首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of a series of respiratory inhibitors on the oxidation of NADH in state 4 and state 3 conditions was studied with corn shoot mitochondria. Comparisons were made using malate and succinate as substrates. The inhibitors, rotenone, amytal, antimycin A and cyanide, inhibited oxidation of NADH in state 3 but rotenone and amytal did not inhibit oxidation in state 4. The inhibition by antimycin A was partially overcome by the presence of cytochrome c. The results indicate the presence of alternative pathways available for NADH oxidation depending on the metabolic condition of the mitochondria. Under state 4 conditions, NADH oxidation bypasses the amytal and rotenone sensitive sites but under state 3 conditions a component of the NADH respiration appears to be oxidized by an internal pathway which is sensitive to these inhibitors. Still a third pathway for NADH oxidation is dependent on the addition of cytochrome c and is insensitive to antimycin A. Succinate oxidation was sensitive to cyanide and antimycin A under both state 4 and state 3 conditions as well as amytal and rotenone under state 3 conditions but was not inhibited by amytal and rotenone under state 4 conditions. Malate oxidation was inhibited by cyanide, rotenone and amytal under both state 4 and state 3 conditions. Antimycin A inhibited state 3 but did not appreciably alter state 4 rates of malate oxidation. With all substrates tested inhibition by antimycin A was greatly facilitated by preswelling the mitochondria for 10 min. This was interpreted to indicate that swelling increases the accessibility of antimycin A to the site of inhibition.  相似文献   

2.
Low concentrations of HPE and MLA inhibited state 3 respiration of rat liver mitochondria in the presence of different NAD+-dependent substrates. MLA appeared to be more active than HPE. High aldehyde concentrations inhibited the state 3 respiration with succinate. The restraint of succinate oxidation by HPE and MLA and of glutamate plus malate oxidation by MLA correlated with the inhibition of succinate and glutamate dehydrogenase activites, respectively. HPE inhibited glutamate dehydrogenase at concentrations higher than those affecting glutamate oxidation. Malate dehydrogenase activity was slightly sensitive to HPE and MLA. Both aldehydes inhibited NADH oxidation by freeze-thawed mitochondria. These results suggest the existence of a site particularly sensitive to aldehydes in the electron transport chain between the specific NAD+-linked dehydrogenases and ubiquinone.  相似文献   

3.
Exogenous NADH oxidation by cauliflower (Brassica oleracea L.) bud mitochondria was sensitive to antimycin A and gave ADP/O ratios of 1.4 to 1.9. In intact mitochondria, NADH-cytochrome c reductase activity was only slightly inhibited by antimycin A. The antimycin-insensitive activity was associated with the outer membrane. Malate oxidation was sensitive to both rotenone and antimycin A and gave ADP/O values of 2.4 to 2.9. However in the presence of added NAD+, malate oxidation displayed similar properties to exogenous NADH oxidation. In both the presence and absence of added NAD+, malate oxidation was dependent on inorganic phosphate and inhibited by 2-n-butyl malonate.  相似文献   

4.
The oxidation of either ferrous iron or sulfur by Thiobacillus ferrooxidans was selectively inhibited or controlled by various anions, inhibitors, and osmotic pressure. Iron oxidation was more sensitive than sulfur oxidation to inhibition by chloride, phosphate, and nitrate at low concentrations (below 0.1 M) and also to inhibition by azide and cyanide. Sulfur oxidation was more sensitive than iron oxidation to the inhibitory effect of high osmotic pressure. These differences were evident not only between iron oxidation by iron-grown cells and sulfur oxidation by sulfur-grown cells but also between the iron and sulfur oxidation activities of the same iron-grown cells. Growth experiments with ferrous iron or sulfur as an oxidizable substrate confirmed the higher sensitivity of iron oxidation to inhibition by phosphate, chloride, azide, and cyanide. Sulfur oxidation was actually stimulated by 50 mM phosphate or chloride. Leaching of Fe and Zn from pyrite (FeS(2)) and sphalerite (ZnS) by T. ferrooxidans was differentially affected by phosphate and chloride, which inhibited the solubilization of Fe without significantly affecting the solubilization of Zn.  相似文献   

