首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The chromosome arrangement in radial metaphases has been analyzed in root tips of Crepis capillaris (2n=6), C. taraxicifolia (2n=8) and C. rubra (2n=10) by using two statistical approaches: 1) measuring the distances between both members of each pair of homologues as the number of intervening chromosomes on the equatorial ring, and 2) applying a new statistical approach developed by Lacadena et al. (1977) which permits to analyze homologous somatic association considering as a whole the n chromosome pairs of the complement. The occurrence of somatic association of homologous chromosomes is clearly demonstrated with both approaches. Previous results obtained by other authors in different materials and with different statistical methods are discussed. The karyotypes of C. taraxifolia and C. rubra are described with numerical data.  相似文献   

2.
Somatic association of homologous chromosomes has been quantitatively studied in root tips of Crepis capillaris (2n=6), C. taraxicifolia (2n=8) and C. rubra (2n=10). Statistical analyses have been carried out on scattered metaphase plates. Homologous somatic association has been analyzed by applying two statistical approaches: the method of corrected distances and the method of generalized distances. Their validity and proper utilization are discussed on the basis of a comparison of results obtained when both methods are applied to the same scattered metaphase plates of material of which previous evidence of homologous somatic association had been obtained in radial metaphases. The following conclusions have been drawn: (i) in the case of the method of corrected distances the contradictory results can be attributed to an improper use of the statistical approach since the theoretical model requires the chromosomes (centromeres) to be uniformly distributed throughout a circle, (ii) since the theoretical model of the generalized distance method does not have any requirement, serious doubts about its validity arise from the negative results obtained.  相似文献   

3.
Differential staining of plant chromosomes with Giemsa   总被引:2,自引:2,他引:0  
Simple Giemsa staining techniques for revealing banding patterns in somatic chromosomes of plants are described. The value of the methods in the recognition of heterochromatin was demonstrated using five monocotyledonous and two dicotyledonous species. In Trillium grandiflorum the stronger Giemsa stained chromosome segments were shown to be identical with the heterochromatic regions (H-segments) revealed by cold treatment. Preferential staining of H-segments was also observed in chromosomes from three species of Fritillaria and in Scilla sibirica. Under suitable conditions the chromosomes of Vicia faba displayed a characteristic banding pattern and the bands were identified as heterochromatin. The Giemsa techniques proved to be more sensitive than Quinacrine fluorescence in revealing a longitudinal differentiation of the chromosomes of Crepis capillaris, where plants with and without B-chromosomes were examined. Again all chromosome types had their characteristic bands but there was no difference in Giemsa staining properties between the B-chromosomes and those of the standard complement.  相似文献   

4.
The laboratory mouse (Mus musculus, 2n = 40), the Chinese hamster (Cricetulus griseus, 2n = 22), and the golden (Syrian) hamster (Mesocricetus auratus, 2n = 44) are common laboratory animals, extensively used in biomedical research. In contrast with the mouse genome, which was sequenced and well characterized, the hamster species has been set aside. We constructed a chromosome paint set for the golden hamster, which for the first time allowed us to perform multidirectional chromosome painting between the golden hamster and the mouse and between the two species of hamster. From these data we constructed a detailed comparative chromosome map of the laboratory mouse and the two hamster species. The golden hamster painting probes revealed 25 autosomal segments in the Chinese hamster and 43 in the mouse. Using the Chinese hamster probes, 23 conserved segments were found in the golden hamster karyotype. The mouse probes revealed 42 conserved autosomal segments in the golden hamster karyotype. The two largest chromosomes of the Chinese hamster (1 and 2) are homologous to seven and five chromosomes of the golden hamster, respectively. The golden hamster karyotype can be transformed into the Chinese hamster karyotype by 15 fusions and 3 fissions. Previous reconstructions of the ancestral murid karyotype proposed diploid numbers from 2n = 52 to 2n = 54. By integrating the new multidirectional chromosome painting data presented here with previous comparative genomics data, we can propose that syntenies to mouse Chrs 6 and 16 were both present and to hypothesize a diploid number of 2n = 48 for the ancestral Murinae/Cricetinae karyotype.  相似文献   

