首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine the effectiveness of a gene transfer of bone morphogenetic protein (BMP)-2 into C2C12 myoblasts, we constructed a human BMP-2-expressing replication-deficient adenoviral vector, AxCAOBMP-2. C2C12 cells were infected in vitro with either this viral vector or an Escherichia coli LacZ gene-expressing control adenovirus vector. An efficient gene transfer to the C2C12 cells was confirmed with the LacZ gene-expressing vector by X-gal staining. Abundant BMP-2 expression in C2C12 cells infected with this viral vector was confirmed by immunofluorescence and Western blot analysis. C2C12 cells transferred with the BMP-2 gene by this vector produced alkaline phosphatase in the cells and also produced and secreted osteocalcin in the culture medium, demonstrating that a gene transfer of BMP-2 into C2C12 cells in vitro could convert these cells from myoblast to osteoblast lineage.  相似文献   

2.
《The Journal of cell biology》1994,127(5):1407-1418
Neurite formation by dissociated chick sympathetic neurons in vitro begins when one of the many filopodia that emanate from the cell body of a neuron is invaded by cytoplasm containing microtubules and other components of axoplasm (Smith, 1994). This study was undertaken to determine whether this process depends on assembly of microtubules. To inhibit microtubule assembly, neurons were grown in medium containing nocodazole or colchicine. In one series of experiments, neurons first were exposed to the microtubule-stabilizing drug, taxol, so that existing microtubules would remain intact while assembly of new microtubules was inhibited. The ability of neurons to form neurites was assessed by time-lapse video microscopy. Neurons subsequently were stained with antibodies against the tyrosinated and acetylated forms of alpha-tubulin and examined by laser confocal microscopy to visualize microtubules. Neurons were able to form short processes despite inhibition of microtubule assembly and they did so in a way that closely resembled process formation in control medium. Processes formed by neurons that had not been pretreated with taxol were devoid of microtubules. However, microtubules were present in processes of taxol- pretreated neurons. These microtubules contained acetylated alpha- tubulin, as is typical of stable microtubules, but not tyrosinated alpha-tubulin, the form present in recently assembled microtubules. These findings show that the initial steps in neurite formation do not depend on microtubule assembly and suggest that microtubules assembled in the cell body can be translocated into developing neurites as they emerge. The results are compatible with models of neurite formation which postulate that cytoplasm from the cell body is transported into filopodia by actomyosin-based motility mechanisms.  相似文献   

3.
4.
《The Journal of cell biology》1993,123(6):1373-1387
We have used an in vitro fusion assay to study the mechanisms of transport from early to late endosomes. Our data show that the late endosomes share with the early endosomes a high capacity to undergo homotypic fusion in vitro. However, direct fusion of early with late endosomes does not occur. We have purified vesicles which are intermediates during transport from early to late endosomes in vivo, and analyzed their protein composition in two-dimensional gels. In contrast to either early or late endosomes, these vesicles do not appear to contain unique proteins. Moreover, these vesicles undergo fusion with late endosomes in vitro, but not with each other or back with early endosomes. In vitro, fusion of these endosomal vesicles with late endosomes is stimulated by polymerized microtubules, consistent with the known role of microtubules during early to late endosome transport in vivo. In contrast, homotypic fusion of early or late endosomes is microtubule-independent. Finally, this stimulation by microtubules depends on microtubule-associated proteins and requires the presence of the minus-end directed motor cytoplasmic dynein, but not the plus-end directed motor kinesin, in agreement with the microtubule organization in vivo. Our data strongly suggest that early and late endosomes are separate, highly dynamic organelles, which are connected by a microtubule-dependent vesicular transport step.  相似文献   