5.
The oxidation of either ferrous iron or sulfur by Thiobacillus ferrooxidans was selectively inhibited or controlled by various anions, inhibitors, and osmotic pressure. Iron oxidation was more sensitive than sulfur oxidation to inhibition by chloride, phosphate, and nitrate at low concentrations (below 0.1 M) and also to inhibition by azide and cyanide. Sulfur oxidation was more sensitive than iron oxidation to the inhibitory effect of high osmotic pressure. These differences were evident not only between iron oxidation by iron-grown cells and sulfur oxidation by sulfur-grown cells but also between the iron and sulfur oxidation activities of the same iron-grown cells. Growth experiments with ferrous iron or sulfur as an oxidizable substrate confirmed the higher sensitivity of iron oxidation to inhibition by phosphate, chloride, azide, and cyanide. Sulfur oxidation was actually stimulated by 50 mM phosphate or chloride. Leaching of Fe and Zn from pyrite (FeS2) and sphalerite (ZnS) by T. ferrooxidans was differentially affected by phosphate and chloride, which inhibited the solubilization of Fe without significantly affecting the solubilization of Zn.  相似文献   

6.
The effects of KCN, antimycin A, malonate, rotenone, and amytal on the oxidation of malate, succinate, and extramitochondrial reduced nicotinamide adenosine dinucleotide (NADH) by corn mitochondria were studied. Potassium cyanide and antimycin A inhibited the oxidation of all three substrates. Rotenone and amytal inhibited only the oxidation of malate, and malonate inhibited only the oxidation of succinate. Rotenone, amytal, and malonate did not inhibit the oxidation of extramitochondrial NADH. The calcium stimulation of the oxidation of extramitochondrial NADH was prevented by KCN and antimycin A but not by amytal, rotenone, or malonate. It is suggested that corn mitochondria possess a flavoprotein specific for extramitochondrial NADH and that this flavoprotein is sensitive to divalent cations.  相似文献   

7.
The turnover of total mitochondrial proteins and cytochrome oxidase in the livers of rats administered with 2-methyl-4-dimethylaminoazobenzene (2-Me-DAB) has been determined. The incorporation of [14C]bicarbonate revealed a half-life of 3.1 days in control and 6 to 9 days in azodye administered animals for whole mitochondrial proteins. The incorporation of [35S]methionine yielded t1/2 values of 8.5 days and 15.4 days, respectively. The t1/2 of cytochrome oxidase, 10.8 days for control and 19.3 days for 2-Me-DAB-treated animals, indicated that the delay in the decay of the enzyme was of the same order as that of whole mitochondria. Short term incorporation revealed that the administration of the azodye stimulated the synthesis of the enzyme. Mitochondria isolated from azodye-administered animals appeared less susceptible to lysosomal proteolysis. Also, azodye administration seemed to impair the ability of lysosomes to degrade mitochondria.  相似文献   

8.
Oxidation of endogenous substrate(s) of Acidithiobacillus ferrooxidans with O2 or Fe3+ as electron acceptor was studied in the presence of uncouplers and electron transport inhibitors. Endogenous substrate was oxidized with a respiratory quotient (CO2 produced/O2 consumed) of 1.0, indicating its carbohydrate nature. The oxidation was inhibited by complex I inhibitors (rotenone, amytal, and piericidin A) only partially, but piericidin A inhibited the oxidation with Fe3+ nearly completely. The oxidation was stimulated by uncouplers, and the stimulated activity was more sensitive to inhibition by complex I inhibitors. HQNO (2-heptyl-4-hydroxyquinoline N-oxide) also stimulated the oxidation, and the stimulated respiration was more sensitive to KCN inhibition than uncoupler stimulated respiration. Fructose, among 20 sugars and sugar alcohols including glucose and mannose, was oxidized with a CO2/O2 ratio of 1.0 by the organism. Iron chelators in general stimulated endogenous respiration, but some of them reduced Fe3+ chemically, introducing complications. The results are discussed in view of a branched electron transport system of the organism and its possible control.  相似文献   

