首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Celastrol, a potent natural triterpene and one of the most promising medicinal molecules, is known to possess a broad range of biological activity. Rotenone, a pesticide and complex I inhibitor, is commonly used to produce experimental models of Parkinson’s disease both in vivo and in vitro. The present study was designed to examine the effects of celastrol on cell injury induced by rotenone in the human dopaminergic cells and to elucidate the possible mechanistic clues in its neuroprotective action. We demonstrate that celastrol protects SH-SY5Y cells from rotenone-induced cellular injury and apoptotic cell death. Celastrol also prevented the increased generation of reactive oxygen species and mitochondrial membrane potential (ΔΨm) loss induced by rotenone. Similarly, celastrol treatment inhibited cytochrome c release, Bax/Bcl-2 ratio changes, and caspase-9/3 activation. Celastrol specifically inhibited rotenone-evoked p38 mitogen-activated protein kinase activation in SH-SY5Y cells. These data suggest that celastrol may serve as a potent agent for prevention of neurotoxin-induced neurodegeneration through multiple mechanisms and thus has therapeutic potential for the treatment of neurodegenerative diseases.  相似文献   

2.
Rhus verniciflua Stokes (RVS), traditionally used as a food supplement and in traditional herbal medicine for centuries in Korea, is known to possess various pharmacological properties. Environmental neurotoxins such as rotenone, a specific inhibitor of complex I provide models of Parkinson’s disease (PD) both in vivo and in vitro. In this study, we investigated the neuroprotective effect of RVS against rotenone-induced toxicity in human dopaminergic cells, SH-SY5Y. Cells exposed to rotenone for 24 h-induced cellular injury and apoptotic cell death. Pretreatment of cells with RVS provided significant protection to SH-SY5Y cells. Further, RVS offered remarkable protection against rotenone-induced oxidative stress and markedly inhibited mitochondrial membrane potential (MMP) disruption. RVS also attenuated the up-regulation of Bax, Caspase-9 and Caspase-3 and down-regulation of Bcl-2. Moreover, pretreatment with RVS prevented the decrease in tyrosine hydroxylase (TH) levels in SH-SY5Y cells. Interestingly, RVS conferred profound protection to human dopaminergic cells by preventing the downregulation of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF). These results suggest that RVS may protect dopaminergic neurons against rotenone-induced apoptosis by multiple functions and contribute to neuroprotection in neurodegenerative diseases, such as PD.  相似文献   

3.
Prostaglandin A1 inhibits rotenone-induced apoptosis in SH-SY5Y cells   总被引:6,自引:0,他引:6  
The degeneration of nigral dopamine neurons in Parkinson's disease (PD) reportedly involves a defect in brain mitochondrial complex I in association with the activation of nuclear factor-kappaB (NF-kappaB) and caspase-3. To elucidate molecular mechanisms possibly linking these events, as well as to evaluate the neuroprotective potential of the cyclopentenone prostaglandin A1 (PGA1), an inducer of heat shock proteins (HSPs), we exposed human dopaminergic SH-SY5Y cells to the complex I inhibitor rotenone. Dose-dependent apoptosis was preceded by the nuclear translocation of NF-kappaB and then the activation of caspase-3 over the ensuing 24 h. PGA1 increased the expression of HSP70 and HSP27 and protected against rotenone-induced apoptosis, without increasing necrotic death. PGA1 blocked the rotenone-induced nuclear translocation of NF-kappaB and attenuated, but did not abolish, the caspase-3 elevation. Unexpectedly, the caspase-3 inhibitor, Ac-DEVD.CHO (DEVD), at a concentration that completely prevented the caspase-3 elevation produced by rotenone, failed to protect against apoptosis. These results suggest that complex I deficiency in dopamine cells can induce apoptosis by a process involving early NF-kappaB nuclear translocation and caspase-3 activation. PGA1 appears to protect against rotenone-induced cell death by inducing HSPs and blocking nuclear translocation of NF-kappaB in a process that attenuates caspase-3 activation, but is not mediated by its inhibition.  相似文献   

