首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Caveolae are small, functionally important membrane invaginations found on the surface of many different cell types. Using electron microscopy, caveolae can be unequivocally identified in cell membranes by virtue of their size and the presence of caveolin/VIP22 proteins in the caveolar coat. In this study we have applied for the first time scanning force microscopy (SFM), to visualize caveolae on the surface of living and fixed cells. By scanning the membranes of Chinese hamster ovary cells (CHO), using the tapping mode of the SFM in fluid, we could visualize small membrane pits on the cell membranes of living and fixed cells. Two populations of pits with mean diameters of around 100 nm and 200 nm were present. In addition, the location of many pits visualized with the SFM was coincident with membrane spots fluorescently labeled with a green fluorescent protein-caveolin-1 fusion protein. Scanning force microscopy on cells treated with methyl--cyclodextrin, an agent that sequesters cholesterol and disrupts caveolae, abolished pits with a measured diameter of 100 nm but left pits of around 200 nm diameter intact. Thus, the smallest membrane pits measured with the SFM in CHO cells were indeed very likely to be identical to caveolae. These experiments show for the first time that SFM can be used to visualize caveolae in intact cells.  相似文献   

2.
An actin filament sliding on myosin moleculesdemonstrates both longitudinal distortions and transversal fluctuationswith the linear dimension far exceeding the diameter of an actinmonomer. Local swaying of a single actin filament was identified byreading speckled fluorescent markers attached on the filament. Theaccuracy of reading each speckled marker was about 10.4 nm (r.m.s.).Longitudinal distortions of an actin filament at a low ATP concentrationof 20 M were as much as 0.5 m for the average filament lengthof 5.4 m. The magnitude of transversal fluctuations was as much as60 nm, that was independent of the filament length. Both longitudinaldistortions and transversal fluctuations are suggested to play a pivotalrole for facilitating a smooth sliding movement of an actin filament.  相似文献   

3.
    
Summary The distribution of -spectrin, and its relation to other cytoskeletal structures and to the plasma membrane, was studied in detergent-extracted whole-mount cytoskeletons of chicken embryo heart fibroblasts by using immunogold labelling and electron microscopy (IEM). The cell surface was labelled with gold-conjugated wheat germ agglutinin (WGA-gold), microtubules with anti-tubulin antibodies, and spectrin by using antibodies raised to chicken erythrocyte -spectrin. Additionally, the effect of fixation and drying on the labelling pattern was evaluated.In electron microscopy, a three-dimensional filamentous network was observed in detergent-extracted whole-mount preparations. Filaments of diameter 7–10 nm and 15 nm, microtubules of diameter 30 nm, and filament bundles (40–50 nm in diameter) were seen. In IEM, -spectrin was seen on the surface of the cytoskeletal network, especially along the thick filament bundles. In some cells, a distinct membrane skeleton which was labelled with -spectrin antibodies, was seen in close association with the cytoskeletal network. The cells which were labelled first with WGA-gold, and then permeabilized, fixed and labelled with -spectrin, showed a co-localization of the WGA binding sites and -spectrin along the surface of the filament bundles. Reversing the order of the staining, such that fixation was done before WGA labelling and permeabilization, led to a greatly diminished labelling for -spectrin and less pronounced co-localization of spectrin and WGA. Comparison of the conventional critical point drying method with Peldri II, a novel drying agent, indicated a better stability of the cellular structures under the electron beam when Peldri II was used.The results show that electron microscopy of the detergent-extracted whole-mount cytoskeletons, combined with immunogold labelling, enables accurate localization of -spectrin in relation to cell organelles. However, it is sensitive to procedural effects which have to be taken into account when evaluating the results.  相似文献   

4.
Improved fixation procedures have enabled substructure to be observed by electron microscopy in transverse sections of vertebrate skeletal muscle thick filaments as thin as 140 nm. Optical diffraction combined with digital autocorrelation analysis, focal series and tilting experiments have confirmed the presence of a regular substructure having a repeat near 4 nm and shown that it is highly unlikely to be an artifact associated with the electron microscope imaging system. The results obtained strongly suggest that the thick filament is constructed from a bundle of rod-like subfilaments arranged parallel to the thick filament axis to within less than a degree. This cannot easily be reconciled with the general theory of thick filament structure proposed by Squire (1973), but it is consistent with the model proposed by Pepe, 1966, Pepe, 1967. Optical diffraction of 140 nm thick serial transverse sections has also suggested a structural change along the length of the filament that is manifest by a variation in the proportion of filaments showing strong diffraction maxima in one, two or three directions.  相似文献   

5.