9.
Administration of 2-methyl-4-dimethylaminobenzene in the diet (0.1%, w/w) for 85-90 days doubled the content of mitochondria in the livers of rats. The azodye was covalently bound to liver proteins, and about 15% of the amount found in liver was associated with the mitochondrial fraction. Mitochondria isolated from the livers of azodye-fed animals showed drastically lowered ability to oxidize NAD+-linked substrates. The inhibited electron-transfer step was the reduction of ubiquinone. The organelles showed a large increase in succinate oxidase activity. The activity of cytochrome oxidase and the content of cytochrome aa3 were substantially higher in these organelles. Azodye-fed animals showed depressed serum cholesterol concentrations. The content of ubiquinone in liver also registered a small increase.  相似文献   

10.
Membranes from N2-fixing Azotobacter vinelandii were isolated to identify electron transport components involved in H2 oxidation. We found direct evidence for the involvement of cytochromes b, c, and d in H2 oxidation by the use of H2-reduced minus O2-oxidized absorption difference spectra. Carbon monoxide spectra showed that H2 reduced cytochrome d but not cytochrome o. Inhibition of H2 oxidation by cyanide was monophasic with a high Ki (135 microM); this was attributed to cytochrome d. Cyanide inhibition of malate oxidation showed the presence of an additional, low Ki (0.1 microM cyanide) component in the membranes; this was attributed to cytochrome o. However, H2 oxidation was not sensitive to this cyanide concentration. Chlorpromazine (at 160 microM) markedly inhibited malate oxidation, but it did not greatly inhibit H2 oxidation. Irradiation of membranes with UV light inhibited H2 oxidation. Adding A. vinelandii Q8 to the UV-damaged membranes partially restored H2 oxidation activity, whereas addition of UV-treated Q8 did not increase the activity. 2-n-Heptyl-4-hydroxyquinoline-N-oxide inhibited both H2 and malate oxidation.  相似文献   

11.
Glucose oxidation by rat brain cortex slices is inhibited by low concentrations of triethyltin and this sensitive inhibition is shown to be chloride-dependent. Pyruvate oxidation is only inhibited at high concentrations of triethyltin whether chloride is present or not. In contrast, the stimulation of both glucose and pyruvate oxidation observed with low concentrations of triethyltin prior to inhibition is chloride-dependent. The results are discussed in relation to the chloride-hydroxide exchange reaction known to be mediated across the inner mitochondrial membrane by triethyltin and other organo-metals.  相似文献   

12.
Potato tuber mitochondria oxidized exogenous NADH and exogenous NADPH at similar rates; the electron transfer inhibitor rotenone did not inhibit the oxidation of either substrate. Submitochondrial particles, prepared from potato tuber mitochondria, exhibited a greater capacity to oxidize NADH than NADPH; rotenone inhibited the oxidation of NADH by 29% and the oxidation of NADPH by 16%. The oxidation of both NADH and NADPH by potato mitochondria exhibited pH optima of 6.8, and although substantial NADH oxidase activity was observed at pH 8.0, little NADPH oxidase activity was detected at that pH. The oxidation of NADPH by the mitochondria was more sensitive to inhibition by EDTA than was the oxidation of NADH.  相似文献   

13.
Siccanin at 3 mug/ml completely inhibited the growth of Trichophyton mentagrophytes. The primary site of action of siccanin on T. mentagrophytes is succinate dehydrogenase in the terminal electron transport system. At a concentration of siccanin giving 50% inhibition of growth (0.3 mug/ml), respiration of intact cells was inhibited more strongly than any other cellular functions tested, including the syntheses of cellular ribonucleic acid, deoxyribonucleic acid, phospholipid, protein, and cell wall fractions. In addition, at the same concentration siccanin did not cause any detectable damage in the permeability of the cells. Furthermore, the oxidation of succinate in mitochondrial preparation is more sensitive to the antibiotic than respiration in intact cells. Oxidation of other substrates tested was less sensitive to siccanin than that of succinate. The antibiotic inhibited both phosphorylation and oxidation, without causing changes in the P:O ratio. Siccanin at 0.03 mug/ml, which caused 50% inhibition of succinate oxidation in mitochondria, had effect neither on the exchange reaction between inorganic phosphate (P(i)) and adenosine triphosphate (ATP) nor on that between adenosine diphosphate and ATP. An ATP phosphohydrolase activity was also insensitive to the antibiotic. At very high concentrations, however, the antibiotic slightly inhibited the P(i)-ATP exchange reaction. From those results, it was concluded that siccanin inhibits fungal growth by inhibiting the respiratory electron transport system.  相似文献   