5.
Studies on human osteoclast formation have been hampered by lack of a defined isolated progenitor cell population. We describe here the establishment of a human leukemic cell line (designated FLG 29.1) from bone marrow of a patient with acute monoblastic leukemia. The cultured cells are predominantly undifferentiated leukemic blasts, but addition of 12-o-tetradecanoylphorbol 13-acetate (TPA; 0.1 microM) induces irreversible differentiation into adherent, non-dividing, multinucleated cells. TPA-treated cells bear surface antigens typical of fetal osteoclasts, degrade 45Ca-labeled devitalized bone particles, display tartrate-resistant acid phosphatase in both mononuclear and multinuclear cells and receptors for calcitonin. Calcitonin increases intracellular cAMP accumulation in TPA-treated cells. TPA-treated cells show some ultrastructural features of osteoclasts as evidenced by transmission EM. These results indicate that FLG 29.1 cells may represent an osteoclast committed cell population, which upon induction with TPA acquire some morphological, phenotypical, and functional features of differentiated osteoclasts.  相似文献   

6.
《The Journal of cell biology》1995,130(6):1373-1385
In many eucaryotic cells, the midzone of the mitotic spindle forms a distinct structure containing a specific set of proteins. We have isolated ASE1, a gene encoding a component of the Saccharomyces cerevisiae spindle midzone. Strains lacking both ASE1 and BIK1, which encodes an S. cerevisiae microtubule-associated protein, are inviable. The analysis of the phenotype of a bik1 ase1 conditional double mutant suggests that BIK1 and ASE1 are not required for the assembly of a bipolar spindle, but are essential for anaphase spindle elongation. The steady-state levels of Ase1p are regulated in a manner that is consistent with a function during anaphase: they are low in G1, accumulate to maximal levels after S phase and then drop as cells exit mitosis. Components of the spindle midzone may therefore be required in vivo for anaphase spindle movement. Additionally, anaphase spindle movement may depend on a dedicated set of genes whose expression is induced at G2/M.  相似文献   

7.
We have determined the nucleotide sequence coding for the chicken brain alpha-spectrin. It is derived both from the cDNA and genomic sequences, comprises the entire coding frame, 5' and 3' untranslated sequences, and terminates in the poly(A)-tail. The deduced amino acid sequence was used to map the domain structure of the protein. The alpha-chain of brain spectrin contains 22 segments of which 20 correspond to the repeat of the human erythrocyte spectrin (Speicher, D. W., and V. T. Marchesi. 1984. Nature (Lond.). 311:177-180.), typically made of 106 residues. These homologous segments probably account for the flexible, rod-like structure of spectrin. Secondary structure prediction suggests predominantly alpha-helical structure for the entire chain. Parts of the primary structure are excluded from the repetitive pattern and they reside in the middle part of the sequence and in its COOH terminus. Search for homology in other proteins showed the presence of the following distinct structures in these nonrepetitive regions: (a) the COOH-terminal part of the molecule that shows homology with alpha-actinin, (b) two typical EF-hand (i.e., Ca2+-binding) structures in this region, (c) a sequence close to the EF-hand that fulfills the criteria for a calmodulin-binding site, and (d) a domain in the middle of the sequence that is homologous to a NH2-terminal segment of several src-tyrosine kinases and to a domain of phospholipase C. These regions are good candidates to carry some established as well as some yet unestablished functions of spectrin. Comparative analysis showed that alpha-spectrin is well conserved across the species boundaries from Xenopus to man, and that the human erythrocyte alpha-spectrin is divergent from the other spectrins.  相似文献   

8.
《The Journal of cell biology》1994,127(5):1289-1299
The reorganization from a radial [corrected] interphase microtubule (MT) network into a bipolar spindle at the onset of mitosis involves a dramatic change in MT dynamics. Microtubule-associated proteins (MAPs) and other factors are thought to regulate MT dynamics both in interphase and in mitosis. In this study we report the purification and functional in vitro characterization of a 230-KD MAP from Xenopus egg extract (XMAP230). This protein is present in eggs, oocytes, testis and a Xenopus tissue culture cell line. It is apparently absent from non- dividing cells in which an immunologically related 200-kD protein is found. XMAP230 is composed of two isoforms with slightly different molecular masses and pIs. It is localized to interphase MTs, dissociates from MTs at the onset of prophase and specifically binds to spindle MTs during metaphase and anaphase. The dissociation constant of XMAP230 is 500 nM, the stoichiometry of binding to MTs is between 1:8 and 1:4, and the in vivo concentration is approximately 200 nM. Both isoforms are phosphorylated and have reduced affinity for microtubules in mitotic extracts. Analysis of the effect of XMAP230 on MT dynamics by video microscopy shows that it increases the growth rate, decreases the shrinking rate of MTs and strongly suppresses catastrophes. These results suggest that in vivo, XMAP230 participates in the control of the MT elongation rate, stabilizes MTs and locally modulates MT dynamics during mitosis.  相似文献   