5.
Summary Chromosomes of Brassica oleracea (2n=18) were dissected from the resynthesized amphidiploid B. napus Hakuran by repeated backcrosses to B. campestris (2n=20), creating a series of monosomic alien chromosome addition line plants (2n=21). Using morphological, isozyme and restriction fragment length polymorphism markers (RFLPs), 81 putative loci were identified. Of nine possible synteny groups, seven were represented in the 25 monosomic addition plants tested. Sequences homologous to 26% of the 61 DNA clones utilized (80% were cDNA clones) were found on more than one synteny group, indicating a high level of gene duplication. Anomalous synteny associations were detected in four 2n=21 plants. One of these plants showed two markers from one B. oleracea chromosome associated with a second complete B. oleracea synteny group, suggesting translocation or recombination between non-homologous chromosomes in Hakuran or the backcross derivatives. The other three 2n=21 plants each contained two or more B. oleracea synteny groups, suggesting chromosome substitution.  相似文献   

6.
Summary All radiation-induced aberrations in dry seeds of Crepis capillaris are chromosome rearrangements. The main types of chromosome rearrangements in the above tests were asymmetrical and symmetrical exchanges, ring chromosomes and ring deletions. The majority of ring chromosomes is of a chromosomes type which brings about paired rings. Fig. 1 presents the mechanism of the production of the paired rings. In a number of cases the structure of rings proved to be quite unexpected. Among middle size rings single rings proved to occur in 18.8%, among microrings-1.9% cases. Somewhat fewer are presented by pairs of rings one inside the other. The large rings present complex figures made by tangled chromatids. Two rings make one due to mitotic crossing-over between sister-chromatids (Fig. 5). Double crossing-over would lead to the exchange of part of material between two independent rings or to one ring being thrust into the other due to different strand positions in two points of the exchange. Large rings is the provision of complicated exchanges.  相似文献   

7.
A karyometric analysis of the chromosome set of the marine turbellariansMonocelis fusca, M. lineata andParotoplana macrostyla has been carried out. The karyotype of the twoMonocelis species investigated (2n=6) is formed by three pairs of small and similarly sized chromosomes: InM. fusca, chromosome 1 is metacentric, chromosome 2 acrocentric and chromosome 3 is subtelocentric.M. lineata also presents one pair of metacentric chromosomes (chromosome 2), while chromosomes 1 and 3 are submetacentric.P. macrostyla (2n=12) reveals two pairs of large metacentric and four pairs of small chromosomes, three of which are metacentric, whereas the last is subtelocentric.  相似文献   

8.
Summary A hyperdiploid aneuploid karyotype, consisting of 7 chromosomes, has been found in a tumorous suspension cell culture ofCrepis capillaris (2 n=6). Giemsa C-banding has revealed that these 7 chromosomes show consistent patterns of differential staining in all dividing cells. This stable karyotypic situation has persisted during 18 months of cytological monitoring of the culture. Comparison with the diploid C-banded complement of the root tip indicates that numerous structural rearrangements must have occurred during the formation of the aneuploid complement. A likely pathway for evolution of this karyotype involves initial tetraploidy followed by chromosome loss. Such a mechanism has previously been proposed for a plant tissue culture system (Bayliss andGould 1974) and commonly occurs in animal systems, particularly in animal tumours (Terzi andHawkins 1975). An alternative mechanism, which does not necessarily involve tetraploidy, is also proposed.  相似文献   

9.
Summary Callus derived protoplasts of Brachycome dichromosomatica (2n=2x=4) and Crepis capillaris (2n=2x=6) have been regenerated into karyologically normal plants, i.e. plants without visible alterations of the diploid chromosome set. However, metaphase analysis of protoplast cultures derived from both callus as well as mesophyll cells showed karyological changes in the overwhelming majority of cells in both species leading to multinucleated, polyploid and aneuploid cells. Furthermore, callus derived protoplasts sometimes exhibited changes at the chromosome level as indicated by translocations. The vast majority of aberrant karyotypes arose from failures during mitosis and cytokinesis, pointing to inadequate microtubules as a possible underlying cause. Karyological events of the kind described herein greatly affect the plating efficiency of isolated protoplasts and the viability of protoplast derived calli. Plant regeneration, although demonstrated in this study for the first time in both species, seems to be limited to rarely occurring, protoplast-derived colonies with a relatively stable genome. Our experiments, performed with chromosomal model species, emphasize the need for controlled, non-mutagenic culture conditions.  相似文献   

