首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A. D. FOX 《Ibis》1993,135(4):417-423
The pre-nesting feeding ecology of Pink-footed Geese Anser brachyrhynchus was studied in southern Iceland in April and May 1989–1992. Extensive surveys showed that prior to movement to their nesting areas in the interior, Pink-footed Geese fed mainly on intensively managed grasslands of the southern lowlands. Faecal analysis showed that geese feeding in hayfields foraged almost exclusively on the most commonly reseeded species, Timothy grass Phleum pratense , which made up the majority (41% by number of green shoots) of new growth in studied hayfields. Dropping counts, as an indicator of goose use, were highly significantly correlated in all years with density of growing Phleum shoots in individual field units. Geese showed a response in feeding patterns to changes in Phleum density as a result of reseeding patterns. Analysis of forage quality in 1991 showed that Phleum shoots had a higher protein content than all other grasses present in hayfields, with the exception of Deschampsia caespitosa. The latter species showed similar levels of protein, but its tussocky nature precluded effective grazing by the geese. Phleum was similar in fibre content to other common grasses. Based on removal of tagged plants, geese grazed predominantly on the youngest leaves of Phleum , which also had higher protein content and lower fibre than older leaves and attached dead leaves, which were rarely taken by geese. Geese grazed shorter length classes of youngest leaves, which showed higher protein content than longer, older terminal leaves. Recently created grassland habitat has increased the opportunities for female geese to supplement their reserves during the crucial prelude to clutch initiation by selecting the highest quality plant species and the most nutritious parts of that forage.  相似文献   

2.
Jameson Land, East Greenland is a moulting area of c. 5000 non-breeding Pink-footed Geese and 5000 Barnacle Geese. Breeding populations of both species in the area are small and scattered. The moulting Pinkfeet originate from Iceland, and the Barnacle Geese from other parts of East Greenland. Both species arrive in the area at the end of June and moult their remiges in July. Moulting flocks of the two species seldom mix. Pinkfoot flocks are common along coastlines, in wide rivers and on lakes with open views to all sides, while Barnacle Geese predominate in smaller rivers and on lakes with surrounding hills. During moult the geese, and especially the Pinkfeet, are extremely wary and depend on a safe area of water serving as a refuge with nearby food supplies (sedge-dominated marshes). Barnacle Geese graze in a zone 0–100 m from the refuge, Pinkfeet up to 200–250 m from the refuge. The moulting sites fill up with geese according to available marsh areas, and the grazing pressure on average amounts to 594 goose-days per ha during the moulting period. Food intake is estimated at 149 g and 138 g organic material per 24 h by Pinkfeet and Barnacle Geese, respectively, [n 1984, which was sunny and warm, net above-ground primary production of a Carex subspathacea marsh (the prime feeding ground during moult) from the beginning of growth to the end of July was 13–15 g dw m2, and it is estimated that the geese consumed 60–69% of the production. In 1983, which was cold, geese probably consumed the entire production. Goose grazing did not affect productivity, but nutrient levels were high in grazed compared with ungrazed shoots, and peaked in early July. When separate, the diet of both species comprises sedges and grasses. Where the species co-exist the amount of mosses in the diet increases, especially in Barnacle Geese. With respect to nutrient and fibre contents, moss is a suboptimal food compared to sedges and grasses. When separate, the geese spend 41–46% of the 24 hr grazing. Where they co-exist, Barnacle Geese spend 62% of the time grazing, while Pinkfeet seem unaffected by the presence of Barnacle Geese. It is argued that carrying capacity for moulting geese is reached. Geese compete for resources, the Barnacle Goose suffering from the presence of the other. The observed distribution pattern is suggested to result from (1) Pinkfeet being limited to certain sites due to extreme wariness, and (2) Barnacle Geese trying to avoid competition by utilizing sites which Pinkfeet are reluctant to use. The experience of older Barnacle Geese of stress when settling with Pinkfeet may be the segregation mechanism. Moult coincides with the onset of growth and peak nutrient levels in the vegetation. It is suggested that the geese undertake moult migrations to Jameson Land both to avoid competition for resources with breeding geese and because they gain advantage from a growing, nutritious vegetation.  相似文献   