4.
Celastrol, an active component found in the Chinese herb tripterygium wilfordii has been identified as a neuroprotective agent for neurodegenerative diseases including Parkinson’s disease (PD) through unknown mechanism. Celastrol can induce autophagy, which plays a neuroprotective role in PD. We tested the protective effect of celastrol on rotenone-induced injury and investigated the underlying mechanism using human neuroblastoma SH-SY5Y cells. The SH-SY5Y cells were treated with celastrol before rotenone exposure. The cells survival, apoptosis, accumulation of α-synuclein, oxidative stress and mitochondrial function, and autophagy production were analyzed. We found celastrol (500 nM) pre-treatment enhanced cell viability (by 28.99%, P < 0.001), decreased cell apoptosis (by 54.38%, P < 0.001), increased SOD and GSH (by 120.53% and 90.46%, P < 0.01), reduced accumulation of α-synuclein (by 35.93%, P < 0.001) and ROS generation (by 33.99%, P < 0.001), preserved MMP (33.93 ± 3.62%, vs. 15.10 ± 0.71% of JC-1 monomer, P < 0.001) and reduced the level of cytochrome C in cytosol (by 45.57%, P < 0.001) in rotenone treated SH-SY5Y cells. Moreover, celastrol increased LC3-II/LC3 I ratio by 60.92% (P < 0.001), indicating that celastrol activated autophagic pathways. Inhibiting autophagy by 3-methyladenine (3-MA) abolished the protective effects of celastrol. Our results suggested that celastrol protects SH-SY5Y cells from rotenone induced injuries and autophagic pathway is involved in celastrol neuroprotective effects.  相似文献   

5.
In addition to its original application for treating tuberculosis, rifampicin has multiple potential neuroprotective effects in chronic neurodegenerative diseases including Parkinson’s disease (PD) and Alzheimer’s disease. Inflammatory reactions and the PI3K/Akt pathway are strongly implicated in dopaminergic neuronal death in PD. This study aims to investigate whether rifampicin protects rotenone-lesioned SH-SY5Y cells via regulating PI3K/Akt/GSK-3β/CREB pathway. Rotenone-treated SH-SY5Y cells were used as the cell model to investigate the neuroprotective effects of rifampicin. Cell viability and apoptosis of SH-SY5Y cells were determined by CCK-8 assay and flow cytometry, respectively. The expression of Akt, p-Akt, GSK-3β, p-GSK-3β, CREB and p-CREB were measured by Western blot. Our results showed that the cell viability and level of phospho-CREB significantly decreased in SH-SY5Y cells exposed to rotenone when compared to the control group. Both the cell viability and the expression of phospho-CREB in cells pretreated with rifampicin were higher than those of cells exposed to rotenone alone. Moreover, pretreatment of SH-SY5Y cells with rifampicin enhanced phosphorylation of Akt and suppressed activity of GSK-3β. The addition of LY294002, a PI3K inhibitor, could suppress phosphorylation of Akt and CREB and activate GSK-3β, resulting in abolishment of neuroprotective effects of rifampicin on cells exposed to rotenone. Rifampicin provides neuroprotection against dopaminergic degeneration, partially via the PI3K/Akt/GSK-3β/CREB signaling pathway. These findings suggest that rifampicin could be an effective and promising neuroprotective candidate for treating PD.  相似文献   

6.
This study was designed to investigate the effects of α-synuclein on toxicity induced by long-term exposure to relatively low concentrations of rotenone.Compared with the control groups,the inhibition of cell viability which overexpressed α-synuclein(SH-SY5Y-Syn) improved after 1 and 2 weeks of rotenone treatment.The complex I activity was greater and the mitochondrial membrane swelling intensity was reduced after 1 and 2 weeks of treatment,which indicated that α-synuclein,at least in part,resists the rotenone-induced oxidative stress.The results indicate that α-synuclein has a dual effect on toxicity of rotenone according to exposure time in human SH-SY5Y cells.  相似文献   

