首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A selective and sensitive method for the determination of lipoic acid in human plasma samples has been developed. After enzymatic hydrolysis of the sample, the liberated lipoic acid was extracted by a solid-phase cartridge and measured by HPLC using electrochemical detection. The detection limit was 1 ng/ml lipoic acid in plasma. The calibration curve was non-linear in the range 0.01–50 μg/ml but could be described by a power function. The average extraction recoveries were 82.5 and 85.1% at the 25 and 2500 ng/ml levels, respectively. Coefficients of variation for both within-day and day-to-day analysis were between 2.1 and 9.4%. The assay method is sensitive, reproducible and suitable for disposition studies of lipoic acid in humans.  相似文献   

2.
A fast, simple, and a reliable high-performance liquid chromatography linked with electrochemical detector (HPLC-ECD) method for the assessment of lipoic acid (LA) and dihydrolipoic acid (DHLA) in plasma was developed using naproxen sodium as an internal standard (IS) and validated according to standard guidelines. Extraction of both analytes and IS from plasma (250 μl) was carried out with a single step liquid-liquid extraction applying dichloromethane. The separated organic layer was dried under stream of nitrogen at 40°C and the residue was reconstituted with the mobile phase. Complete separation of both compounds and IS at 30°C on Discovery HS C18 RP column (250 mm × 4.6 mm, 5 μm) was achieved in 9 min using acetonitrile: 0.05 M phosphate buffer (pH 2.4 adjusted with phosphoric acid) (52:48, v/v) as a mobile phase pumped at flow rate of 1.5 ml min(-1) using electrochemical detector in DC mode at the detector potential of 1.0 V. The limit of detection and limit of quantification for lipoic acid were 500 pg/ml and 3 ng/ml, and for dihydrolipoic acid were 3 ng/ml and 10 ng/ml, respectively. The absolute recoveries of lipoic acid and dihydrolipoic acid determined on three nominal concentrations were in the range of 93.40-97.06, and 93.00-97.10, respectively. Similarly coefficient of variations (% CV) for both intra-day and inter-day were between 0.829 and 3.097% for lipoic acid and between 1.620 and 5.681% for dihydrolipoic acid, respectively. This validated method was applied for the analysis of lipoic acid/dihydrolipoic acid in the plasma of human volunteers and will be used for the quantification of these compounds in patients with oxidative stress induced pathologies.  相似文献   

3.
A rapid, inexpensive, sensitive and specific HPLC-ECD method for the determination of lipoic acid in human plasma was developed and validated over the linearity range of 0.001–10 μg/ml using naproxen sodium as an internal standard (IS). Extraction of lipoic acid and IS from plasma (250 μl) was carried out with a simple one step liquid–liquid extraction using dichloromethane. Similarly solid-phase extraction was carried out using dichloromethane as extraction solvent. The separated organic layer was dried under the stream of nitrogen at 40 °C and the residue was reconstituted with the mobile phase. Complete separation of both lipoic acid and IS at 30 °C on Discovery HS C18 RP column (250 mm × 4.6 mm, 5 μm) was achieved in 6 min using 0.05 M phosphate buffer (pH 2.5 adjusted with phosphoric acid):acetonitrile (50:50, v/v) as a mobile phase pumped at the rate of 1.5 ml/min using electrochemical detector in DC mode at the detector potential of 1.0 V. The limit of detection and limit of quantification of lipoic acid were 200 pg/ml and 1 ng/ml, respectively. While on column limit of detection and limit of quantification of lipoic acid were 10 and 50 pg/ml, respectively. The absolute recoveries of lipoic acid with liquid–liquid and solid-phase extraction were 98.43, 95.65, 101.45, and 97.36, 102.73, 100.17% at 0.5, 1 and 5 μg/ml levels, respectively. Coefficient of variations for both intra-day and inter-day were between 0.28 and 4.97%. The method is validated and will be quite suitable for the analysis of lipoic acid in the plasma of human volunteers as well as patients with diabetes and cardiovascular diseases.  相似文献   