9.
E-selectin elicits cell adhesion by binding to the cell surface carbohydrate, sialyl Lewis X (sLe(x)). We evaluated the effects of mutations in the E-selectin lectin domain on the binding of a panel of anti-E-selectin mAbs and on the recognition of immobilized sLe(x) glycolipid. Functional residues were then superimposed onto a three-dimensional model of the E-selectin lectin domain. This analysis demonstrated that the epitopes recognized by blocking mAbs map to a patch near the antiparallel beta sheet derived from the NH2 and COOH termini of the lectin domain and two adjacent loops. Mutations that affect sLe(x) binding map to this same region. These results thus define a small region of the E-selectin lectin domain that is critical for carbohydrate recognition.  相似文献   

10.
《The Journal of cell biology》1991,115(4):1127-1136
Tenascin, together with thrombospondin and SPARC, form a family of matrix proteins that, when added to bovine aortic endothelial cells, caused a dose-dependent reduction in the number of focal adhesion- positive cells to approximately 50% of albumin-treated controls. For tenascin, a maximum response was obtained with 20-60 micrograms/ml of protein. The reduction in focal adhesions in tenascin-treated spread cells was observed 10 min after addition of the adhesion modulator, reached the maximum by 45 min, and persisted for at least 4 h in the continued presence of tenascin. This effect was fully reversible, was independent of de novo protein synthesis, and was neutralized by a polyclonal antibody to tenascin. Monoclonal antibodies to specific domains of tenascin (mAbs 81C6 and 127) were used to localize the active site to the alternatively spliced segment of tenascin. Furthermore, a recombinant protein corresponding to the alternatively spliced segment (fibronectin type III domains 6-12) was expressed in Escherichia coli and was active in causing loss of focal adhesions, whereas a recombinant form of a domain (domain 3) containing the RGD sequence had no activity. Chondroitin-6-sulfate effectively neutralized tenascin activity, whereas dermatan sulfate and chondroitin-4-sulfate were less active and heparan sulfate and heparin were essentially inactive. Studies suggest that galactosaminoglycans neutralize tenascin activity through interactions with cell surface molecules. Overall, our results demonstrate that tenascin, thrombospondin, and SPARC, acting as soluble ligands, are able to provoke the loss of focal adhesions in well-spread endothelial cells.  相似文献   

11.
Laminin self-assembles in vitro into a polymer by a reversible, entropy-driven and calcium-facilitated process dependent upon the participation of the short arm globular domains. We now find that this polymer is required for the structural integrity of the collagen-free basement membrane of cultured embryonal carcinoma cells (ECC) and for the supramolecular organization and anchorage of laminin in the collagen-rich basement membrane of the Engelbreth-Holm-Swarm tumor (EHS). First, low temperature and EDTA induced the dissolution of ECC basement membranes and released approximately 80% of total laminin from the EHS basement membrane. Second, laminin elastase fragments (E4 and E1') possessing the short arm globules of the B1, B2, and A chains selectively acted as competitive ligands that dissolved ECC basement membranes and displaced laminin from the EHS basement membrane into solution. The fraction of laminin released increased as a function of ligand concentration, approaching the level of the EDTA-reversible pool. The smaller (approximately 20%) residual pool of EHS laminin, in contrast, could only be effectively displaced by E1' and E4 if the collagenous network was first degraded with bacterial collagenase. The supramolecular architecture of freeze-etched and platinum/carbon replicated reconstituted laminin gel polymer, ECC, and collagenase-treated EHS basement membranes were compared and found to be similar, further supporting the biochemical data. We conclude that laminin forms a network independent of that of type IV collagen in basement membranes. Furthermore, in the EHS basement membrane four-fifths of laminin is anchored strictly through noncovalent bonds between laminin monomers while one-fifth is anchored through a combination of these bonds and laminin-collagen bridges.  相似文献   