3.
During the recovery of the population of dark-bellied brent geese Branta bernicla bernicla , traditional wintering sites in Britain have experienced increases in numbers and new sites have been colonized. Goose counts were used to describe the migration phenology and winter use of Scolt Head, north Norfolk (a traditional site) and the Burry Inlet, South Wales (a relatively new site) over the period of re-colonization and colonization, respectively. During the 1950s, only a few hundred birds wintered at Scolt Head, and most stayed for only a short period. By the late 1980s/early 1990s, numbers had reached several thousands, their period of stay was longer and there was little variation between years in median arrival (28 October) and departure (11 March) dates. A similar process was observed during the entire colonization phase at the Burry Inlet; initially birds arrived late and departed early, but arrived progressively earlier and departed later as wintering numbers increased. The autumn arrival rates at both sites were slower than the spring departure rates. During years of good breeding productivity, those adults with young arrived slightly later in Norfolk than failed breeders and non-breeders, and a higher proportion of young birds remained in spring after the main departure. However, the overall pattern of arrival and departure did not vary according to whether there had been a good or poor breeding season. Some adults of breeding age also remained until May. The effects of food depletion and use of novel feeding habitats in relation to migration phenology and winter use of sites are discussed.  相似文献   

4.
The pre-nesting feeding behaviour of greylag Anser anser and pink-footed geese A brachyrhynchus was studied on agricultural land at low altitude in southern Iceland from 10 April to 8 May 1990 Greylag geese were already present on 12 April increased to 4580 birds by 24 April, but declined to 1300 by 3 May Pink-footed geese arrived around 20 April and numbers continued to increase to a peak count of 11340 on 3 May Over 60% of greylag geese initially used stubble fields on the coast where this habitat was most frequent, but increasingly resorted to grassland and wetland habitats during late April Later-arriving pink-feet predominantly used managed grassland, away from coastal areas At inland grassland sites, greylag numbers peaked on 20 April, pink-feet m early May The early exploitation by greylags was associated with grass growth initiated under protective snow-patches Greylags spent 90 times more time feeding within 1 m of snow patches with enhanced grass growth than expected by chance and their feeding rates near snow patches were faster and their step rates slower than further away By early May, grass growth was uniform and, although snow-patches persisted, no difference in forage quality, goose feeding rates or step rates could be detected It is concluded that, in spring 1990 at least, habitat segregation during spring migration in southern Iceland minimised competition between these two closely related goose species within the same geographical area In areas where both species exploit the same habitat, a two week difference m timing of breeding (and hence phenology of migration) further assures minimal overlap in feeding exploitation  相似文献   

5.
Impacts of disturbance on migratory waterfowl   总被引:10,自引:1,他引:9  
JESPER MADSEN 《Ibis》1995,137(S1):S67-S74
It is well known that disturbance from human activities can cause temporary changes in behaviour and locally affect temporal and spatial distribution of migratory and wintering waterfowl. But it is also known that, to some extent, birds can compensate for disturbance by altering their behaviour or habituating to human activities. Comparatively little is known about how these reactions to disturbance may impact on the large-scale dispersion of waterfowl and, ultimately, on their population dynamics. To be able to answer these questions, a better theoretical framework, based on optimal foraging theory incorporating predation risk, and field experiments are required. Furthermore, we need to study the waterfowl throughout their winter ranges to interpret the overall impacts of disturbance. This paper examines two cases where the impacts of disturbance have been assessed from field experiments. In one study, disturbance effects of shooting were tested by setting up experimental reserves in two Danish coastal wetlands. Over a 5-year period, these became two of the most important staging areas for coastal waterfowl, and the national totals of key species were significantly increased. A national management plan which will establish more than 50 new shooting-free refuges on Danish coastal areas within the next 5 years is likely to boost waterfowl numbers even more. Such retention of birds at more northerly sites on the fiyway should result in a more efficient resource utilization and may positively affect the population dynamics where numbers are affected by winter resources. In a second study, the impacts of disturbance by farmers on spring fattening of Pink-footed Geese Anser brachyrhynchus were analysed. In undisturbed areas in northern Norway, abdominal profiles of the geese increased rapidly, whereas in disturbed sites they did not. Subsequently, geese that had used undisturbed sites reproduced better than geese from disturbed sites.  相似文献   