14.
L Kato  M Ishaque 《Cytobios》1975,12(45):31-43
Particles from Mycobacterium lepraemurium catalysed the oxidation of NADH with oxygen as the terminal electron acceptor. The preparations contained cytochromes of the a + a3'b and c types, as well as CO-binding pigments. The NADH oxidase activity was sensitive to inhibitors of the flavoprotein system as well as to HQNO and antimycin A. In addition, a cytochrome oxidase sensitive to cyanide was also present. The system was inhibited by the thiol-binding agent, PCMB, and thus indicated the involvement of sulphydryl group in the enzymatic oxidation of NADH. The sensitivity of the NADH oxidase system to all the inhibitors of the respiratory chain and the effect of these inhibitors on the absorption spectra suggested that cytochromes of the b, c, a + a3 types are involved in the transfer of electrons in NADH oxidation.  相似文献   

15.
In order to distinguish the pathways involved in the oxidation of matrix NADH in plant mitochondria, the oxidation of NADH and nicotinamide hypoxanthine dinucleotide (reduced form) was investigated in submitochondrial particles prepared from beetroot (Beta vulgaris L. cv. Derwent Globe) and soybeans (Glycine max L. cv. Bragg). Nicotinamide-hypoxanthine-dinucleotide(reduced form)-oxidase activity was more strongly inhibited by rotenone than the NADH-oxidase activity but both of the rotenone-inhibited activities could be stimulated by adding ubiquinone-1. The corresponding ubiquinone-1-reductase activities were inhibited by rotenone (to 69%) and further inhibited by N,N'-dicyclohexylcarbodiimide (to 79%), whilst the K3Fe(CN)6-reductase activities were not sensitive to either rotenone or N,N'-dicyclohexylcarbodiimide. Immunological analysis of mitochondrial proteins using an antiserum raised against purified beetroot complex I indicated very few differences between soybean and fresh and aged beetroot mitochondria, despite their varying sensitivities to rotenone. We confirm that there are two dehydrogenases capable of oxidising internal NADH and that only one of these, namely complex I, is inhibited by rotenone. Further, we conclude that complex I has two potential sites of quinone reduction, both sensitive to N,N'-dicyclohexycarbodiimide inhibition but only one of which is sensitive to rotenone inhibition.  相似文献   

16.
Inhibition of mitochondrial oxidative phosphorylation by adriamycin   总被引:2,自引:0,他引:2  
The antitumour antibiotic, adriamycin, inhibited oxidative phosphorylation in freshly prepared mitochondria from the heart, liver and kidney of the rat. It abolished respiratory control and stimulated ATPase activity. Succinate oxidation by heart mitochondria was extremely sensitive to the drug when hexokinase was present in the reaction medium. The sensitive site has been identified to lie in the region between the succinate dehydrogenase flavoprotein and ubiquinone of the respiratory chain.  相似文献   

17.
The respiration of both glucose-grown and hydrocarbon-grown cells of Candida tropicalis pK 233 harvested in the stationary phases was not inhibited by cyanide when glucose was used as oxidation substrate, but the former was rather stimulated in the presence of cyanide. When n-alkanes were used as oxidation substrate, cyanide lowered the respiratory activities of both cells to about 50%. With respect to the susceptibility to cyanide, the younger cells growing on n-alkanes were less sensitive in hydrocarbon oxidizing ability than the older cells, whereas the older cells growing on glucose or n-alkanes were more resistant in glucose oxidizing ability than the younger cells. Acetate was oxidized by both glucose-grown and hydrocarbon-grown cells of the yeast. Laurate was oxidized by hydrocarbon-grown cells, but not by glucose-grown cells. The respiration on laurate was inhibited completely by 3.3 mM of cyanide. In general, hydrocarbon-grown cells of Candida tropicalis pK 233 were more sensitive to various respiratory inhibitors than glucose-grown cells, although the oxidation substrates had a significant effect.

