradative process inhibited by bacitracin accounted for the majority of cellular degradation of the hormone. The increased 125I-insulin bound to adipocytes was shown to be intact by gel chromatographic analysis and was localized to the plasma membrane by direct and indirect approaches. Bacitracin increased 125I-insulin specifically bound to isolated plasma membranes as early as 2 min. The 125I-insulin bound to adipocytes in the presence of bacitracin was completely dissociable by the addition of 8 microM unlabeled insulin whereas a significant portion of 125I-insulin bound to chloroquine-treated cells could not be dissociated. Bacitracin slowed dissociation of 125I-insulin from the cells. Bacitracin increased the 125I-insulin binding to cells in the presence and absence of cyanide and 2,4-dinitrophenol. Bacitracin potentiated the stimulation of adipocyte glucose oxidation at submaximal concentrations of insulin.  相似文献   

15.
Abstract

Insulin and IGF-I affect in vitro ovarian stromal and follicular cell function in several species. We previously characterized insulin receptors on human granulosa cells obtained from in vitro fertilization procedures but were unable to demonstrate specific binding of IGF-I.

Following modification of the assay conditions, we now report specific, high affinity IGF-1 binding sites on human granulosa cells. Substitution of equimolar concentrations of sucrose for sodium chloride in the buffer solution increased binding of IGF but not insulin in equilibrium assays. Maximal specific IGF-I binding was 2.69 ± 0.30%/105 cells (SEM, n=9) with half-maximal inhibition of binding at 2 ng/ml IGF-I. Unlabeled insulin recognized the type I IGF receptor with low affinity. An IGF-I receptor monoclonal antibody (αIR-3) inhibited 125I-IGF-I but not 125I-insulin binding. Affinity crosslinking followed by SDS/PAGE under reducing conditions revealed IGF-I binding at a molecular weight compatible with the αsubunit of the type I IGF receptor and with a pattern of inhibition by various ligands that paralleled the equilibrium binding assays.

IGF-I receptors are present on freshly isolated human ovarian granulosa cells obtained following pharmacologic stimulation with gonadotrophin according to the protocols of in vitro fertilization. The biologic function of these receptors currently is being investigated.  相似文献   

16.
The subcellular distribution of 125I-insulin in the perfused rat liver was compared with the subcellular distribution of the lysosomally targeted asialoglycoprotein, 125I-asialofetuin. The use of Percoll density gradient medium provided excellent separation of lysosomes from the subcellular membrane fractions. Following perfusion with 125I-asialofetuin, a distinct peak of TCA-precipitable radioactivity could be observed in the lysosomal region of the gradient. In contrast, the gradient distribution of TCA-precipitable radioactivity following perfusion with physiological concentrations of 125I-insulin was unimodal, the observed peak corresponding to the distribution of intracellular membrane marker enzymes. Leupeptin, an inhibitor of lysosomal proteolysis, inhibited the degradation of 125I-asialofetuin but had no effect on 125I-insulin degradation. In addition, leupeptin produced a marked increase in TCA-precipitable radioactivity in the lysosome rich region of gradients prepared from livers perfused with 125I-asialofetuin. No such effect was observed following perfusion with 125I-insulin. These findings are consistent with an initial localization of the internalized insulin molecule with the membraneous system of the liver cell rather than the lysosomal system.  相似文献   

17.
The present study was conducted to characterize insulin receptors and to determine the effects of insulin in synaptosomes prepared from adult rat brains. Binding of125I-insulin to synaptosome insulin receptors was highly specific and time dependent: equilibrium binding was obtained within 60 minutes, and a t1/2 of dissociation of 26 minutes. Cross-linking of125I-insulin to its receptor followed by SDS-PAGE demonstrated that the apparent molecular weight of the alpha subunit of the receptor was 122,000 compared with 134,000 for the liver insulin receptor. In addition, insulin stimulated the dose-dependent phosphorylation of exogenous tyrosine containing substrate and a 95,000 MW plasma membrane associated protein, in a lectin-purified insulin receptor preparation. The membrane associated protein was determined to be the subunit of the insulin receptor. Incubation of synaptosomes with insulin caused a dose-dependent inhibition of specific sodium-sensitive [3H]norepinephrine uptake. Insulin inhibition of [3H]norepinephrine uptake was mediated by a decrease in active uptake sites without any effects in theK m, and was specific for insulin since related and unrelated peptides influenced the uptake in proportion to their structural similarity with insulin. These observations indicate that synaptosomes prepared from the adult rat brain possess specific insulin receptors and insulin has inhibitory effects on norepinephrine uptake in the preparation.  相似文献   