Background

Scanning force microscopy (SFM) allows direct, rapid and high-resolution visualization of single molecular complexes; irregular shapes and differences in sizes are immediately revealed by the scanning tip in three-dimensional images. However, high-throughput analysis of SFM data is limited by the lack of versatile software tools accessible to SFM users. Most existing SFM software tools are aimed at broad general use: from material-surface analysis to visualization of biomolecules.

Results

We present SFMetrics as a metrology toolbox for SFM, specifically aimed at biomolecules like DNA and proteins, which features (a) semi-automatic high-throughput analysis of individual molecules; (b) ease of use working within MATLAB environment or as a stand-alone application; (c) compatibility with MultiMode (Bruker), NanoWizard (JPK instruments), Asylum (Asylum research), ASCII, and TIFF files, that can be adjusted with minor modifications to other formats.

Conclusion

Assembled in a single user interface, SFMetrics serves as a semi-automatic analysis tool capable of measuring several geometrical properties (length, volume and angles) from DNA and protein complexes, but is also applicable to other samples with irregular shapes.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0457-8) contains supplementary material, which is available to authorized users.  相似文献   

6.
To enhance the performance of a serum-free medium (SFM) for human thrombopoietin (hTPO) production in suspension cultures of recombinant Chinese hamster ovary (rCHO) cells, several low-cost hydrolysates such as yeast hydrolysate (YH), soy hydrolysate, wheat gluten hydrolysate and rice hydrolysate were tested as medium additives. Among various hydrolysates tested, the positive effect of YH on hTPO production was most significant. When 5 g l–1 YH was added to SFM, the maximum hTPO concentration in batch culture was 40.41 g ml–1, which is 11.5 times higher than that in SFM without YH supplementation. This enhanced hTPO production in YH-supplemented SFM was obtained by the combined effect of enhanced qhTPO (the specific rate of hTPO production). The supplementation of YH in SFM increased qhTPO by 294% and extended culture longevity by >2 days if the culture was terminated at a cell viability of 50%. Furthermore, cell viability throughout the culture using YH-supplemented SFM was higher than that using any other hydrolysate-supplemented SFM tested, thereby minimizing degradation of hTPO susceptible to proteolytic degradation. In addition, YH supplementation did not affect in vivo biological activity of hTPO. Taken together, the results obtained demonstrate the potential of YH as a medium additive for hTPO production in serum-free suspension cultures of rCHO cells.  相似文献   

7.
Summary Filaments formed by the polymerization of RecA protein along DNA in the presence of Mg2+ and adenosine 5-0-(3-thiotriphosphate) (ATPS) are seen by electron microscopy to have a 10 nm diameter with a 9 nm helical repeat. When certain preparations of apparently pure RecA protein are incubated with Mg2+ and ATPS in the absence of nucleic acid for extended times, very long filaments with the same 10 nm diameter and 9 nm axial repeat are seen. We show here that these long 10 nm filaments can contain RNA which is present as a contaminant of the RecA protein and poly(A) which is synthesized during the incubations by an activity that is apparently polynucleotide phosphorylase. RecA protein purified by a procedure developed in this laboratory did not contain RNA and did not form these very long 10 nm filaments. However, when exogenous RNA was added to this protein, 10 nm filament formation was observed.  相似文献   

8.
A three dimensional structural model of Glutathione-S-transferase (GST) of the lymphatic filarial parasite Wuchereria bancrofti (wb) was constructed by homology modeling. The three dimensional X-ray crystal structure of porcine -class GST with PDB ID: 2gsr-A chain protein with 42% sequential and functional homology was used as the template. The model of wbGST built by MODELLER6v2 was analyzed by the PROCHECK programs. Ramachandran plot analysis showed that 93.5% of the residues are in the core region followed by 5.4 and 1.1% residues in the allowed and generously allowed regions, respectively. None of the non-glycine residues is in disallowed regions. The PROSA II z-score and the energy graph for the final model further confirmed the quality of the modeled structure. The computationally modeled three-dimensional (3D) structure of wbGST has been submitted to the Protein Data Bank (PDB) (PDB ID: 1SFM and RCSB ID: RCSB021668). 1SFM was used for docking with GST inhibitors by Hex4.2 macromolecular docking using spherical polar Fourier correlations.Figure: A three-dimensional (3D) structure of Glutathione-S-transferase (GST) of the lymphatic filarial parasite Wuchereria bancrofti (wb) was constructed by homology modeling. This modeled 3D structure of wbGST has been submitted to the Protein Data Bank (PDB) (PDB ID: 1SFM and RCSB ID: RCSB021668).  相似文献   

9.