4.
A selective and sensitive gas chromatographic method for the analysis of lipoic acid in biological samples has been developed. After base hydrolysis of the sample, the liberated lipoic acid was converted into its S,S-diethoxycarbonyl methyl ester derivative and measured by gas chromatography using a DB-210 capillary column and a flame photometric detector. The calibration curve was linear in the range 20–500 ng, and the detection limit was ca. 50 pg injected. The best hydrolysis conditions for the biological samples were obtained by using 2 M potassium hydroxide containing 4% bovine serum albumin at 110°C for 3 h. Using this method, lipoic acid in the hydrolysate could be selectively determined without any interference from matrix substances. Analytical results for the determination of lipoic acid in the mouse tissue and bacterial cell samples are presented.  相似文献   

5.

The conditions for producing phosphatidylcholine liposomes containing lipoic acid and carnosine together were determined. The obtained liposomes are 180–250-nm spherical particles with an efficiency of lipoic acid inclusion of 50–70% (for carnosine, 17–33%). Based on the model of the oxidation of phosphatidylcholine by hydrogen peroxide, an antioxidant effect of carnosine, lipoic acid or lipoic acid with carnosine together was demonstrated; it consisted in inhibition of lipid peroxidation process, which was manifested in a decrease in the formation of lipid peroxidation products that react with thiobarbituric acid. It was established that lipoic acid (5 mM) and carnosine (0.1–10 mM) in liposomes exhibit an antioxidant effect. At the same time, it was demonstrated that the content of the appropriate lipid peroxidation products in liposomes with antioxidants (lipoic acid + carnosine) was 15 times lower than in control liposomes (without antioxidants). The effect of the obtained liposomal drugs on the platelet aggregation induced by arachidonic acid was evaluated. It was found that the liposomal drug containing lipoic acid (1.5 mM) and carnosine (2.1 mM) inhibited platelet aggregation by 50–55% relative to the control (platelets and arachidonic acid), while liposomes without antioxidants and water-soluble forms of carnosine and lipoic acid had almost no effect on platelet aggregation caused by arachidonic acid.

  相似文献   

6.
The pyruvate dehydrogenase complex of Escherichia coli contains two lipoic acid residues per dihydrolipoamide acetyltransferase chain, and these are known to engage in the part-reactions of the enzyme. The enzyme complex was treated with trypsin at pH 7.0, and a partly proteolysed complex was obtained that had lost almost 60% of its lipoic acid residues although it retained 80% of its pyruvate dehydrogenase-complex activity. When this complex was treated with N-ethylmaleimide in the presence of pyruvate and the absence of CoASH, the rate of modification of the remaining S-acetyldihydrolipoic acid residues was approximately equal to the accompanying rate of loss of enzymic activity. This is in contrast with the native pyruvate dehydrogenase complex, where under the same conditions modification proceeds appreciably faster than the loss of enzymic activity. The native pyruvate dehydrogenase complex was also treated with lipoamidase prepared from Streptococcus faecalis. The release of lipoic acid from the complex followed zero-order kinetics for most of the reaction, whereas the accompanying loss of pyruvate dehydrogenase-complex activity lagged substantially behind. These results eliminate a model for the enzyme mechanism in which specifically one of the two lipoic acid residues on each dihydrolipoamide acetyltransferase chain is essential for the reaction. They are consistent with a model in which the dihydrolipoamide acetyltransferase component contains more lipoic acid residues than are required to serve the pyruvate decarboxylase subunits under conditions of saturating substrates, enabling the function of an excised or inactivated lipoic acid residue to be taken over by another one. Unusual structural properties of the enzyme complex might permit this novel feature of the enzyme mechanism.  相似文献   