6.
The selection of salt-marsh feeding sites by wintering Barnacle Geese Branta leucopsis was investigated on Schiermonnikoog, The Netherlands. Use of sites by geese was estimated by counts of goose droppings. Geese spent significantly more time grazing in sites with evidence of Herring Gull Larus argentatus and Lesser Black-backed Gull Lfuscus breeding activity than in nearby non-gull sites. The nitrogen content of red fescue grass Festuca rubra was significantly greater in gull sites. We suggest that the geese preferred to feed in these locations because of the improved nutritional value of the grass. The higher nitrogen content of F. rubra in gull sites was most likely the result of nutrient inputs from gull droppings rather than goose droppings.  相似文献   

7.
M. A. Ogilvie  R. J. F. Taylor 《Ibis》1967,109(3):299-309
An expedition studying geese spent six weeks in the summer of 1964 on the west coast of West-Spitsbergen, Svalbard. The topography of the area is described. Observations were made on 28 species of birds and details of numbers and distribution are given for each. Counts were made over a period of a week of the numbers of Common Eider Somateria mollissima which began nesting in a small colony as the snow cleared from the ground. Weights and measurements were taken of Purple Sandpipers Calidris maritima and Glaucous Gulls Larus hyperboreus. One species new to Svalbard was seen, a Black-headed Gull Larus ridibundus. Previously unrecorded breeding sites of Pink-footed Geese Anser brachyrhynchus, and Barnacle Geese Branta leucopsis were found, and it is concluded that the further spread of the Barnacle Goose is probable. New sea-bird colonies were also located.  相似文献   

8.
In order to investigate the potential role of arctic geese in the epidemiology, the spatial and temporal spread of selected avian diseases, in autumn 2002, a virological and serological survey designed as capture-mark-resighting study was conducted in one of the most important coastal resting sites for migratory waterfowl in Germany. Oropharyngeal, cloacal swabs and blood samples were collected from a total of 147 birds comprising of three different arctic geese species including White-fronted Goose (Anser albifrons), Tundra Bean Goose (Anser fabalis rossicus), Pink-footed Goose (Anser brachyrhynchus) as well as from 29 non-migratory Canada Geese (Branta canadensis). Altogether, six adeno-like viruses (ALV; 95% CI, 1.74?C9.92%) and two avian paramyxoviruses (APMV-4; 95% CI, 0.19?C5.53%) were isolated mainly from juvenile White-fronted Geese. In addition, four Canada Geese were infected with lentogenic APMV-1 (95% CI, 3.89?C31.66%) at the date of sampling. No avian influenza viruses, reo-like viruses could be isolated despite serological evidence. Likewise, no evidence of current or previous infection by West Nile virus was found. Of the 147 birds tagged in the following years, 137 birds were re-sighted between 2002 and 2008 accumulating to 1925 sightings. About 90% of all sightings were reported from the main wintering and resting sites in Germany and The Netherlands. Eight of the resighted geese were virus positive (ALV and APMV-4) at the time point of sampling in 2002.  相似文献   

9.
Capsule Population change in geese was assessed using an approach that requires a relatively small sampling effort.

Aims During the 1999 breeding season a survey was carried out to determine if the numbers of introduced Canada and re-established Greylag Geese in southern Britain had changed since 1988–91 and whether any change had occurred in areas with previously high or low Canada Goose densities.