7.
Zonisamide (ZNS), an antiepileptic drug having beneficial effects also against Parkinson’s disease symptoms, has proven to display an antioxidant effects in different experimental models. In the present study, the effects of ZNS on rotenone-induced cell injury were investigated in human neuroblastoma SH-SY5Y cells differentiated towards a neuronal phenotype. Cell cultures were exposed for 24 h to 500 nM rotenone with or without pre-treatment with 10–100 μM ZNS. Then, the following parameters were analyzed: (a) cell viability; (b) intracellular reactive oxygen species production; (c) mitochondrial transmembrane potential; (d) cell necrosis and apoptosis; (e) caspase-3 activity. ZNS dose-dependently suppressed rotenone-induced cell damage through a decrease in intracellular ROS production, and restoring mitochondrial membrane potential. Similarly to ZNS effects, the treatment with N-acetyl-cysteine (100 μM) displayed significant protective effects against rotenone-induced ROS production and Δψm at 4 and 12 h respectively, reaching the maximal extent at 24 h. Additionally, ZNS displayed antiapoptotic effects, as demonstrated by flow cytometric analysis of annexin V/propidium iodide double staining, and significant attenuated rotenone-increased caspase 3 activity. On the whole, these findings suggest that ZNS preserves mitochondrial functions and counteracts apoptotic signalling mechanisms mainly by an antioxidant action. Thus, ZNS might have beneficial effect against neuronal cell degeneration in different experimental models involving mitochondrial dysfunction.  相似文献   

8.
Agmatine, an endogenous arginine metabolite, has been proposed as a novel neuromodulator that plays protective roles in the CNS in several models of cellular damage. However, the mechanisms involved in these protective effects in neurodegenerative diseases are poorly understood. The present study was undertaken to investigate the effects of agmatine on cell injury induced by rotenone, commonly used in establishing in vivo and in vitro models of Parkinson's disease, in human-derived dopaminergic neuroblastoma cell line (SH-SY5Y). We report that agmatine dose-dependently suppressed rotenone-induced cellular injury through a reduction of oxidative stress. Similar effects were obtained by spermine, suggesting a scavenging effect for these compounds. However, unlike spermine, agmatine also prevented rotenone-induced nuclear factor-κB nuclear translocation and mitochondrial membrane potential dissipation. Furthermore, rotenone-induced increase in apoptotic markers, such as caspase 3 activity, Bax expression and cytochrome c release, was significantly attenuated with agmatine treatment. These findings demonstrate mitochondrial preservation with agmatine in a rotenone model of apoptotic cell death, and that the neuroprotective action of agmatine appears because of suppressing apoptotic signalling mechanisms. Thus, agmatine may have therapeutic potential in the treatment of Parkinson's disease by protecting dopaminergic neurons.  相似文献   