7.
A mutant strain of Escherichia coli K12 requiring lipoic acid, W1485 lip 2 (ATCC 25645), was used to develop a turbidimetric assay for lipoic acid and a polarographic assay based on the oxidation of pyruvate by suspensions of lipoic acid-deficient organisms. The turbidimetric assay was more sensitive with a working range equivalent to 0.2–2.0 ng of dl-α-lipoic acid compared with 5–50 ng for the polarographic method. The mutant responded equally to racemic mixtures of α-lipoic acid, β-lipoic acid and dihydrolipoic acid but gave little response to lipoamide, and other derivatives without prior hydrolysis; 8-methyllipoic acid was a competitive inhibitor of the response to lipoic acid. A high specificity of the mutant for the natural stereoisomer was indicated by the fact that (+)-α-lipoic acid had twice the activity of the racemic mixture. Escherichia coli K12 contained less than 0.05 ng of free (+)-α-lipoic acid per mg dry weight but, depending on the growth substrate, the equivalent of between 13 and 47 ng of (+)-α-lipoic acid per mg dry weight after acid extraction. There was a strong correlation between the lipoic acid content and the sum of the specific activities for the pyruvate and α-ketoglutarate dehydrogenase complexes. Experiments with washed suspensions of Escherichia coli showed only small increases in lipoic acid content (18%) when incubated with pyruvate, cysteine and methionine. When supplied with exogenous lipoic acid the mutant, W1485 lip 2, accumulated very little more than was demanded by its metabolism. The lipoic acid contents of several organisms were measured and correlated with their metabolism.  相似文献   

8.
We describe the properties of the binding protein dependent-transport of ribose, galactose, and maltose and of the lactose permease, and the phosphoenolpyruvate-glucose phosphotransferase transport systems in a strain of Escherichia coli which is deficient in the synthesis of lipoic acid, a cofactor involved in alpha-keto acid dehydrogenation. Such a strain can grow in the absence of lipoic acid in minimal medium supplemented with acetate and succinate. Although the lactose permease and the phosphoenolypyruvate-glucose phosphotransferase are not affected by lipoic acid deprivation, the binding protein-dependent transports are reduced by 70% in conditions of lipoic acid deprivation when compared with their activity in conditions of lipoic acid supply. The remaining transport is not affected by arsenate but is inhibited by the uncoupler carbonylcyanide-m-chlorophenylhydrazone; however the lipoic acid-dependent transport is completely inhibited by arsenate and only weakly inhibited by carbonylcyanide-m-chlorophenylhydrazone. The known inhibitor of alpha-keto acid dehydrogenases, 5-methoxyindole-2-carboxylic acid, completely inhibits all binding protein-dependent transports whether in conditions of lipoic supply or deprivation; the results suggest a possible relation between binding protein-dependent transport and alpha-keto acid dehydrogenases and shed light on the inhibition of these transports by arsenicals and uncouplers.  相似文献   

9.
A method has been developed for the gas chromatographic analysis of lipoic acid in biological samples. The lipoic acid is released from the samples by acid hydrolysis in the presence of the internal standards 1,2-dithiolane-3-butyric acid and/or 1,2-dithiolane-3-caproic acid. After hydrolysis, the lipoic acid and the internal standards are extracted from the hydrolysate and converted into the S,S-dibenzylmethyl esters. Gas chromatographic analysis of this mixture completely separates each of the homolog derivatives from the lipoic acid derivative and allows for the quantitation of the lipoic acid in the sample. Samples containing more than ~50 ng of lipoic acid can be easily assayed. Results are presented that show that the lipoic acid content of Escherichia coli depends on the carbon source used for its growth.  相似文献   

10.
The complete amino acid sequence of H-protein from chicken liver was determined by aligning peptides obtained by cyanogen bromide, endoproteinase Lys-C, Staphylococcus aureus V8 protease, and chymotrypsin cleavage together with the partial NH2- and COOH-terminal sequence of the intact protein. H-protein consists of 125 amino acids and a lipoic acid moiety linked to lysine 59. The sequence is: (sequence in text). The lysyl residue involved in lipoic acid attachment is indicated with an asterisk. The molecular weight including lipoic acid is calculated to be 13,883. From the secondary structure predicted by the method of Chou and Fasman (Chou, P. Y., and Fasman, G. D. (1978) Adv. Enzymol. 47, 45-148) the lipoic acid binding region shows alpha-helical structure and is predicted to be an interior portion of the protein from the hydropathic profile according to Kyte and Doolittle (Kyte, J., and Doolittle, R. F. (1982) J. Mol. Biol. 157, 105-132).  相似文献   