10.
The meiotic pairing behaviour of four B isochromosomes of Crepis capillaris was studied by synaptonemal complex (SC) surface spreading of pollen mother cells. The four B chromosomes form a tightly associated group, separate from the standard chromosomes, throughout zygotene and pachytene. All four B chromosomes are also folded around their axis of symmetry, the centromere, and the eight homologous arms are closely aligned from the earliest prophase I stages. A high frequency of multivalent pairing of the four B chromosomes is observed at pachytene, in excess of 90%, mirroring the situation observed at metaphase I but exceeding the frequency expected (76.2%) on the assumption of random pairing among the eight B isochromosome arms with a single distal pairing initiation site per arm. The higher than expected frequency of multivalents is due to the occurrence of multiple pairing initiations along the B isochromosome arms, resulting in high frequencies of pairing partner switches. Pairing of the standard chromosome set is frequently incomplete in the presence of four B chromosomes, and abnormalities of SC structure such as thickening and splitting of axes and lateral elements are also frequently seen. Similarly, B chromosomes show partial pairing failure, the extent of which is correlated with pairing failure in the standard chromosome set. The B chromosomes themselves also show abnormalities of SC structure. Both standard and B chromosomes show non-homologous foldback pairing of regions that have failed to pair homologously.by D. Schweizer  相似文献   

11.
The reaction to C-banding was investigated throughout the mitotic cycle ofCrepis capillaris (2n=6): (1) 18–22 C-bodies or C-bands were found during mid telophase and interphase to prophase and metaphase, and also 12–14 at late anaphase to early telophase in the mitotic cycle. Fewer C-bands in late anaphase to early telophase were due to the absence of minute bands; (2) large and medium sized C-bands were strongly stained by Giemsa, while small and minute bands stained palely. It is suggested that inCrepis capillaris the difference of color in C-banded segments following Giemsa staining is referable to the amount of constitutive heterochromatin rather than to the difference in the condensation and decondensation; (3) the size of C-bodies changed during telophase to interphase and prophase. It is inferred that the extent of C-bodies is regulated by both the length of DNA sequences of constitutive heterochromatin and the amount of proteins combined with C-banded DNA. It was shown that the reaction to C-banding is neither due to the differential condensation of chromatin nor to a higher concentration of DNA in the C-banded regions, in the C-banding mechanism as has been suggested so far at least.  相似文献   

12.
Chromosome paints of the rat kangaroo ( Aepyprymnus rufuscens, 2n =32) were used to define chromosome regions in the long nosed potoroo ( Potorous tridactylus, 2n =12 female, 13 male) karyotype and localize these regions in three-dimensionally preserved nuclei of the potoroo to test the hypothesis that marsupial chromosomes have a radial distribution. In human nuclei chromosomes are distributed in a proposed radial fashion. Gene-rich chromosomes in the human interphase nucleus are preferentially located in the central area while gene-poor chromosomes are found more at the periphery of the nucleus; this feature is conserved in primates and chicken. Chromosome ordering in nuclei of P. tridactylus is related to their size and centromere position. Its relationship with replication patterns in interphase nuclei and metaphase was studied. In addition it was observed that the nucleus was not a smooth entity but had projections occupied by specific chromosome regions. Edited by: R. Allshire  相似文献   

13.
Deletion-based physical mapping of barley chromosome 7H   总被引:1,自引:1,他引:0  
Chromosomal mutations in barley (Hordeum vulgare, 2n=2x=14, HH) chromosome 7H added to the common wheat (Triticum aestivum, 2n=6x=42, AABBDD) cultivar Chinese Spring were induced genetically by the gametocidal activity of certain alien chromosomes derived from wild species of the genus Aegilops. The rearranged barley chromosomes were characterized by C-banding, FISH and GISH. Twenty two deletion or translocation chromosomes in a hemizygous condition were selected for deletion mapping of 17 AFLP and 28 STS markers that are specific to 7H. Of the 22 breakpoints in chromosome 7H, seven involved the short arm (7HS), 12 the long arm (7HL) and three were in the centromeric region. The seven 7HS breakpoints separated all four 7HS-specific AFLP markers and split the 21 STS markers into six groups. One breakpoint occurred between two STS markers formerly occupying the same position in the genetic map. All seven 7HS breakpoints were separated from each other by either the AFLP or STS markers. The 12 breakpoints in 7HL divided the 13 7HL-specific AFLP markers into seven groups, and the seven STS markers into three groups. On the other hand, the 12 breakpoints in 7HL were divided into six groups by the AFLP markers and into two groups by the STS markers. This deletion-based map was in accordance with previously published genetic and physical maps using the same STS markers. The breakpoints, AFLP markers and STS markers were arrayed in a consistent order. Received: 5 February 2001 / Accepted: 19 February 2001  相似文献   