Background

Sustainable forest management (SFM), which has been recently introduced to tropical natural production forests, is beneficial in maintaining timber resources, but information about the co-benefits for biodiversity conservation and carbon sequestration is currently lacking.

Methodology/Principal Findings

We estimated the diversity of medium to large-bodied forest-dwelling vertebrates using a heat-sensor camera trapping system and the amount of above-ground, fine-roots, and soil organic carbon by a combination of ground surveys and aerial-imagery interpretations. This research was undertaken both in SFM applied as well as conventionally logged production forests in Sabah, Malaysian Borneo. Our carbon estimation revealed that the application of SFM resulted in a net gain of 54 Mg C ha-1 on a landscape scale. Overall vertebrate diversity was greater in the SFM applied forest than in the conventionally logged forest. Specifically, several vertebrate species (6 out of recorded 36 species) showed higher frequency in the SFM applied forest than in the conventionally logged forest.

Conclusions/Significance

The application of SFM to degraded natural production forests could result in greater diversity and abundance of vertebrate species as well as increasing carbon storage in the tropical rain forest ecosystems.  相似文献   

10.
Summary The fine structural organization of a cortical filament layer in normal locomoting Amoeba proteus was demonstrated using improved fixation and embedding techniques. Best results were obtained after application of PIPES-buffered glutaraldehyde in connection with substances known to prevent the depolymerization of F-actin, followed by careful dehydration and freeze-substitution.The filament layer is continuous along the entire surface; it exhibits a varying thickness depending on the cell polarity, measuring several nm in advancing regions and 0.5–1 m in retracting ones. Two different types of filaments are responsible for the construction of the layer: randomly distributed thin (actin) filaments forming an unordered meshwork beneath the plasma membrane, and thick (myosin) filaments mostly restricted to the uroid region in close association with F-actin.The cortical filament layer generates the motive force for amoeboid movement by contraction at posterior cell regions and induces a pressure flow that continues between the uroid with a high hydrostatic pressure and advancing pseudopodia with a low one. The local destabilization of the cell surface as a precondition for the formation of pseudopodia is enabled by the detachment of the cortical filament layer from the plasma membrane. This results in morphological changes by the active separation of peripheral hyaloplasmic and central granuloplasmic regions.  相似文献   

11.
Rice (Oryza sativa L.) plantlets regenerated from callus (rice regenerants) were grownin vitro during the preparation stage either on a 1/4 strength N6 gellan gum (4 g l-1) medium without sucrose (SFM) or with 30 g l-1 sucrose (SCM), and under CO2 concentrations of 0.4, 2, 10, 50 or 100 mmol mol-1, a photoperiod of 24 h and a photosynthetic photon flux density (PPFD) of 125 mol m-2 s-1. Rice regenerants were also grownin vitro on SFM or SCM under CO2 concentration of 50 mmol mol-1, a photoperiod of 12 or 24 h and a PPFD of 80 or 125 mol m-2 s-1. All rice regenerants grew successfully on SFM under CO2 concentrations of 50 or 100 mmol mol-1. Increasing the CO2 concentration increased the survival percentage, shoot length and shoot and root dry weights of rice regenerants grown on SFM. Increasing CO2 concentration had no significant effect on the survival or growth of rice regenerants grown on SCM. Survival percentages of rice regenerants grown on SCM were less than 80% for each of the CO2 concentrations. A photoperiod of 24 h under CO2 enrichment improved the survival and growth of rice regenerants grown on SFM, and increased the survival percentage and shoot dry weight of rice regenerants grown on SCM.  相似文献   