12.
beta-tubulin of budding yeast Saccharomyces cerevisiae is a polypeptide of 457 amino acids encoded by the unique gene TUB2. We investigated the function of the carboxy-terminal part of yeast beta-tubulin corresponding to the carboxy-terminal variable domain of mammalian and avian beta-tubulins. The GAA codon for Glu-431 of TUB2 was altered to TAA termination codon by using in vitro site-directed mutagenesis so that the 27-amino acid residues of the carboxyl terminus was truncated when expressed. The mutagenized TUB2 gene (tub2(T430)) was introduced into a haploid strain in which the original TUB2 gene had been disrupted. The tub2(T430) haploid strain grows normally less than 30 but not at 37 degrees C. The truncation of the carboxyl terminus caused hypersensitivity to antimitotic drugs and low spore viability at the permissive temperature for vegetative growth. Immunofluorescence labeling with antitubulin antibody and DNA staining with 4',6'-diamidino-2-phenylindole showed that in these cells at 37 degrees C, formation of spindle microtubules and nuclear division was inhibited and cytoplasmic microtubule distribution was aberrant. These results suggest that functions of the carboxy-terminal domain of yeast beta-tubulin are necessary for cells growing under suboptimal growth conditions although it is not essential for growth under the optimal growth conditions. Cells bearing tub2(411), a tub2 gene in which the GAA codon for Glu-412 was altered to TAA were no more viable at any temperature. In addition, a haploid strain carrying two functional beta-tubulin genes is not viable.  相似文献   

13.
Although the distribution of filamentous actin is well characterized in many cell types, the distribution of nonfilamentous actin remains poorly understood. To determine the relative distribution of filamentous and nonfilamentous actin in cultured NRK cells, we have used a number of labeling agents that differ with respect to their specificities toward the filamentous or nonfilamentous form, including monoclonal and polyclonal anti-actin antibodies, vitamin D-binding protein (DBP), and fluorescent phalloidin. Numerous punctate structures were identified that bind poorly to phalloidin but stain positively with several anti-actin antibodies. These bead structures also stain with DBP, suggesting that they are enriched in nonfilamentous actin. Similar punctate structures were observed after the microinjection of fluorescently labeled actin into living cells, allowing us to examine their dynamics in living cells. The actin-containing punctate structures were observed predominantly in the region behind lamellipodia, particularly in spreading cells induced by wounding confluent monolayers. Time-lapse recording of cells injected with fluorescent actin indicated that they form continuously near the leading edge and move centripetally toward the nucleus. Our results suggest that at least part of the unpolymerized actin molecules are localized at discrete sites, possibly as complexes with monomer sequestering proteins. These structures may represent transient storage sites of G-actin within the cell which can be transformed rapidly into actin filaments upon stimulation by specific signals.  相似文献   

14.
Thyroid hormones play an important role in brain development, but the mechanism(s) by which triiodothyronine (T3) mediates neuronal differentiation is poorly understood. Here we demonstrate that T3 regulates the neurotrophic factor, neurotrophin-3 (NT-3), in developing rat cerebellar granule cells both in cell culture and in vivo. In situ hybridization experiments showed that developing Purkinje cells do not express NT-3 mRNA but do express trkC, the putative neuronal receptor for NT-3. Addition of recombinant NT-3 to cerebellar cultures from embryonic rat brain induces hypertrophy and neurite sprouting of Purkinje cells, and upregulates the mRNA encoding the calcium-binding protein, calbindin-28 kD. The present study demonstrates a novel interaction between cerebellar granule neurons and developing Purkinje cells in which NT-3 induced by T3 in the granule cells promotes Purkinje cell differentiation.  相似文献   

