首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Autonomously replicating sequence (ARS) elements are the genetic determinants of replication origin function in yeasts. They can be easily identified as the plasmids containing them transform yeast cells at a high frequency. As the first step towards identifying all potential replication origins in a 73-kb region of the long arm of fission yeast chromosome II, we have mapped five new ARS elements using systematic subcloning and transformation assay. 2D analysis of one of the ARS plasmids that showed highest transformation frequency localized the replication origin activity within the cloned genomic DNA. All the new ARS elements are localized in two clusters in centromere proximal 40 kb of the region. The presence of at least six ARS elements, including the previously reported ars727, is suggestive of a higher origin density in this region than that predicted earlier using a computer based search.  相似文献   

4.
5.
Summary The fission yeastcdc2 gene is pleiotropic, functioning both in the cell division cycle and in meiosis. Here we show thatcdc2 is allelic totws1, a previously isolated meiotic gene. Dissociation of meiotic and mitotic roles of the gene is also demonstrated by finding mutant alleles specifically altered in only one of the two processes.  相似文献   

6.
Histone H2A is reported to participate in host defense response through producing novel antimicrobial peptides (AMPs) from its N-terminus in vertebrates and invertebrates, while the AMPs derived from H2A have not to our knowledge been reported in mollusca. In the present study, gene cloning, mRNA expression of H2A from scallop Chlamys farreri, and the recombinant expression of its N-terminus were conducted to investigate whether a similar mechanism exists in mollusca. The full-length DNA of H2A was identified by the techniques of homology cloning and genomic DNA walking. The full-length DNA of the scallop H2A was 696bp long, including a 5'-terminal untranslated region (UTR) of 90bp, a 3'-terminal UTR of 228bp with a stem-loop structure and a canonical polyadenylation signal sequence AATAAA, and an open reading frame of 375bp encoding a polypeptide of 125 amino acids. The mRNA expression of H2A in the hemocytes of scallop challenged by microbe was measured by semi-quantitative RT-PCR. The expression of H2A was not upregulated after stimulation, suggesting that H2A did not participate in immunity response directly. The DNA fragment of 117bp encoding 39 amino acids corresponding to the N-terminus of scallop H2A, which was homologous to buforin I in vertebrates, was cloned into Pichia pastoris GS115. The transformants (His(+) Mut(+)) containing multi-copy gene insertion were selected with increasing concentration of antibiotic G418. The peptide of 39 amino acids was expressed by induction of 0.5% methanol. The recombinant product exerted antibacterial activity against both Gram-positive (G(+)) and Gram-negative (G(-)) bacteria. The antibacterial activity toward G(+) bacteria was 2.5 times more than that against G(-) bacteria. The results elucidated that N-terminus of H2A was a potential AMP and provided a promising candidate for a new antibiotic screening. However, whether H2A is really involved in scallop immune response mechanisms needs to be further investigated.  相似文献   

7.
Summary Five new elements of the mitotic control in the fission yeast Schizosaccharomyces pombe were isolated from gene libraries as multicopy suppressors of the conditional lethal phenotype of win1-1 weel ts cdc25ts triple mutant strains. These genes were designated wisl + –wis5+for win suppressing, and do not correspond to winl + or any of the previously characterised mitotic control genes. None of the wis genes is capable of suppressing the cdc phenotype of cdc25 ts strains, suggesting that their effect is not simply to reverse the effect of loss of cdc25 function. wisl + has been previously reported to encode a putative serine/threonine protein kinase that acts as a dosage-dependent inducer of mitosis. wis4 + appears to be a specific suppressor of the winl-1 mutation. wis2 + and wis3 + are capable of suppressing a wide range of cdc phenotypes arising from the combination of various mutations with wee1 ts and cdc25 ts, suggesting that the wis2 + and wis3 + products may interact with elements central to the mitotic control.  相似文献   

8.
Sister chromatid cohesion is mediated by cohesin, but the process of cohesion establishment during S-phase is still enigmatic. In mammalian cells, cohesin binding to chromatin is dynamic in G1, but becomes stabilized during S-phase. Whether the regulation of cohesin stability is integral to the process of cohesion establishment is unknown. Here, we provide evidence that fission yeast cohesin also displays dynamic behavior. Cohesin association with G1 chromosomes requires continued activity of the cohesin loader Mis4/Ssl3, suggesting that repeated loading cycles maintain cohesin binding. Cohesin instability in G1 depends on wpl1, the fission yeast ortholog of mammalian Wapl, suggestive of a conserved mechanism that controls cohesin stability on chromosomes. wpl1 is nonessential, indicating that a change in wpl1-dependent cohesin dynamics is dispensable for cohesion establishment. Instead, we find that cohesin stability increases at the time of S-phase in a reaction that can be uncoupled from DNA replication. Hence, cohesin stabilization might be a pre-requisite for cohesion establishment rather than its consequence.  相似文献   