Methods A randomized stratified sample of 246 tetrads from the 24 156 tetrads covered between 1988–91 in this area, as part of the New Atlas of Breeding Birds, were resurveyed. Eight habitat categories were used in the stratification and were based on 1-km-square summary data obtained from the CEH Land Cover Map of Great Britain (water cover and urbanization) and LANDCLASS stratification (upland/lowland). The five habitat categories with the highest densities of Canada Geese and the greatest variance in numbers were sampled.

Results Between 1989 and 1999, the number of Canada Geese on land with over 5% water cover and on lowland with some water cover increased by on average 156%, an average rate of increase of 9.9% per annum. Southern Britain probably now holds a minimum of 82 000 Canada Geese. Between 1989 and 1999, the number of Greylag Geese on land with over 5% water cover and on lowland with some water cover increased by on average 214%, an average rate of increase of 12% per annum. Southern Britain probably now holds a minimum of 30 000 Greylag Geese.

Conclusion Maximum densities of Canada Geese may have been reached in high-density habitats but their numbers are still increasing very rapidly. Greylag Geese are increasing even more rapidly.  相似文献   

10.
A.D. Fox  J. Kahlert 《Bird Study》2013,60(3):266-274
Flightless moulting Greylag Geese on the Danish island of Saltholm fed on Puccinellia maritima almost exclusively within 150 m of the coastline, despite abundant equivalent food further away. This distribution pattern could theoretically be explained by two alternative (but not necessarily mutually exclusive) explanations: predation risk (since birds take to open water when disturbed) or variation in food quantity/quality. Above ground green parts of this plant showed consistently higher protein and lower fibre content inland than on the coast, hence differences in food quality could not account for the difference in foraging distribution. However, in grazed plots, shoot density was greater at the coast than inland, resulting in an increase of 1.2–2.8 times the available green above-ground biomass. Hence, the greater abundance of Puccinellia at the coast may contribute to the explanation. However, within exclosures at the coast, Puccinellia shoot density was no different to inland areas, suggesting that some function of goose grazing at the coast was involved in enhancing biomass there. It therefore seems likely that the greater food biomass at the coast is a consequence of geese feeding to within 150 m of the coast, though not necessarily the cause. The fact that the Greylag Geese fed throughout the island whilst able to fly but fed exclusively on the coast during flightlessness suggests that a predator escape mechanism could be the most important factor constraining the feeding distribution of moulting geese.  相似文献   

11.
The feeding ecology of Greenland white-fronted geese Anser albifrons flavirostris was studied during .spring staging in Iceland 1997. Geese feeding on Poa pratense dominated hayfields (> 80% cover) were highly selective, selecting for Deschampsia caespitosa which comprised only 10% of the sward. Geese fed most on the south-facing fringes of Deschampsia tussocks. Subsequent analysis showed that the southern fringes of Deschampsia tussocks supported significantly greater biomass (27% greater mass of green material) and that leaves growing on the southern faces had significantly higher protein content than those on the northern faces (33.9% vs 30.5%)- It appears that the geese maximise their nutritional intake in spring by selecting the grass species of highest quality and taking the most nutritious parts of the plants.  相似文献   

12.
S. M. PERCIVAL  P. R. EVANS 《Ibis》1997,139(1):121-128
Brent Geese Branta bernicla wintering at Lindisfarne, northeastern England, fed almost exclusively on intertidal habitats. Their main food supply was two species of Eelgrass Zostera noltii and Zostera angustifolia. Although abundant when the birds arrived in September, this Zostera was rapidly depleted during the period October-December. Brent Goose food intake rate declined with the decreasing food supply, and the birds responded by extending the time that they spent feeding. When it was no longer possible to extend the time spent feeding (i.e. they were feeding for all of the time that the food supply was available to them), they moved away from the site. The geese fed extensively at night in order to achieve their daily feeding requirements, especially later in the season. Conversion of daily food intake to energetic intake suggested that there may have been an energetic trigger acting: the geese left the site when they were unable to satisfy their basic energy demand. No evidence was found for direct interference competition between Brent Geese and the other grazer in the system, Wigeon Anas penelope: the two species showed no spatial segregation in their feeding areas at the scale investigated nor any temporal avoidance of each other.  相似文献   