12.
Remodeling of actin filament arrays in response to biotic and abiotic stimuli is thought to require precise control over the generation and availability of filament ends. Heterodimeric capping protein (CP) is an abundant filament capper, and its activity is inhibited by membrane signaling phospholipids in vitro. How exactly CP modulates the properties of filament ends in cells and whether its activity is coordinated by phospholipids in vivo is not well understood. By observing directly the dynamic behavior of individual filament ends in the cortical array of living Arabidopsis thaliana epidermal cells, we dissected the contribution of CP to actin organization and dynamics in response to the signaling phospholipid, phosphatidic acid (PA). Here, we examined three cp knockdown mutants and found that reduced CP levels resulted in more dynamic activity at filament ends, and this significantly enhanced filament-filament annealing and filament elongation from free ends. The cp mutants also exhibited more dense actin filament arrays. Treatment of wild-type cells with exogenous PA phenocopied the actin-based defects in cp mutants, with an increase in the density of filament arrays and enhanced annealing frequency. These cytoskeletal responses to exogenous PA were completely abrogated in cp mutants. Our data provide compelling genetic evidence that the end-capping activity of CP is inhibited by membrane signaling lipids in eukaryotic cells. Specifically, CP acts as a PA biosensor and key transducer of fluxes in membrane signaling phospholipids into changes in actin cytoskeleton dynamics.  相似文献   

13.
S. Berger  R. L. Shoeman  P. Traub 《Protoplasma》1996,190(3-4):204-220
Summary In contrast to the immense body of evidence supporting the occurrence of intermediate filament (IF) proteins in the animal kingdom, there is only limited information on their distribution in plants. Nevertheless, a number of immunocytochemical and electron microscopical observations indicate that particularly in higher plant cells IFs contribute to the construction of the cyto- and karyoskeleton. Here we show by whole mount electron microscopy of the giant nuclei extruded together with adhering cytoplasm from the rhizoids of some species of the algal order Dasycladales that cytoplasmic 10 nm filament networks also occur in unicellular, mononucleated green organisms of early evolutionary origin. The filament systems were associated with the residual nuclear envelope which consisted of a dense arrangement of pore complexes suspended by a meshwork of short 5 to 6 nm filaments; structurally it was very similar to the nuclear envelopes obtained from mammalian cells. When the Dasycladales nuclei were processed side by side with mouse skin fibroblasts, the algal filament systems were physically almost indistinguishable from the mammalian vimentin filament network. Embedment-free thin sections of rhizoids have not only confirmed the existence of the perinculear 10 nm filaments and their seamless association with the nuclear envelope, but have demonstrated the existence of an extensive intranuclear meshwork of 10 nm filaments. The latter were morphologically indistinguishable from the perinuclear 10 nm filaments and seem to be connected to these via the nuclear envelope to form a continuum. Among a variety of antibodies directed against mammalian IF proteins, only polyclonal anti-mouse lamin B antibodies decorated the cytoplasmic filaments of the Dasycladales cells. Surprisingly, none of the antibodies decorated the thinner filaments of the nuclear envelope, which possibly represent the nuclear lamina. In accord with this observation, one anti-lamin B antibody recognized in Western blot analysis of a urea extract ofAcetabularia acetabulum rhizoids three polypeptides with Mrs of approximately 47,000, 64,000, and 76,000. The proteins did not react with the -IFA antibody. Since the Dasycladales have a fossil record of nearly 600 million years — an extant genus, Acicularia, also investigated here, evolved about 170 million years ago -, the molecular characterization of the subunit proteins of their cytoplasmic filament systems might throw further light on the evolution and biological role of IFs.Dedicated to Professor Sir Henry Harris on the occasion of his 70th birthday  相似文献   

14.
Bombyx mori ovary-derived BmN4 cells have been successfully adapted to a commercial serum-free medium (SFM; SF900-II) by gradually reducing the serum-containing TC-100 medium content from 100 to 0% (v/v). The BmN4 cells adapted to the SFM (BmN-SFM) adhered strongly to the culture flask and showed altered cell morphology. The BmN-SFM was subcultured 200 times, and the population doubling time was 4.70 d. Infection studies showed that BmN-SFM cells were easily susceptible to B. mori nucleopolyhedrovirus (BmNPV), and both the multiplication of budded virus and the promoter activity of the polyhedrin gene in BmN-SFM cells were almost the same as those in BmN4 cells before adaptation. Additionally, mouse interleukin-3 expressed by a recombinant BmNPV was normally secreted and modified with N-linked glycans in BmN-SFM cells. These findings indicate that BmN-SFM is particularly useful for a BmNPV-based baculovirus expression vector system with serum-free conditions.  相似文献   