14.
DNA late-replication,3H-cRNA in situ hybridization, and C-band distribution patterns were studied inLuzula purpurea Link chromosomes (2n=6). With each technique it was possible to identify homologous chromosomes. DNA late-replicating regions were present at the ends and in the middle of one chromosome pair (pair 1), on both ends of another chromosome pair with one end having more late-replicating regions than the other end (pair 2), and all along the length of the final pair (pair 3). The distribution of label following in situ hybridization of3H-cRNA complementary to Cot 1-reassociated DNA was similar to the DNA late-replication patterns. One chromosome pair had grains concentrated at the ends and in the middle of the chromosomes; another pair had grains at both ends with a greater grain concentration at one end; the final chromosome pair had grains distributed all along the length. C-band distribution patterns were also similar to the DNA late-replication and3H-cRNA in situ-hybridized ones. The results demonstrate that the constitutive heterochromatin ofL. purpurea polycentric chromosomes is similar to the constitutive heterochromatin of monocentric animal chromosomes in that it consists of highly repeated DNA sequences which are replicated late in the S stage of interphase.  相似文献   

15.
 Four different Brassica campestris-alboglabra monosomic addition lines (AA+1 chromosome from C, 2n=21) were obtained after consecutive backcrosses between resynthesized B. napus (AACC, 2n=38) and the parental B. campestris (AA, 2n=20) accession. The alien chromosomes of B. alboglabra (CC, 2n=18) in the addition lines were distinguished by random amplified polymorphic DNA (RAPD) marker analysis and morphology of mitotic chromosomes. Four RAPD marker synteny groups were established, which represented the four different alien chromosomes of B. alboglabra in the four addition lines. Three of the four addition lines were identified to harbour chromosomes 4, 8 or 9 of B. alboglabra. Studies on meiotic pairing in the addition lines revealed intergenomic homoeology relationships among specific chromosome arms between the A- and C-genomes. The long arm of B. campestris chromosome 9 was homoeologous with the long arm of B. alboglabra chromosome 4, while its short arm with the short arms of B. alboglabra chromosomes 8 and 9. Such an intergenomic homoeology relationship supports the hypothesis that B. campestris and B. alboglabra share a common ancestor but that chromosomal rearrangements have occurred during the evolution of the two species. Intergenomic introgression was observed in the progenies of the addition lines. The introgression of an entire B. alboglabra marker synteny group into the B. campestris genome implied the possible occurrence of interspecific chromosomal substitution. Received: 30 May 1996 / Accepted: 18 October 1996  相似文献   

16.
Drosophila nasutoides has an extraordinary genome since 62% of its DNA resides in chromosome4. This element mainly consists of constitutive heterochromatin which does not polytenize. Earlier studies of heterochromatin attributed little attention to the fact that condensed chromosomes often vary in condensation. This paper reports that chromosomes of the same complement display different degrees and kinetics of condensation. InD. nasutoides, even sex specific differences can be observed. The results of a comparative microphotometric study on neuroblast metaphases in both sexes revealed the following picture. The process of chromosome condensation is not restricted to mitotic prophase but continues into the metaphase. The mean condensation is not equal for all chromosomes. In the metaphase of the female, Feulgen density increases from theX chromosome, via3 and2, to chromosome4. In the male, the order isX, 2, 3, Y, and4. During the metaphase of the male, chromosomes condense with similar kinetics. In contrast, chromosomes of the female display asynchrony as monitored by area and length determinations. TheX chromosomes of the female probably have enhanced shortening during prophase. This would explain the metaphase of the female where theX chromosomes shorten less than the autosomes, and why each of theX chromosomes is 15% shorter than theX chromosome in the metaphase of the male. Further differences were observed in the longitudinal and lateral compaction of the chromosomes in males and females. The sex chromosomes and chromosome3 condense by shortening, while chromosomes2 and4 preferentially reduce their diameter. The large amount of DNA engaged in heteropycnosis and the isochromosome nature allow the identification of chromosome4 during interphase. At this stage, a new category of extreme DNA packaging was detected. The interphase density of chromosome4 can exceed that of metaphase by a factor of up to 8. Two events account for this high degree of condensation:(1) the homologues are particularly associated due to somatic pairing and (2) the arms are further tightened as a result of pericentric folding. The features of the isochromosome suggest that the interaction of chromatids during interphase is essentially caused by specific DNA sequences. The data confirm that heteropycnosis not only interferes with gene expression but also strongly inhibits DNA synthesis in endocycles.  相似文献   