13.
Since 1976, the numbers of Oystercatchers Haematopus ostralegus wintering on the Exeestuary have fluctuated independently of the substantial increase over the same period in the numbers wintering in Britain as a whole. While this might imply that the carrying capacity of the Exe has been reached, closer examination suggests not. Over a sample of the years studied, Oystercatcher numbers on the main Mussel Mytilus edulis feeding areas increased even though the mussel bed quality remained unchanged, food abundance decreased and disturbance on some important beds increased. There was some redistribution of birds between mussel beds, apparently linked to the increased bird numbers and to a relative improvement in the food supply on two preferred mussel beds. The increase in Oystercatcher numbers on the main feeding areas over a period in which the feeding conditions did not improve suggests that carrying capacity was not reached on the mussel beds themselves and, therefore, on the estuary as a whole.  相似文献   

14.
Seasonal changes in the distribution and feeding behaviour of dark-bellied brent geese Branta b. bernicla (L.) and the biomass of their food plants were studied in three successive winters on the Norfolk coast. The data was used, in conjunction with published information, to show how depletion, productivity and mortality of food plants drive the pattern of habitat switching in this species. It is then possible to explain the habitat shifts observed over the last 35 years and predict future changes. On arrival, geese fed first on algal beds and then on salt marsh, grass and arable fields before returning to feed entirely on the salt marsh in spring. The biomass of green algae, and subsequently the salt marsh vegetation, declined during the autumn and this could be attributed to depletion through goose grazing and natural mortality. As depletion occurred the geese fed more intensively, for a greater percentage of time and with an increasing pace rate, the net result, however, was a declining intake rate (as measured by defaecation rate). The algal biomass at which the geese switched from the algal beds to salt marsh was consistent between years, with heavy storm-induced loss of algae in one year resulting in an earlier switch. That the timing of habitat switches may be explained by depletion of food plants was further supported by historical data: the number of brent geese wintering at the site has increased dramatically over the last 30–35 years and the time of switching from algal beds to salt marsh and from salt marsh to salt marsh and fields has become progressively earlier, as expected from the increased depletion. The expected further increase in brent goose numbers will increase the rate of depletion of intertidal vegetation so that the switches between habitats will be more rapid and the geese will move inland earlier and remain inland longer. The expected increase in the brent goose population will thus result in a disproportionate increase in the levels of conflict between brent geese and agriculture.  相似文献   

15.
We studied body mass of prefledging Emperor Geese Chen canagica at three locations across the Yukon–Kuskokwim Delta, Alaska, during 1990–2004 to investigate whether large-scale variation in body mass was related to interspecific competition for food. From 1990 to 2004, densities of Cackling Geese Branta hutchinsii minima more than doubled and were c . 2–5× greater than densities of Emperor Geese, which were relatively constant over time. Body mass of prefledging Emperor Geese was strongly related (negatively) to interspecific densities of geese (combined density of Cackling and Emperor Geese) and positively related to measures of food availability (grazing lawn extent and net above-ground primary productivity (NAPP)). Grazing by geese resulted in consumption of ≥ 90% of the NAPP that occurred in grazing lawns during the brood-rearing period, suggesting that density-dependent interspecific competition was from exploitation of common food resources. Efforts to increase the population size of Emperor Geese would benefit from considering competitive interactions among goose species and with forage plants.  相似文献   

16.
The feeding ecology of barnacle geese and pink-footed geese was studied in Sassendalen, Svalbard during the pre-nesting period (late May) to assess the potential for inter-specific competition. Barnacle geese fed almost exclusively (97%) by grazing above-ground plant material, mostly (79%) along snow edges in moss-mat habitats. Pink-footed geese fed mostly (93%) by excavating below-ground parts of plants, mostly (56%) away from snow and were more evenly distributed between habitat types. Barnacle goose faeces contained mostly (62%) moss, that of pink-footed geese mostly (48%) below-ground plant storage organs (especially Bistorta viviparum L.). Principal components analysis of dropping contents showed no overlap in species diet in allopatry or sympatry. There was little overlap in diet and feeding ecology of the two species at this pre-nesting feeding site. Hence, unless increased goose feeding densities affect future vegetation density and composition, under present circumstances, increasing numbers of either species is unlikely to affect foraging conditions for the other at this important stage in the annual cycle. However, such changes could have local density-dependent intra-specific effects.  相似文献   