15.
Synopsis The proteoglycans of cartilage are complex molecules in which chondroitin sulphate and keratan sulphate chains are covalently linked to a protein core, forming a polydisperse population of proteoglycan monomers. By interaction with hyaluronic acid and link proteins, the monomers form large macromolecular complexes.In vivo the proteoglycans mainly occur in such aggregates. In the electron microscope, the cartilaginous matrix can be seen to be made up of thin collagen fibrils and polygonal granules about 10–50 nm in diameter. Addition of the polyvalent cationic dye Ruthenium Red to glutaraldehyde and osmium tetroxide fixatives yields a dense selective staining of the matrix granules. Following a short digestion of cartilage slices with either of the chondroitin sulphate-degrading enzymes hyaluronidase and chondroitinase or with the proteolytic enzyme papain, the matrix granules were few in number or completely absent and the proteoglycan content, measured as hexosamine, decreased by up to 90%. Similarly, extraction of the cartilage with 4 M guanidine-HCl removed all matrix granules and most of the proteoglycans. From these findings, it can be concluded that the matrix granules represent proteoglycans, most probably in aggregate form, and that Ruthenium Red staining may be used to study the distribution of these macromolecules in thin sections. As a complement to chemical studies on proteoglycan structure, it is also possible to observe and measure individual molecules in the electron microscope after spreading them into a monomolecular layer with cytochromec. This technique has been applied in investigations on proteogly cans isolated from bovine nasal cartilage and other hyaline cartilages. The molecules in the monomer fractions appeared as an extended central core filament to which about 25–30 side-chain filaments were attached at various intervals. The core filament, averaging about 300 nm in length, was interpreted as representing the polysaccharide-binding part of the protein core and the side-chain filaments, averaging about 45 nm in length, as representing the clusters of chondroitin sulphate chains. Statistical treatment of the collected data indicated that no distinct subpopulations existed within the monomer fractions. The electron microscopic results correlated well with chemical data for the corresponding fractions and together with recent observations on various aggregate fractions strongly support present concepts of proteoglycan structure.Paper presented at a symposium The Changing directions of carbohydrate histochemistry at the Fifth International Congress of Cytochemistry and Histochemistry in Bucharest, Romania on September 1976.  相似文献   

16.

Objective

To establish a serum-free suspension process for production of recombinant human factor IX (rhFIX) based on the human cell line HEK 293T by evaluating two approaches: (1) serum-free suspension adaptation of previously genetic modified cells (293T-FIX); and (2) genetic modification of cells already adapted to such conditions (293T/SF-FIX).

Results

After 10 months, 293T-FIX cells had become adapted to FreeStyle 293 serum-free medium (SFM) in Erlenmeyer flasks. After 48 and 72 h of culture, 2.1 µg rhFIX/ml and 3.3 µg rhFIX/ml were produced, respectively. However, no biological activity was detected. In the second approach, wild-type 293T cells were adapted to the same SFM (adaptation process took only 2 months) and then genetically modified for rhFIX production. After 48 h of culture, rhFIX reached 1.5 µg/ml with a biological activity of 0.2 IU/ml, while after 72 h, the production was 2.4 µg/ml with a biological activity of 0.3 IU/ml.

Conclusion

The findings demonstrate that the best approach to establish an rhFIX production process in suspension SFM involves the genetic modification of cells already adapted to the final conditions. This approach is time saving and may better ensure the quality of the produced protein.
  相似文献   

17.
Summary Cells isolated from ascidian smooth muscle were about 1.5–2 mm in length. Each contained 20–40 nucle in proportion to cell length. The cytoplasm was characterized by the presence of an enormous quantity of glycogen particles, tubular elements of sarcoplasmic reticulum coupled to the cell membrane, and conspicuous contractile elements. Thick and thin filaments had diameters of about 14–16 nm and 6–7 nm, respectively. The population density of the thick filaments was much higher (mean 270/m2 filament area) than in vertebrate smooth muscles. The ratio of thick to thin filaments was about 16. All the thick filaments were surrounded by a single row of 5–9 thin filaments forming a rosette, and cross-bridges with periodicities of 14.5 and 29 nm were found between them. The contractile apparatus consisted of numerous myofibrils which were arranged nearly along the cell axis and were separated from each other by a network of 10-nm filaments. The myofibrils further consisted of many irregularly arranged sarcomerelike structures, each of which was comprised of a small group of thick and thin filaments with attached dense bodies.  相似文献   