11.
As a powerful natural antioxidant, lipoic acid exerts significant antioxidant activities in vivo and in vitro by deactivation of reactive oxygen and nitrogen species. In this study we present a novel synergistic interaction of lipoic acid with other endogenous or exogenous antioxidants. Antioxidants vitamins C and E analogue (Trolox C) and hydroxycinnamic acid derivatives were found to recycle lipoic acid by donating electrons to lipoic acid radical cations, thereby increasing the antioxidant capacity of lipoic acid in vivo and in vitro. The rate constant of the electron transfer is in the order 10(9)dm(3)mol(-1)s(-1), close to the diffusion-controlled limit, and transfer quantum yield is above 95%.  相似文献   

12.
The efficacy of melatonin, glutathione, serotonin, minocycline, lipoic acid and ascorbic acid in counteracting the toxicity of paraquat in Drosophila melanogaster was examined. Male Oregon wild strain flies were fed for 5 days with control food or food containing the test substance. They were transferred in groups of five to vials containing only filter paper soaked with 20 mM paraquat in 5% sucrose solution. Survival was determined 24 and 48 h later. All the substances assayed increased the survival of D. melanogaster. At equimolar concentrations (0.43 mM) melatonin was more effective than serotonin, lipoic acid and ascorbic acid. However, lower concentrations of glutathione (0.22 mM) and minocycline (0.05 mM) were as efficient as melatonin. The highest survival rate (38.6%) after 48 h of paraquat treatment was found with 2.15 mM of lipoic acid. No synergistic effect of melatonin with glutathione, serotonin, minocycline, lipoic acid and ascorbic acid was detected.  相似文献   

13.
《Free radical research》2013,47(8):593-601
Abstract

Inflammation results in the production of free radicals. We evaluated the anti-inflammatory and antioxidant capacity of lipoic acid in an experimental uveitis model upon a subcutaneous injection of endotoxin into Lewis rats. The role of oxidative stress in the endotoxin-induced uveitis model is well-known. Besides, the Th1 response classically performs a central part in the immunopathological process of experimental autoimmune uveitis. Exogenous sources of lipoic acid have been shown to exhibit antioxidant and anti-inflammatory properties. Our results show that lipoic acid treatment plays a preventive role in endotoxin-induced oxidative stress at 24 h post-administration and reduced Th1 lymphocytes-related cytokines by approximately 50–60%. Simultaneously, lipoic acid treatment caused a significant reduction in uveal histopathological grading and in the protein concentration in aqueous humors, but not in cellular infiltration.  相似文献   

14.
The effects of lipoic acid on intensity of free radical reactions, citrate content, and aconitate hydratase during myocardial ischemia have been investigated. Treatment with lipoic acid normalized biochemiluminescence parameters and citrate level, which were increased in the myocardial pathology. Treatment with lipoic acid also increased specific activity of aconitate hydratase, which was decreased in myocardium and blood of animals with myocardial ischemia. Administration of lipoic acid decreased DNA fragmentation observed during myocardial ischemia. The data suggest that lipoic acid can be effectively used as a cardioprotector preventing the development of free radical oxidation during myocardial ischemia.  相似文献   