9.
Liu YY  Zhao HY  Zhao CL  Duan CL  Lu LL  Yang H 《生理学报》2006,58(5):421-428
帕金森病(Parkinson’s disease,PD)的发病机制涉及到遗传和环境因素。环境因素通过线粒休导致氧化应激和α-突触核蛋白(α—synuclein)聚集,但其确切的作用机制尚不明确。本文利用过表达α-突触核蛋白-增强型绿色荧光蛋白(enhanced green fluorescent protein.EGFP)的人多巴胺能神经母细胞瘤细胞株SH—SY5Y为模型,研究α-突触核蛋白对鱼藤酮诱导氧化应激的影响,从而进一步了解α-突触核蛋白和细胞存活之间的关系。(1)用荧光显微镜观察融合绿色荧光蛋白的α-突触核蛋白的表达情况;(2)用实时定量PCR检测α-突触核蛋白基因的表达;(3)用免疫细胞化学测定α-突触核蛋白的分布;(4)用不同浓度的鱼藤酮作用细胞后,以MTT法测细胞的活力、DCF法检测细胞的氧化应激状态、黄嘌呤氧化酶法检测超氧化物歧化酶的活力,并用流式细胞仪分析细胞的凋亡。实时定量PCR结果显示,α-突触核蛋白基因表达量在α-突触核蛋白过表达的细胞要高于SH—SY5Y细胞,在荧光显微镜下可见绿色荧光蛋白和α-突触核蛋白的表达。鱼藤酮可使细胞活力下降、线粒体complex Ⅰ的活性降低,诱导细胞内氧化应激,而过表达α-突触核蛋白的细胞可以部分抵抗鱼藤酮的毒性作用,表现为细胞抗氧化能力迅速增高(P〈0.05)和鱼藤酮诱导的细胞凋亡数目明显降低。本研究证明α-突触核蛋白对鱼藤酮产生的氧化应激有部分抵抗作用,而使过表达α-突触核蛋白的SH—SY5Y细胞对鱼藤酮的毒性作用表现出一定的耐受性。这种耐受性也可能是细胞对外界损害的一种代偿反应,从而促进细胞的存活。  相似文献   

10.
Leucine-rich repeat kinase 2 (LRRK2) is involved in Parkinson’s disease (PD) pathology. A previous study showed that rotenone treatment induced apoptosis, mitochondrial damage, and nucleolar disruption via up-regulated LRRK2 kinase activity, and these effects were rescued by an LRRK2 kinase inhibitor. Heat-shock protein 70 (Hsp70) is an anti-oxidative stress chaperone, and overexpression of Hsp70 enhanced tolerance to rotenone. Nucleolin (NCL) is a component of the nucleolus; overexpression of NCL reduced cellular vulnerability to rotenone. Thus, we hypothesized that rotenone-induced LRRK2 activity would promote changes in neuronal Hsp70 and NCL expressions. Moreover, LRRK2 G2019S, the most prevalent LRRK2 pathogenic mutant with increased kinase activity, could induce changes in Hsp70 and NCL expression. Rotenone treatment of differentiated SH-SY5Y (dSY5Y) cells increased LRKK2 levels and kinase activity, including phospho-S935-LRRK2, phospho-S1292-LRRK2, and the phospho-moesin/moesin ratio, in a dose-dependent manner. Neuronal toxicity and the elevation of cleaved poly (ADP-ribose) polymerase, NCL, and Hsp70 were increased by rotenone. To validate the induction of NCL and Hsp70 expression in response to rotenone, cycloheximide (CHX), a protein synthesis blocker, was administered with rotenone. Post-rotenone increased NCL and Hsp70 expression was repressed by CHX; whereas, rotenone-induced kinase activity and apoptotic toxicity remained unchanged. Transient expression of G2019S in dSY5Y increased the NCL and Hsp70 levels, while administration of a kinase inhibitor diminished these changes. Similar results were observed in rat primary neurons after rotenone treatment or G2019S transfection. Brains from G2019S-transgenic mice also showed increased NCL and Hsp70 levels. Accordingly, LRRK2 kinase inhibition might prevent oxidative stress-mediated PD progression.

Abbreviations: 6-OHDA: 6-hydroxydopamine; CHX: cycloheximide; dSY5Y: differentiated SH-SY5Y; g2019S tg: g2019S transgenic mouse; GSK/A-KI: GSK2578215A kinase inhibitor; HSP70: heat shock protein 70; LDH: lactose dehydrogenase; LRRK2: leucine rich-repeat kinase 2; MPTP: 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; myc-GS LRRK2: myc-tagged g2019S LRRK2; NCL: nucleolin; PARP: poly(ADP-ribose) polymerase; PD: Parkinson’s disease; PINK1: PTEN-induced putative kinase 1; pmoesin: phosphorylated moesin at t558; ROS: reactive oxygen species  相似文献   