18.
Cardiac thin filament deactivation is initiated by Ca2+ dissociation from troponin C (cTnC), followed by multiple structural changes of thin filament proteins. These structural transitions are the molecular basis underlying the thin filament regulation of cardiac relaxation, but the detailed mechanism remains elusive. In this study Förster resonance energy transfer (FRET) was used to investigate the dynamics and kinetics of the Ca2+-induced conformational changes of the cardiac thin filaments, specifically the closing of the cTnC N-domain, the cTnC-cTnI (troponin I) interaction, and the cTnI-actin interaction. The cTnC N-domain conformational change was examined by monitoring FRET between a donor (AEDANS) attached to one cysteine residue and an acceptor (DDPM) attached the other cysteine of the mutant cTnC(L13C/N51C). The cTnC-cTnI interaction was investigated by monitoring the distance changes from residue 89 of cTnC to residues 151 and 167 of cTnI, respectively. The cTnI-actin interaction was investigated by monitoring the distance changes from residues 151 and 167 of cTnI to residue 374 of actin. FRET Ca2+ titrations and stopped-flow kinetic measurements show that different thin filament structural transitions have different Ca2+ sensitivities and Ca2+ dissociation-induced kinetics. The observed structural transitions involving the regulatory region and the mobile domain of cTnI occurred at fast kinetic rates, whereas the kinetics of the structural transitions involving the cTnI inhibitory region was slow. Our results suggest that the thin filament deactivation upon Ca2+ dissociation is a two-step process. One step involves rapid binding of the mobile domain of cTnI to actin, which is kinetically coupled with the conformational change of the N-domain of cTnC and the dissociation of the regulatory region of cTnI from cTnC. The other step involves switching the inhibitory region of cTnI from interacting with cTnC to interacting with actin. The latter processes may play a key role in regulating cross-bridge kinetics.Cardiac muscle utilizes troponin to sense the concentration changes of myoplasmic Ca2+ and translate the transient Ca2+ signal into a cascade of events within the thin filament that ultimately leads to force generation or relaxation. The cardiac thin filament is composed of the heterotrimeric troponin complex and tropomyosin bound to the double helical actin filament (1, 2). The cardiac troponin is formed by three subunits: troponin C (cTnC),2 troponin I (cTnI), and troponin T (cTnT). The subunit cTnC is the Ca2+-binding protein, cTnI binds actin and inhibits actomyosin ATPase in relaxed muscle, and cTnT anchors the troponin complex on the actin filament. A prominent feature of cardiac muscle regulation is the Ca2+-dependent dynamic interactions among the thin filament proteins and the multiple structural transitions at the interface between troponin and the actin filament. These structural transitions include opening/closing of the N-domain of cTnC (3, 4), changes in conformation of both the inhibitory region, and regulatory region of cTnI (57), switching of the inhibitory/regulatory regions of cTnI from interacting with actin to interacting with cTnC (8), and movement of tropomyosin on the actin surface (9), which permits cross-bridge cycling between actin and myosin. These Ca2+-induced structural transitions are the molecular basis of cardiac thin filament regulation. The strong cross-bridge formed between myosin heads and actin modulates the interactions among thin filament proteins and further affects thin filament regulation (1012). This feedback has been identified as an important mechanism for the beat-to-beat regulation of cardiac output. However, the mechanism by which the thin filament regulation in cardiac muscle is fine tuned at a molecular level by cross-bridges remains to be determined.It has been suggested recently that the rate of myoplasmic Ca2+ removal does not rate limit contraction and relaxation of the muscle (13). For example, the mechanistic studies on cardiac trabeculae (14) and myofibrils (15, 16) suggest that Ca2+ binding to cTnC induced switching on of the thin filament regulatory unit well before force generation. In corroboration of the conclusion, de Tombe and co-workers (17) recently reported that changes in myofilament Ca2+ sensitivity do not affect the kinetics of myofibrillar contraction and relaxation, i.e. the cross-bridge cycling rate is independent of the dynamics of thin filament activation. This notion is consistent with findings from a recent study where Ca2+-induced conformational changes of cTnC were measured simultaneously with force development of myofibril (18). It was found that kinetics of the Ca2+-induced conformational change of cTnC was much faster than cross-bridge kinetics. However, one