9.
Flow treatment of the yeast, Schizosaccharomyces pombe, with high intensity electric field pulses released intracellular enzymes such as glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase. Over 70% of the total activity was liberated within 4 h after pulse application. The optimal field intensities were considerably higher than that needed for irreversible plasma membrane permeabilization.  相似文献   

10.
We have isolated Glel homologue (named as spglel) as a partial multicopy suppressor of the synthetic lethality of rael-167 elfl-21 in fission yeast Schizosaccharomyces pombe. The spglel is also able to complement partially temperature-sensitive phenotype of rael-167 only at a lower restrictive temperature. The spglel gene contains one intron and encodes a 480 amino-acid protein with predicted molecular weight of 56.2 kDa. We showed that spglel gene is essential for vegetative growth and functional Glel-GFP protein is localized mainly in NPC. The accumulation of poly(A)(+) RNA in the nucleus is exhibited when expression of spglel is repressed or over-expressed. These results suggest that the spGle1 protein is also involved in mRNA export in fission yeast.  相似文献   

11.
Nucleosomes are dynamic entities with wide‐ranging compositional variations. Human histone variants H2A.B and H2A.Z.2.2 play critical roles in multiple biological processes by forming unstable nucleosomes and open chromatin structures, but how H2A.B and H2A.Z.2.2 confer these dynamic features to nucleosomes remains unclear. Here, we report cryo‐EM structures of nucleosome core particles containing human H2A.B (H2A.B‐NCP) at atomic resolution, identifying large‐scale structural rearrangements in the histone octamer in H2A.B‐NCP. H2A.B‐NCP compacts approximately 103 bp of DNA wrapping around the core histones in approximately 1.2 left‐handed superhelical turns, in sharp contrast to canonical nucleosome encompassing approximately 1.7 turns of DNA. Micrococcal nuclease digestion assay reveals that nineteen H2A.B‐specific residues, including a ROF (“regulating‐octamer‐folding”) sequence of six consecutive residues, are responsible for loosening of H2A.B‐NCPs. Unlike H2A.B‐NCP, the H2A.Z.2.2‐containing nucleosome (Z.2.2‐NCP) adopts a less‐extended structure and compacts around 125 bp of DNA. Further investigation uncovers a crucial role for the H2A.Z.2.2‐specific ROF in both H2A.Z.2.2‐NCP opening and SWR1‐dependent histone replacement. Taken together, these first high‐resolution structure of unstable nucleosomes induced by histone H2A variants elucidate specific functions of H2A.B and H2A.Z.2.2 in enhancing chromatin dynamics.  相似文献   

12.
Summary A highly stable, partial aneuploid, HM248, of the fission yeast Schizosaccharomyces pombe was obtained from the unstable aneuploid disomic for chromosome III by -irradiation. It contained a 500 kb mini-chromosome (designated Ch16) that was separated as a single band by pulsed field gradient electrophoresis. Genetic analysis showed that Ch16 was deleted for most of chromosome III except for the pericentric region; three centromere-linked markers encompassing the centromere region remained. This was further substantiated by integrating the cloned fragments of Ch16 DNA extracted from the agarose gel; integrations took place in the pericentric region. A 400 kb derivative (Ch16D1) was constructed which appeared to lack a part of Ch16. A single haploid cell of S. pombe could stably maintain Ch16 and Ch16D1 in addition to the three regular chromosomes. Ch16 was visualized as a minute chromosomal body in the nucleus of a -tubulin mutant under restrictive conditions. A single copy of Ch16 was highly stable and behaved like a natural chromosome in mitosis and meiosis. The frequency of chromosomal loss was 10-4. In meiosis, it segregated independently of the regular chromosome III. Segregation of two Ch16s per cell could be monitored by specifically marked Ch16s containing the Saccharomyces cerevisiae LEU2 gene (designated Ch16LE) of the fluorouracil resistance marker (Ch16FR). Two copies of Ch16 were mitotically unstable (chromosomal loss, 10-3) and frequently failed in meiotic segregation. The frequency of meiotic recombination between the two Ch16s was greatly reduced.  相似文献   