15.
Lipoic acid is a coenzyme for pyruvate dehydrogenase, α-ketoglutarate dehydrogenase, branched chain-ketoacid dehydrogenase, and the glycine cleavage system. Lipoic acid is covalently attached through an amide to the ?-amino group of specific lysine residues of these enzymes. Lipoamidase hydrolyzes the amide bond of lipoyl-N-?-lysine. Because of the difficulty in quantitating lipoic acid or lysine released by hydrolysis of lipoyl-N-?-lysine, a sensitive assay of lipoamidase activity was developed based on quantitation of lipoic acid liberated from lipoyl-?-lysine using 2,6-dibromoquinone-4-chlorimide (DBQC). This method involves acidification of the assay mixture with HCl and separation of lipoic acid from lipoyl-N-?-lysine by extraction into ethyl acetate where it can react with DBQC. This method is as sensitive as methods based on the reaction of lipoic acid with dinitrothiobenzoate and requires only a single extraction, but does not require reduction of the disulfide and the color reagent does not need to be prepared daily. Results obtained using this assay to quantitate lipoic acid released from lipoyl-N-p-aminobenzoate correlated excellently with results obtained using the Marshall–Bratton reaction to quantitatep-aminobenzoate. We have detected lipoyl-N-?-lysine hydrolysis activity that is distinct from that of biotinidase and bile salt-stimulated lipase in lymphoblasts from a patient with biotinidase deficiency. This assay can be used to measure lipoyl-N-?-lysine hydrolysis activity in tissues, especially those with little or no biotinidase activity.  相似文献   

16.
硫辛酸抗再灌期心律失常与外源性自由基所致动作电...   总被引:2,自引:0,他引:2  
高天礼  黄玉芝 《生理学报》1991,43(2):149-155
By means of Langendorff method the isolated rat heart was perfused with Krebs Henseleit solution. Following ligation of the left descending coronary artery for 10 min the heart was reperfused for 3 min. The incidence of ventricular fibrillation in the reperfusion period was 100%, and the normal sinus rhythm time was shortened to 29 s within 3 min of reperfusion. Administration of lipoic acid (6.8 X 10(-6)-1.7 X 10(-4) mol/L) to the perfusate significantly reduced the incidence of ventricular fibrillation to 33-50% and prolonged the normal sinus rhythm time to 97-107 s. APA, RP, and Vmax recorded from the guinea pig papillary muscle were depressed due to the deleterious effect of xanthine oxidase and hypoxanthine free radical generating system. Under the treatment of lipoic acid (3.5 X 10(-5) mol/L), the depression of APA, RP, and Vmax were significantly relieved. This confirms that lipoic acid treatment, owing to its free radical scavenger effect, is able to protect myocardium from free radical induced electrophysiological abnormalities, and consequently decrease the incidence of malignant arrhythmias.  相似文献   

17.
The catalytic roles of the two reductively acetylatable lipoic acid residues on each lipoate acetyltransferase chain of the pyruvate dehydrogenase complex of Escherichia coli were investigated. Both lipoyl groups are reductively acetylated from pyruvate at the same apparent rate and both can transfer their acetyl groups to CoASH, part-reactions of the overall complex reaction. The complex was treated with N-ethylmaleimide in the presence of pyruvate and the absence of CoASH, conditions that lead to the modification and inactivation of the S-acetyldihydrolipoic acid residues. Modification was found to proceed appreciably faster than the accompanying loss of enzymic activity. The kinetics of the modification were fitted best by supposing that the two lipoyl groups react with the maleimide at different rates, one being modified at approximately 3.5 times the rate of the other. The loss of complex activity took place at a rate approximately equal to that calculated for the modification of the more slowly reacting lipoic acid residue. The simplest interpretation of this result is that only this residue is essential in the overall catalytic mechanism, but an alternative explanation in which one lipoic acid residue can take over the function of another was not ruled out. The kinetics of inactivation could not be reconciled with an obligatory serial interaction between the two lipoic acid residues. Similar experiments with the fluorescent N-[p-(benzimidazol-2-yl)phenyl]maleimide supported these conclusions, although the modification was found to be less specific than with N-ethylmaleimide. The more rapidly modified lipoic acid residue may be involved in the system of intramolecular transacetylation reactions that couple active sites in the lipoate acetyltransferase component.  相似文献   