11.
Rotenone is an inhibitor of mitochondrial complex I-induced neurotoxicity in PC12 cells and has been widely studied to elucidate the pathogenesis of Parkinson’s disease. We investigated the neuroprotective effects of betaine on rotenone-induced neurotoxicity in PC12 cells. Betaine inhibited rotenone-induced apoptosis in a dose-dependent manner, with cell viability increasing from 50 % with rotenone treatment alone to 71 % with rotenone plus 100-μM betaine treatment. Flow cytometric analysis demonstrated cell death in the rotenone-treated cells to be over 50 %; the number of live cells increased with betaine pretreatment. Betaine pretreatment of PC12 cells attenuated rotenone-mediated mitochondrial dysfunction, including nuclear fragmentation, ATP depletion, mitochondrial membrane depolarization, caspase-3/7 activation, and reactive oxygen species production. Western blots demonstrated activation of caspase-3 and caspase-9, and their increased expression levels in rotenone-treated cells; betaine decreased caspase-3 and caspase-9 expression levels and suppressed their activation. Together, these results suggest that betaine may serve as a neuroprotective agent in the treatment of neurodegenerative diseases.  相似文献   

12.
13.
14.
Excessive reactive oxygen species (ROS) generated from abnormal cellular process lead to various human diseases such as inflammation, ischemia, and Parkinson’s disease (PD). Sensitive to apoptosis gene (SAG), a RING-FINGER protein, has anti-apoptotic activity and anti-oxidant activity. In this study, we investigate whether Tat-SAG, fused with a Tat domain, could protect SH-SY5Y neuroblastoma cells against 1-methyl-4-phenylpyridinium (MPP+) and dopaminergic (DA) neurons in the substantia nigra (SN) against 1-methyl-4-phenyl-1,2,3,6-tetra-hydropyridine (MPTP) toxicity. Western blot and immunohistochemical analysis showed that, unlike SAG, Tat-SAG transduced efficiently into SH-SY5Y cells and into the brain, respectively. Tat-SAG remarkably suppressed ROS generation, DNA damage, and the progression of apoptosis, caused by MPP+ in SH-SY5Y cells. Also, immunohistochemical data using a tyrosine hydroxylase antibody and cresyl violet staining demonstrated that Tat-SAG obviously protected DA neurons in the SN against MPTP toxicity in a PD mouse model. Tat-SAG-treated mice showed significant enhanced motor activities, compared to SAG- or Tat-treated mice. Therefore, our results suggest that Tat-SAG has potential as a therapeutic agent against ROS-related diseases such as PD.  相似文献   

15.
In the present study, we examined whether caspases and their upstream regulators are involved in rotenone-induced cytotoxicity. Rotenone significantly inhibited the proliferation of oral cancer cell lines in a dose-dependent manner compared to normal oral mucosal fibroblasts. Flow cytometric analysis of DNA content showed that rotenone treatment induced apoptosis following G2/M arrest. Western blotting showed activation of both the caspase-8 and caspase-9 pathways, which differed from previous studies conducted in other cell types. Furthermore, p53 protein and its downstream pro-apoptotic target, Bax, were induced in SAS cells after treatment with rotenone. Rotenone-induced apoptosis was inhibited by antioxidants (glutathione, N-acetylcysteine, and tiron). In conclusion, our results demonstrate significant involvement of caspases and their upstream regulators in rotenone-induced cytotoxicity.  相似文献   