13.
Glutathione is essential for protecting plants from a range of environmental stresses, including heavy metals where it acts as a precursor for the synthesis of phytochelatins. A 1658 bp cDNA clone for glutathione synthetase (gsh2) was isolated fromArabidopsis thaliana plants that were actively synthesizing glutathione upon exposure to cadmium. The sequence of the clone revealed a protein with an estimated molecular mass of 53858 Da that was very similar to the protein from higher eukaryotes, was less similar to the gene from the fission yeast,Schizosaccharomyces pombe, and shared only a small region of similarity with theEscherichia coli protein. A 4.3 kbSstI fragment containing the genomic clone for glutathione synthetase was also isolated and sequenced. A comparison of the cDNA and genomic sequences revealed that the gene was composed of twelve exons.When theArabidopsis cDNA cloned in a special shuttle vector was expressed in aS. pombe mutant deficient in glutathione synthetase activity, the plant cDNA was able to complement the yeast mutation. Glutathione synthetase activity was measurable in wild-type yeast cells, below detectable levels in thegsh2 - mutant, and restored to substantial levels by the expression of theArabidopsis cDNA. TheS. pombe mutant expressing the plant cDNA had near wild type levels of total cellular thiols,109Cd2+ binding activity, and cadmium resistance. Since theArabidopsis cDNA was under control of a thiamine-repressible promoter, growth of the transformed yeast on thiamine-free medium increased expression of the cDNA resulting in increases in cadmium resistance.  相似文献   

14.
Frischmuth S  Wege C  Hülser D  Jeske H 《Protoplasma》2007,230(1-2):117-123
Summary. In order to monitor their interaction and cellular localisation, the movement protein (MP; syn. BC1) and the nuclear shuttle protein (NSP; syn. BV1) of the geminivirus Abutilon mosaic virus (AbMV) were ectopically expressed in Schizosaccharomyces pombe cells, either alone or together under the control of an inducible promoter. For highest resolution, electron microscopy using freeze-fracture immunolabelling served to detect these proteins in situ. As expected from previous in planta and yeast experiments, NSP accumulated within the nuclei, whereas MP was targetted to the protoplasmic face of plasma membranes when expressed alone. Upon coexpression, NSP was localised at the plasma membranes, where it was strongly attached. These results support a model in which NSP transports viral DNA to the cell periphery to facilitate cell-to-cell movement of viral DNA within plants. In contrast to AbMV MP, no plant-specific protein seems to be necessary for the translocation of NSP to the plasma membrane. Electronic supplementary material to this paper is available in electronic form at Correspondence and reprints: Department of Molecular Biology and Plant Virology, Institute of Biology, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany.  相似文献   

15.
组蛋白H2A的变体H2A.Z在基因的表达过程中发挥着重要的作用。根据H2A.Z和H2A核小体中组蛋白甲基化修饰方式的不同,作者应用多样性增量二次判别方法(increment of diversity with quadratic discriminant,IDQD)成功地对H2A.Z和H2A核小体进行了识别,说明了以组蛋白甲基化信息作为特征参数的IDQD模型对H2A.Z和H2A核小体识别的有效性。通过计算DNA序列的柔性,发现H2A.Z核小体对应的DNA序列的平均柔性比常规H2A核小体对应的DNA序列的平均柔性弱。  相似文献   

16.
17.
The spindle checkpoint is a surveillance mechanism that ensures the fidelity of chromosome segregation in mitosis. Here we show that fission yeast casein kinase II (CK2) is required for this checkpoint function. In the CK2 mutants mitosis occurs in the presence of a spindle defect, and the spindle checkpoint protein Mad2p fails to localize to unattached kinetochores. The CK2 mutants are sensitive to the microtubule depolymerising drug thiabendazole, which is counteracted by ectopic expression of mad2+. The level of Mad2p is low in the CK2 mutants. These results suggest that CK2 has a role in the spindle checkpoint by regulating Mad2p.  相似文献   

18.
The subcellular localization of the enzyme invertase in Schizosaccharomyces pombe cells, both repressed and derepressed for synthesis of the enzyme, was studied. Most of the invertase was found to be located outside the plasma membrane and only a small percentage was found to be associated to membranes. A substantial portion of the external enzyme remained firmly bound to cell-wall material.All of the invertase recovered in soluble form from cellular extracts reacted with concanavalin A and with the lectin from Bandeiraea simplicifolia seeds, indicating the presence in the enzyme of a carbohydrate moiety which probably contains terminal mannosyl (or structurally related) and galactosyl residues.The possibility of the presence of two different forms of invertase in S. pombe was considered. An intracellular, soluble form of invertase, devoid of carbohydrate, similar to the small invertase of the budding yeast Saccharomyces cerevisiae, was not found in S. pombe. However, the Michaelis constant for sucrose of the enzyme present in repressed cells was smaller than that of the invertase synthesized under derepressing conditions, although this difference could also be the result of a different pattern of glycosylation of the invertase synthesized under different growth conditions.  相似文献   

19.
20.
Quantitative control of histones and histone variants during cell cycle is relevant to their epigenetic functions. We found that the level of yeast histone variant H2A.Z in the G2/M-phase is actively kept low by the ubiquitin proteasome system and SUMO-targeted ubiquitin ligases. Overexpression of H2A.Z induced defects in mitotic progression, suggesting functional importance of this quantitative control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号