15.
16.
《The Journal of cell biology》1990,111(6):2765-2774
The present study was undertaken to determine the relationship between the hyaluronate receptor and CD44 (H-CAM), cell-surface glycoproteins of similar molecular weights that have been implicated in cell adhesion. In initial experiments, a panel of monoclonal antibodies directed against CD44 were tested for their ability to cross react with the hyaluronate receptor. These antibodies immunoprecipitated [3H]hyaluronate binding activity from detergent extracts of both mouse and human cells, indicating that the hyaluronate receptor is identical to CD44. In addition, one of these antibodies (KM-201 to mouse CD44) directly blocked the binding of labeled hyaluronate to the receptor and inhibited hyaluronate dependent aggregation of SV-3T3 cells. CD44 has also been implicated in lymphocyte binding to high endothelial venules during lymphocyte homing. Interestingly, the monoclonal antibody Hermes- 3, which blocks lymphocyte binding to the high endothelial venules of mucosal lymphoid tissue, had no effect on the binding of labeled hyaluronate. Furthermore, the binding of lymphocytes to high endothelial cells of lymph nodes and mucosal lymphoid tissue was not significantly affected by treatment with agents that block the binding of hyaluronate (hyaluronidase, excess hyaluronate and specific antibodies). Thus, CD44 appears to have at least two distinct functional domains, one for binding hyaluronate and another involved in interactions with mucosal high endothelial venules.  相似文献   

17.
《The Journal of cell biology》1995,129(6):1533-1541
The alpha 2-macroglobulin (alpha 2M) receptor/low-density lipoprotein receptor-related protein (LRP) is important for the clearance of proteases, protease-inhibitor complexes, and various ligands associated with lipid metabolism. While the regulation of receptor function is poorly understood, the addition of high concentrations of the 39-kD receptor-associated protein (RAP) to cells inhibits the binding and/or uptake of many of these ligands. Previously, we (Kounnas, M.Z., R.E. Morris, M.R. Thompson, D.J. FitzGerald, D.K. Strickland, and C.B. Saelinger. 1992. J. Biol. Chem. 267:12420-12423) [corrected] showed that Pseudomonas exotoxin (PE) could bind immobilized LRP. Also, the addition of RAP blocked toxin-mediated cell killing. These findings suggested that PE might use LRP to gain entry into toxin-sensitive cells. Here we report on a strategy to select PE-resistant lines of Chinese hamster ovary cells that express altered amounts of LRP. An important part of this strategy is to screen PE-resistant clones for those that retain sensitivity to both diphtheria toxin and to a fusion protein composed of lethal factor (from anthrax toxin) fused to the adenosine diphosphate-ribosylating domain of PE. Two lines, with obvious changes in their expression of LRP, were characterized in detail. The 14-2-1 line had significant amounts of LRP, but in contrast to wild-type cells, little or no receptor was displayed on the cell surface. Instead, receptor protein was found primarily within cells, much of it apparently in an unprocessed state. The 14-2-1 line showed no uptake of chymotrypsin-alpha 2M and was 10-fold resistant to PE compared with wild-type cells. A second line, 13-5-1, had no detectable LRP mRNA or protein, did not internalize alpha 2M-chymotrypsin, and exhibited a 100-fold resistance to PE. Resistance to PE appeared to be due to receptor-specific defects, since these mutant lines showed no resistance to a PE chimeric toxin that was internalized via the transferrin receptor. The results of this investigation confirm that LRP mediates the internalization of PE.  相似文献   

18.
《The Journal of cell biology》1995,129(5):1363-1378
Overexpression of the B cell leukemia/lymphoma-2 (bcl-2) gene has been shown to confer a survival advantage on cells by inhibiting apoptosis. In epithelia, the bcl-2 gene is also related to development and differentiation, and the protein is strongly expressed in the embryo in the epithelial cells of the developing mammary gland. To investigate directly the effect of bcl-2 on human epithelial cells, we used an amphotropic recombinant retrovirus to introduce the gene into nontumorigenic cell lines developed from luminal epithelial cells cultured from milk. Here we demonstrate that while bcl-2 overexpression does not directly induce the tumorigenic phenotype, it provides a survival advantage to the mammary epithelial cells by inhibiting cell death at confluence or under conditions of serum starvation, bcl-2 can also affect the phenotype of the original epithelial cells, and promote epithelial-mesenchymal conversion, accompanied by loss of the cell adhesion molecules E-cadherin and alpha 2 beta 1 integrin. The extent of the epithelial-mesenchymal conversion varies with small differences in the phenotype of the parental line and with the level of expression of Bcl-2 and in some cases cell lines emerge with a mixed phenotype. The increased survival of Bcl-2-expressing cells at confluence results in multilayering, and the development of three- dimensional structures. Where a mixed phenotype is observed these structures consist of an outer layer of polarized epithelial cells separated by a basement membrane-like layer from an inner mass of fibroblastoid cells. Branching morphogenesis of bcl-2 transfectants is also observed in collagen gels (in the absence of fibroblast growth factors). The results strongly indicate that by increasing their survival under restrictive growth conditions, and by modifying the epithelial phenotype, bcl-2 can influence the specific morphogenetic behavior of mammary epithelial cells.  相似文献   