16.
The contribution of oxidative stress to the pathophysiology of depression has been described in numerous studies. Particularly, an increased production of reactive oxygen species (ROS) caused by mitochondrial dysfunction can lead to neuronal cell death. Human neuroblastoma SH-SY5Y cells were used to investigate the neuroprotective effect of the antidepressant duloxetine against rotenone-induced oxidative stress. SH-SY5Y cells were pretreated with duloxetine (1–5 µM) for 24 h followed by a 24-h rotenone exposure (10 µM). The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) inhibitor LY294002 (10 µM) and the heme oxygenase 1 (HO-1) inhibitor zinc protoporphyrin IX-ZnPP (5 µM) were added to cultures 1 h prior duloxetine treatments. After treatments cell viability and ROS generation were assessed. NF-E2-related factor-2 (Nrf2) nuclear translocation was assessed by immunofluorescent staining after 4 and 8 h of duloxetine incubation. Furthermore, the Nrf2 and HO-1 mRNA expression was carried out after 4–48 h of duloxetine treatment by qRT-PCR. Duloxetine pretreatment antagonized rotenone-induced overproduction of ROS and cell death in SH-SY5Y cells. In addition, a 1-h pretreatment with LY294002 abolished duloxetine’s protective effect. Duloxetine also induced nuclear translocation of the Nrf2 and the expression of its target gene, HO-1. Finally, the HO-1 inhibitor, ZnPP, suppressed the duloxetine protective effect. Overall, these results indicate that the mechanism of duloxetine neuroprotective action against oxidative stress and cell death might rely on the Akt/Nrf2/HO-1 pathways.  相似文献   

17.

Purpose

Carbon monoxide (CO) is an accepted cytoprotective molecule. The extent and mechanisms of protection in neuronal systems have not been well studied. We hypothesized that delivery of CO via a novel releasing molecule (CORM) would impart neuroprotection in vivo against ischemia-reperfusion injury (IRI)-induced apoptosis of retinal ganglion cells (RGC) and in vitro of neuronal SH-SY5Y-cells via activation of soluble guanylate-cyclase (sGC).

Methods

To mimic ischemic respiratory arrest, SH-SY5Y-cells were incubated with rotenone (100 nmol/L, 4 h) ± CORM ALF186 (10–100 µmol/L) or inactivated ALF186 lacking the potential of releasing CO. Apoptosis and reactive oxygen species (ROS) production were analyzed using flow-cytometry (Annexin V, mitochondrial membrane potential, CM-H2DCFDA) and Western blot (Caspase-3). The impact of ALF186± respiratory arrest on cell signaling was assessed by measuring expression of nitric oxide synthase (NOS) and soluble guanylate-cyclase (sGC) and by analyzing cellular cGMP levels. The effect of ALF186 (10 mg/kg iv) on retinal IRI in Sprague-Dawley rats was assessed by measuring densities of fluorogold-labeled RGC after IRI and by analysis of apoptosis-related genes in retinal tissue.

Results

ALF186 but not inactivated ALF186 inhibited rotenone-induced apoptosis (Annexin V positive cells: 25±2% rotenone vs. 14±1% ALF186+rotenone, p<0.001; relative mitochondrial membrane potential: 17±4% rotenone vs. 55±3% ALF186+rotenone, p<0.05). ALF186 increased cellular cGMP levels (33±5 nmol/L vs. 23±3 nmol/L; p<0.05) and sGC expression. sGC-inhibition attenuated ALF186-mediated protection (relative mitochondrial membrane potential: 55±3% ALF186+rotenone vs. 20±1% ODQ+ALF186+rotenone, p<0.05). ALF186 protected RGC in vivo (IRI 1255±327 RGC/mm2 vs. ALF186+IRI 2036±83; p<0.05) while sGC inhibition abolished the protective effects of ALF186 (ALF186+IRI 2036±83 RGC/mm2 vs. NS-2028+ALF186+IRI 1263±170, p<0.05).