study using photolysis of caged Ca2+ reported that the rate of Ca2+-induced muscle contraction (kCa) was slower than the rate of force redevelopment (ktr), suggesting the importance of the thin filament in regulating cross-bridge kinetics (19). These results raise questions as to how the thin filament regulation through Ca2+-cTnC interaction controls muscle contraction kinetics. If the kinetics of the cross-bridge formation and detachment determine the rate of cardiac muscle contraction and relaxation, what will be the regulatory role of thin filament in heart function? The fact is that a high percentage of cardiomyopathy mutations occur among the thin filament proteins, and some of these mutations can severely hinder the kinetics of heart contraction and relaxation (20). Without a link between Ca2+ regulation and dynamics of cross-bridge formation and detachment, it will be difficult to interpret the mechanism underlying how these mutations affect force development and relaxation in the diseased heart.Signal transduction of Ca2+ activation/deactivation along the thin filament involves multiple structural transitions of the thin filament proteins (21). Each structural transition may have different dynamics that can differ from Ca2+ exchange with cTnC. Therefore, the dynamics of these structural transitions within the thin filament may provide insight into the dynamic linkage between the Ca2+ binding to cTnC and the activation state of the cardiac thin filament. Time-resolved Förster resonance energy transfer (FRET), which can quantitate the distribution of inter-probe distances (22), provides a clear metric for study of Ca2+-induced structural changes (on Å scale) in the thin filament. FRET involves two fluorophores (one is the FRET donor and the other is an acceptor) attached to two different sites of proteins. Because FRET provides information on the conformational changes of proteins only around a specific region of interest, it is a unique approach for monitoring specific structural changes associated with the functional activities of the thin filament. Especially when combined with fast time-resolved techniques, FRET can provide dynamic and kinetic information associated with a specific structural transition in a multiple structural transition system (2326).Accordingly, we focused our investigation on the relaxation kinetics of (a) cTnC N-domain closing, (b) cTnC-cTnI interaction, and (c) cTnI-actin interaction within the reconstituted thin filament upon Ca2+ removal from the regulatory binding site of cTnC. The kinetics of these structural transitions were measured using FRET stopped-flow to monitor structural changes associated with each transition in the reconstituted thin filament in the absence and presence of strongly bound myosin subfragment 1 (S1). Our results showed that all structural transitions occurred in two phases, one fast and the other slow. The fast phase transition accounted for more than two-thirds of the total FRET change, and the slow phase transition accounted for less than one-third of the total FRET change. Our study suggests that different structural transitions have different kinetics upon Ca2+ removal from cTnC. Structural transitions associated with the mobile domain and the regulatory region of cTnI occur at fast kinetic rates, whereas the structural transitions involving transversal movement of the inhibitory region of cTnI occur at slow rates.  相似文献   

19.
20.
A 94 kD pigment-polypeptide, which is presumed to be involved in anchoring the phycobilisomes to the thylakoids, was isolated from Nostoc phycobilisomes by gel filtration in 63 mM formic acid. The isolation condition did not require detergents or denaturating reagents, as in previous procedures, and enzymatic degradation was not observed at the low pH of 2.5. The anchor polypeptide thus obtained had absorption (Abs) and fluorescence maxima (Em) at 658 and 673 nm, respectively, in 63 mM formic acid at room temperature. The maxima shifted to longer wavelengths in 100 mM potassium phosphate (pH 6.8), Abs 665 and Em 683 nm at room temperature, and Abs 665 and Em 684 nm at liquid nitrogen temperature. The fluorescence maxima at both temperatures correspond to the longest wavelength component resolved in phycobilisomes from second derivative spectra. A minor blue polypeptide was also found by this isolation method. The molecular weight of this polypeptide was ca. 18,000 and is probably similar to a polypeptide which has been found in the phycobilisome core of other cyanobacteria.Abbreviations used -APB -subunit of allophycocyanin B - APC allophycocyanin - kD kilodalton - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis - PBS phycobilisome - PE phycoerythrin - PC phycocyanin - PS pigment system  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号