18.
The impairment of nitric oxide (NO)-mediated vasodilation in diabetes has been attributed to increased vascular oxidative stress. Lipoic acid has been shown to have substantial antioxidative properties. The aim of this study was to assess the effect of lipoic acid on NO-mediated vasodilation in diabetic patients in comparison with the well-recognized effect of ascorbic acid. Using venous occlusion plethysmography, we examined the effects of lipoic acid (0.2 mM) and ascorbic acid (1 and 10 mM) on forearm blood flow responses to acetylcholine, sodium nitroprusside and concomitant infusion of the NO-inhibitor, N(G)-monomethyl-L-arginine, in 39 diabetic patients and 11 control subjects. Plasma levels of antioxidants and parameters of lipid peroxidation were measured and correlated to endothelial function tests. Lipoic acid improved NO-mediated vasodilation in diabetic patients, but not in controls. NO-mediated vasodilation was improved by ascorbic acid at 10 mM, but not 1 mM. Improvements of endothelial function by ascorbic acid and lipoic acid were closely related. The beneficial effects of lipoic acid were positively related to plasma levels of malondialdehyde and inversely related to levels of ubiquinol-10. These findings support the concept that oxidative stress contributes to endothelial dysfunction and suggest a therapeutic potential of lipoic acid particularly in patients with imbalance between increased oxidative stress and depleted antioxidant defense.  相似文献   

19.
Nonalcoholic steatosis is an important hepatic complication of obesity linked to mitochondrial dysfunction and insulin resistance. Furthermore, lipoic acid has been reported to have beneficial effects on mitochondrial function. In this study, we analyzed the potential protective effect of lipoic acid supplementation against the development of nonalcoholic steatosis associated with a long-term high-fat diet feeding and the potential mechanism of this effect. Wistar rats were fed on a standard diet (n=10), a high-fat diet (n=10) and a high-fat diet supplemented with lipoic acid (n=10). A group pair-fed to the latter group (n=6) was also included. Lipoic acid prevented hepatic triglyceride accumulation and liver damage in rats fed a high-fat diet (?68%±11.3% vs. obese group) through the modulation of genes involved in lipogenesis and mitochondrial β-oxidation and by improving insulin sensitivity. Moreover, this molecule showed an inhibitory action on electron transport chain complexes activities (P<.01–P<.001) and adenosine triphosphate synthesis (P<.05), and reduced significantly energy efficiency. By contrast, lipoic acid induced an increase in mitochondrial copy number and in Ucp2 gene expression (P<.001 vs. obese). In summary, this investigation demonstrated the ability of lipoic acid to prevent nonalcoholic steatosis induced by a high-fat intake. Finally, the novelty and importance of this study are the finding of how lipoic acid modulates some of the mitochondrial processes involved in energy homeostasis. The reduction in mitochondrial energy efficiency could also explain, at least in part, the beneficial effects of lipoic acid not only in fatty liver but also in preventing excessive body weight gain.  相似文献   

20.
Two genes, lipA and lipB, involved in lipoic acid biosynthesis or metabolism were characterized by DNA sequence analysis. The translational initiation site of the lipA gene was established, and the lipB gene product was identified as a 25-kDa protein. Overproduction of LipA resulted in the formation of inclusion bodies, from which the protein was readily purified. Cells grown under strictly anaerobic conditions required the lipA and lipB gene products for the synthesis of a functional glycine cleavage system. Mutants carrying a null mutation in the lipB gene retained a partial ability to synthesize lipoic acid and produced low levels of pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase activities. The lipA gene product failed to convert protein-bound octanoic acid moieties to lipoic acid moieties in vivo; however, the growth of both lipA and lipB mutants was supported by either 6-thiooctanoic acid or 8-thiooctanoic acid in place of lipoic acid. These data suggest that LipA is required for the insertion of the first sulfur into the octanoic acid backbone. LipB functions downstream of LipA, but its role in lipoic acid metabolism remains unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号