19.
The interaction of cells with extracellular matrix components such as fibronectin, vitronectin, and type I collagen has been shown to be mediated through a family of cell-surface receptors that specifically recognize an arginine-glycine-aspartic acid (RGD) amino acid sequence within each protein. Synthetic peptides containing the RGD sequence can inhibit these receptor-ligand interactions. Here, we use novel RGD-containing synthetic peptides with different inhibition properties to investigate the role of the various RGD receptors in tumor cell invasion. The RGD-containing peptides used include peptides that inhibit the attachment of cells to fibronectin and vitronectin, a peptide that inhibits attachment to fibronectin but not to vitronectin, a cyclic peptide with the opposite specificity, and a peptide, GRGDTP, that inhibits attachment to type I collagen in addition to inhibiting attachment to fibronectin and vitronectin. The penetration of two human melanoma cell lines and a glioblastoma cell line through the human amniotic basement membrane and its underlying stroma was inhibited by all of the RGD-containing peptides except for the one that inhibits only the vitronectin attachment. Various control peptides lacking RGD showed essentially no inhibition. This inhibitory effect on cell invasion was dose-dependent and nontoxic. A hexapeptide, GRGDTP, that inhibits the attachment of cells to type I collagen in addition to inhibiting fibronectin- and vitronectin-mediated attachment was more inhibitory than those RGD peptides that inhibit only fibronectin and vitronectin attachment. Analysis of the location of these cells that were prevented from invading indicated that they attached to the amniotic basement membrane but did not proceed further into the tissue. These results suggest that interactions between RGD-containing extracellular matrix adhesion proteins and cells are necessary for cell invasion through tissues and that fibronectin and type I collagen are important for this process.  相似文献   

20.
The murid rodent subfamily Sigmodontinae contains 79 genera which are distributed throughout the New World. The time of arrival of the first sigmodontines in South America and the estimated divergence time(s) of the different lineages of South American sigmodontines have been controversial due to the lack of a good fossil record and the immense number of extant species. The "early-arrival hypothesis" states that the sigmodontines must have arrived in South America no later than the early Miocene, at least 20 MYA, in order to account for their vast present-day diversity, whereas the "late-arrival hypothesis" includes the sigmodontines as part of the Plio-Pleistocene Great American Interchange, which occurred approximately 3.5 MYA. The phylogenetic relationships among 33 of these genera were reconstructed using mitochondrial DNA (mtDNA) sequence data from the ND3, ND4L, arginine tRNA, and ND4 genes, which we show to be evolving at the same rate. A molecular clock was calibrated for these genes using published fossil dates, and the genetic distances were estimated from the DNA sequences in this study. The molecular clock was used to estimate the dates of the South American sigmodontine origin and the main sigmodontine radiation in order to evaluate the "early-" and "late-arrival" scenarios. We estimate the time of the sigmodontine invasion of South America as between approximately 5 and 9 MYA, supporting neither of the scenarios but suggesting two possible models in which the invading lineage was either (1) ancestral to the oryzomyines, akodonts, and phyllotines or (2) ancestral to the akodonts and phyllotines and accompanied by the oryzomyines. The sigmodontine invasion of South America provides an example of the advantage afforded to a lineage by the fortuitous invasion of a previously unexploited habitat, in this case an entire continent.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号