Conclusions

The CORM ALF186 inhibits IRI-induced neuronal cell death via activation of sGC and may be a useful treatment option for acute ischemic insults to the retina and the brain.  相似文献   

18.
Agmatine is a novel neuromodulator that plays a protective role in the CNS in several models of cellular damage. However, the mechanisms involved in these protective effects in neurodegenerative diseases are poorly understood. Fourier transform infrared (FTIR) spectroscopy analysis detects biomolecular changes in disordered cells and tissues. In this report, we utilize FTIR spectroscopy to characterize the changes in rotenone-induced damage in neuronal-like differentiated SH-SY5Y neuroblastoma cells in the presence or absence of agmatine. The analysis of the FTIR spectra demonstrates significant alterations in rotenone-treated cells, whereas the FTIR spectra obtained after pre-incubation with agmatine (250 nM) significantly reduces these redox alterations and more closely resembles those of the control cells. In particular, rotenone-damaged cells demonstrate spectral alterations related to amide I, which correspond to an increase in β-sheet components, and decreases in the amide II absorption intensity, suggesting a loss of N-H bending and C-N stretching. These alterations were also evident by Fourier self-deconvolution analysis. Thus, rotenone-induced increases in the levels of stretching vibration band related to the protein carboxyl group would account for a significant amount of misfolded proteins in the cell. Agmatine effectively reduces these effects of rotenone on protein structure. In conclusion, antioxidant and scavenging properties of agmatine reduce rotenone-produced cellular damage at the level of protein structure. These, together with other previous observations, demonstrate the therapeutic potential of agmatine in the treatment of Parkinson's disease.  相似文献   

19.
Parkinson’s disease (PD) is a progressive neurodegenerative disorder with a prevalence of 1–2% in people over the age of 50. Mitochondrial dysfunction occurred in PD patients showing a 15–30% loss of activity in complex I. Asiatic acid (AA), a triterpenoid, is an antioxidant and used for depression treatment, but the effect of AA against PD-like damage has never been reported. In the present study, we investigated the protective effects of AA against H2O2 or rotenone-induced cellular injury and mitochondrial dysfunction in SH-SY5Y cells. Mitochondrial membrane potential (MMP) and the expression of voltage-dependent anion channel (VDAC) were detected with or without AA pretreatment following cellular injury to address the possible mechanisms of AA neuroprotection. The results showed that pre-treatment of AA (0.01–100 nM) protected cells against the toxicity induced by rotenone or H2O2. In addition, MMP dissipation occurred following the exposure of rotenone, which could be prevented by AA treatment. More interestingly, pre-administration of AA inhibited the elevation of VDAC mRNA and protein levels induced by rotenone(100 nM) or H2O2 (300 μM).These data indicate that AA could protect neuronal cells against mitochondrial dysfunctional injury and suggest that AA might be developed as an agent for PD prevention or therapy. Special issue article in honor of Dr. Akitane Mori.  相似文献   

20.
Wang G  Qi C  Fan GH  Zhou HY  Chen SD 《FEBS letters》2005,579(18):4005-4011
In vivo and in vitro studies have suggested a neuroprotective role for Pituitary adenylate cyclase activating polypeptide (PACAP) against neuronal insults. Here, we showed that PACAP27 protects against neurotoxicity induced by rotenone, a mitochondrial complex I inhibitor that has been implicated in the pathogenesis of Parkinson's disease (PD). The neuroprotective effect of PACAP27 was dose-dependent and blocked by its specific receptor antagonist, PACAP6-27. The effects of PACAP27 on rotenone-induced cell death were mimicked by dibutyryl-cAMP (db-cAMP), forskolin and prevented by the PKA inhibitor H89, the ERK inhibitor PD98059 and the p38 inhibitor SB203580. PACAP27 administration blocked rotenone-induced increases in the level of caspase-3-like activity, whereas could not restore mitochondrial activity damaged by rotenone. Thus, our results demonstrate that PACAP27 has a neuroprotective role against rotenone-induced neurotoxicity in neuronal differentiated PC12 cells and the neuroprotective effects of PACAP are associated with activation of MAP kinase pathways by PKA and with inhibition of caspase-3 activity; the signaling mechanism appears to be mediated through mitochondrial-independent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号