The respiration of both glucose-grown and hydrocarbon-grown cells of C. albicans, C. guilliermondii and C. lipolytica harvested in the stationary phases was also resistant to cyanide when glucose was used as oxidation substrate. But the respiration on n-alkanes of these cells was inhibited significantly by 3.3 mM of cyanide except for C. albicans.  相似文献   

18.
An arsenite-oxidizing Hydrogenobaculum strain was isolated from a geothermal spring in Yellowstone National Park, Wyo., that was previously shown to contain microbial populations engaged in arsenite oxidation. The isolate was sensitive to both arsenite and arsenate and behaved as an obligate chemolithoautotroph that used H(2) as its sole energy source and had an optimum temperature of 55 to 60 degrees C and an optimum pH of 3.0. The arsenite oxidation in this organism displayed saturation kinetics and was strongly inhibited by H(2)S.  相似文献   

19.
The oxidation of free coelenterazine by superoxide anion was analyzed and compared to the oxidation by the semisynthetic photoprotein obelin, prepared by incorporation of synthetic coelenterazine into apoobelin. The oxidation of bound coelenterazine was triggered upon binding of calcium to the reconstituted photoprotein. The oxidation of free synthetic coelenterazine, in the absence of the apoprotein, was triggered by superoxide anion. The production of reactive oxygen metabolites by fMet-Leu-Phe- and 4b-phorbol 12b-myristate 13a-acetate-stimulated neutrophils was studied by means of the luminescence of synthetic coelenterazine. The features of this chemiluminescent probe were compared with those of luminol and are summarized as follows: (a) coelenterazine-dependent chemiluminescence was inhibited by superoxide dismutase; (b) coelenterazine was as sensitive as luminol in detecting the oxidative burst of neutrophils; (c) azide failed to inhibit coelenterazine chemiluminescence; (d) in contrast with luminol, which requires the catalytic removal of hydrogen peroxide, coelenterazine chemiluminescence did not depend on the activity of cell-derived myeloperoxidase. These results indicate the usefulness of coelenterazine as a very sensitive and specific chemiluminescence probe of superoxide anion.  相似文献   

20.
Glycerol can be oxidized by rat liver microsomes to formaldehyde in a reaction that requires the production of reactive oxygen intermediates. Studies with inhibitors, antibodies, and reconstituted systems with purified cytochrome P4502E1 were carried out to evaluate whether P450 was required for glycerol oxidation. A purified system containing phospholipid, NADPH-cytochrome P450 reductase, P4502E1, and NADPH oxidized glycerol to formaldehyde. Formaldehyde production was dependent on NADPH, reductase, and P450, but not phospholipid. Formaldehyde production was inhibited by substrates and ligands for P4502E1, as well as by anti-pyrazole P4502E1 IgG. The oxidation of glycerol by the reconstituted system was sensitive to catalase, desferrioxamine, and EDTA but not to superoxide dismutase or mannitol, indicating a role for H2O2 plus non-heme iron, but not superoxide or hydroxyl radical in the overall glycerol oxidation pathway. The requirement for reactive oxygen intermediates for glycerol oxidation is in contrast to the oxidation of typical substrates for P450. In microsomes from pyrazole-treated, but not phenobarbital-treated rats, glycerol oxidation was inhibited by anti-pyrazole P450 IgG, anti-hamster ethanol-induced P450 IgG, and monoclonal antibody to ethanol-induced P450, although to a lesser extent than inhibition of dimethylnitrosamine oxidation. Anti-rabbit P4503a IgG did not inhibit glycerol oxidation at concentrations that inhibited oxidation of dimethylnitrosamine. Inhibition of glycerol oxidation by antibodies and by aminotriazole and miconazole was closely associated with inhibition of H2O2 production. These results indicate that P450 is required for glycerol oxidation to formaldehyde; however, glycerol is not a direct substrate for oxidation to formaldehyde by P450 but is a substrate for an oxidant derived from interaction of iron with H2O2 generated by cytochrome P450.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号