17.
A comparative cytogenetic analysis, using both conventional staining techniques and fluorescence in situ hybridization, of six Indo‐Pacific moray eels from three different genera (Gymnothorax fimbriatus, Gymnothorax flavimarginatus, Gymnothorax javanicus, Gymnothorax undulatus, Echidna nebulosa and Gymnomuraena zebra), was carried out to investigate the chromosomal differentiation in the family Muraenidae. Four species displayed a diploid chromosome number 2n = 42, which is common among the Muraenidae. Two other species, G. javanicus and G. flavimarginatus, were characterized by different chromosome numbers (2n = 40 and 2n = 36). For most species, a large amount of constitutive heterochromatin was detected in the chromosomes, with species‐specific C‐banding patterns that enabled pairing of the homologous chromosomes. In all species, the major ribosomal genes were localized in the guanine‐cytosine‐rich region of one chromosome pair, but in different chromosomal locations. The (TTAGGG)n telomeric sequences were mapped onto chromosomal ends in all muraenid species studied. The comparison of the results derived from this study with those available in the literature confirms a substantial conservation of the diploid chromosome number in the Muraenidae and supports the hypothesis that rearrangements have occurred that have diversified their karyotypes. Furthermore, the finding of two species with different diploid chromosome numbers suggests that additional chromosomal rearrangements, such as Robertsonian fusions, have occurred in the karyotype evolution of the Muraenidae.  相似文献   

18.
An experimental population of Crepis capillaris (2n=6) displays frequent chromosome-specific univalence affecting all three chromosome pairs of the complement independently in different plants. The frequency of univalence in the population varies from 0% in some plants to about 40% of pollen mother cells in other plants. Most commonly, affected pollen mother cells contain just one pair of univalents and wherever the frequency of cells containing univalents exceeds 10%, a chromosome-specific effect almost invariably appears. Univalence affecting the A, C and D chromosome pairs is about equally frequent in the population. The mean cell chiasma frequencies of affected plants are generally lower than those of normal plants from the same population, despite suggestions of compensating increases in the chiasma frequencies of unaffected chromosomes pairs in the presence of specific univalence of a third pair. Breeding tests have been carried out, and observations made on pachytene stages which demonstrate that the specific univalence is due to recessive genes causing desynapsis following apparently normal pairing of homologues.  相似文献   

19.
Cells in the root meristem are organised in longitudinal files. Repeated transverse cell divisions in these files are the prime cause of root growth. Because of the orientation of the cell divisions, we expected to find mitoses with an spindle axis parallel to the file axis. However, we observed in the root cortex ofVicia faba large number of oblique chromosome orientations. From metaphase to telophase there was a dramatic increase of the rotation of the spindle axis. Measurements of both the size of the cortex cells and the chromosome configurations indicated that most cells were too small for an orientation of the spindle parallel to the file axis. Space limitation force the spindle into an oblique position. Despite this spindle axis rotation, most daughter cells remained within the original cell file. Only in extremely flat cells did the position of the daughter nuclei forced the cell to set a plane of division parallel to the file axis, which result in side-by-side orientation of the daughter cells. Telophase spindle axis rotations are also observed inCrepis capillaris andPetunia hybrida.. These species have respectively medium and small sized chromosomes compared toVicia. Since space limitation, which causes the rotation, depends both on cell and chromosome size, the frequency and extent of the phenomenon in former two species is comparatively low.  相似文献   

20.
染色体数目和倍性是系统与进化生物学和遗传学研究中十分重要的基础信息。为探索半蒴苣苔属染色体制片的适宜条件以及染色体数目的进化模式及其与物种的进化关系,该研究基于半蒴苣苔属染色体数目的进化历史,并根据该属植物具有叶片扦插繁殖的特性,采用叶片水培生根法获取半蒴苣苔(Hemiboea subcapitata)、弄岗半蒴苣苔(H.longgangensis)、龙州半蒴苣苔(H.longzhouensis)、江西半蒴苣苔(H.subacaulis var.jiangxiensis)、华南半蒴苣苔(H.follicularis)和永福半蒴苣苔(H.yongfuensis)6种植物的根尖材料,分析不同实验条件对染色体制片效果的影响,对染色体制片实验的条件进行优化及染色体计数,结果表明:(1)9:30—10:00取材,解离10 min以及染色15 min为半蒴苣苔属染色体制片的适宜条件。(2)上述6种半蒴苣苔属植物均为二倍体,染色体数目均为32(2n=2x=32)。(3)除个别物种染色体数目有变化以外,该属大部分物种染色体数目可能为2n=2x=32且染色体数目变化可能是非整倍化的作用,与物种进化没有明...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号