18.
In a previous study we reported that ovaries from bovine fetuses, which consist mainly of preantral follicles with few antral follicles, are weakly responsive to gonadotropins (FSH and LH). Insulin-like growth factor-I (IGF-I) is known to enhance gonadotropin responsiveness in vitro, but there is a lack of consistent data on the involvement of IGF-I, FSH, and LH during early stages of folliculogenesis in cattle. In the study reported here, we assessed autoradiographically the ontogeny of 125I-gonadotropin and 125I-IGF-I binding activities during preantral and early antral stages in cattle. Follicular growth was initiated around Day 180 of gestation in fetuses. The density of 125I-FSH binding was high in granulosa cells from primary (mean +/- SEM 10.5 +/- 0.7 grains/cell, 0.05-mm diam.) and secondary follicles (10.8 +/- 0.8 to 13.6 +/- 1.2 grains/cell, 0.06-0.15 mm) but increased significantly (p < 0.05) in early antral follicles (18.2 +/- 1.1 grains/cell, 0.16-3.0 mm). Specific 125I-IGF-I binding levels were low in granulosa cells from preantral follicles, averaging 2.5 +/- 0.6-3.1 +/- 0.9 grains/cell. However, after antrum formation, the density of 125I-IGF-I binding increased significantly (p < 0.05) with follicular diameter in granulosa cells and was 5.7 +/- 0.7 and 9.1 +/- 0.6 grains/cell for antral I (0.16-0.5 mm) and antral II (0.6-3.0 mm) follicles, respectively. 125I-FSH and 125I-IGF-I binding densities were low in theca cells from preantral and early antral follicles as well as in the interstitial tissue and granulosa cells from atretic follicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Cerebropleural ganglia from 4000 individuals of the mollusc Anodonta cygnea were submitted to procedures developed for isolation of vertebrate pancreatic insulins: homogenization and extraction, stage-like isoelectrical sedimentation, and ion-exchange chromatography. As a result of purification of the obtained preparation, using high-effective liquid chromatography, there were identified 7 protein peaks differing by time of retention on the reverse-phase sorbent in acetonitryl gradient and designated as insulin-related peptides (IRP), IRP1-IRP7. The material was characterized by the peptide ability to inhibit specific binding of 125I-insulin and of insulin-related factor-1 (125I-IGF-1) by plasma membranes of the rat liver and brain. The IC50 value of peptide concentration (nM) able to replace 50% of the labeled hormone bound with the receptor amounted in the insulin radioreceptor system for IRP1 to 330, for IRP3 to 130, for IRP4 to 17, for IRP5 to130, for IRP6 to 420 nM. Peptide IRP7 at a maximal concentration (104 ng/ml) replaced less than 50% of labeled hormone, whereas in IRP2 no inhibitory ability was detected under these experimental conditions. The IC50 value in the case of 125I-IGF-1 amounted for IRP1, IRP4, and IRP5 to17, for IRP2 to 50, for IRP3 to 83, for IRP6 to 133 nM. IRP7 at a concentration of 104 ng/ml replaced less than 50% of labeled hormone. The same high relative affinity of the peptide IRP4 (12% of activity of standard insulin and IGF-1) to both receptor types is revealed. The results of analysis in two types of hormonal test systems indicate the ability of the insulin-related peptides of the anodonta cerebropleural ganglion to interact with the vertebrate receptor of insulin and IGF-1. This gives grounds to suggest the presence of the metabolic and growth-stimulating properties in these peptides. For the first time, the IGF-1 activity is revealed in insulin-like molecules in invertebrates. Taking into account the chromatographically revealed differences of physicochemical characteristics of individual IRP as well as predominance of their IGF-1-binding properties, there is suggested another organization of the IRP receptor-binding domains in IPR of this mollusc species, as compared with mammalian insulins.  相似文献   

20.
The association of 125I-labeled insulin with hepatocytes was assayed by filtration or microcentrifugation. Assay by centrifugation resulted in a greater amount of retained radioactive label throughout the course of association of 125I-labeled insulin with hepatocytes. Similarly, saturation experiments assayed by microcentrifugation suggested greater binding than filtration. During dissociation, cells isolated by centrifugation released a greater amount of rapid-dissociating radioactive label. Control experiments of [3H]-inulin exclusion with cell pellets, which were isolated during microcentrifugation, demonstrated that the difference between the methods was not due to extracellular trapping of radioactivity. Therefore, the data suggested that there was more low-affinity retention when binding was assayed by centrifugation than filtration. The integrity of the 125I-labeled insulin extracted from hepatocytes was determined by column chromatography. A substantially greater proportion of the extracted radioactivity was fragments of 125I-labeled insulin in cells isolated by centrifugation. It is suggested that the extensive washing of the cells during filtration removes more fragments than does centrifugation. During dissociation, the low-affinity component of radioactivity, which was observed in the centrifugal assay, resulted from the transient retention of insulin fragments. The extensive degradation of insulin, which was assayed by either method, and the differences observed between these methods, should be considered in the interpretation of binding experiments with cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号