17.
Greenland White-fronted Geese wintering in Ireland and Britain stage for 3 weeks in Iceland in spring before migrating onwards to breeding areas in west Greenland. The geese now depart their wintering quarters 12–15 days earlier than in 1973 because they attain necessary fat stores earlier than in previous years. Icelandic temperatures at critical midway staging areas have shown no significant change since 1973, creating a potential mismatch in food availability along the migratory route. Greenland White-fronted Geese have shifted from consuming below-ground plant storage organs in Iceland in spring to grazing managed hayfields created since the 1950s where fresh grass shoot growth occurs despite sub-zero temperatures, when traditional natural foods are physically inaccessible to staging geese due to frozen substrates. Rates of fat accumulation (measured by field scores of abdominal profiles) and mass change (measured in captured geese) were the same in the springs of 1997, 1998 and 1999 as in that of 2007 when the migration episode was 10 days earlier. Hence, earlier arrival in Iceland in 2007 did not occur at cost to refuelling rates there. The shift to acquiring energy from artificial grasslands has enabled Greenland White-fronted Geese to arrive in Iceland earlier, but has apparently not impaired their ability to accumulate fat reserves required for onwards migration, which occurs at the same rate, only earlier in the spring.  相似文献   

18.
Johnny Kahlert 《Ibis》2003,145(1):E45-E52
During the flightless period of wing-moult, terrestrial feeding waterbirds tend to forage close to water. Wing-moulting Greylag Geese Anser anser feeding in a Danish saltmarsh were no exception to this pattern as none fed more than 175 m from the sea. An individual-based stochastic model of goose feeding distribution derived from empirical data showed that requirements for drinking water could not explain the coastal feeding distribution as the model predicted that 57% of all goose observations would be more than 175 m from the sea. The availability of Common Saltmarsh Grass Puccinellia maritima , the preferred food item, could partly explain the exploitation pattern of geese but not the absence of geese from inland feeding areas. Furthermore, the results did not support the hypothesis that geese actively avoided inland feeding areas because of elevated costs from vigilance. The frequency of anti-predator displacement to the sea was the most likely explanation of the feeding pattern. A model that included such displacements predicted that 99% of all geese would feed less than 175 m from the sea. As anti-predator displacement put the most severe constraints on the feeding distribution, predation risk and level of disturbance were suggested to be the overall factors, which determine the choice of moult site in wing-moulting geese.  相似文献   

19.
于2009年4 11月,对西藏夯错的水鸟资源状况进行了调查,旨在了解该地区水鸟资源状况的了解,并为禽流感的防控提供了科学依据。在夯错全年共记录到水鸟26种,隶属于6目10科。夯错也是斑头雁和棕头鸥重要的繁殖地。水鸟春秋季迁徙高峰期在4月份和10月份,这也是水鸟多样性较高的2个月,其主要原因是由于迁徙鸭类数量和种类的增加。卫星跟踪研究表明,在繁殖前期,斑头雁活动区面积较大,主要在夯错及其周围的湿地取食;进入繁殖中期,斑头雁的活动范围减少了许多;繁殖后期,随着幼鸟陆续出壳,父母随即带领幼鸟离开夯错,到其它湿地取食和育雏,因此此期的活动区面积较大。由于夯错面积较小,不能满足斑头雁对食物的需求,因此部分斑头雁选择其它湿地作为主要的取食地,但部分扩散到其它湿地的斑头雁在迁徙前期重新返回夯错,使得该时期斑头雁的数量有呈上升趋势。通过与青海湖水鸟资源状况的比较发现,夯错水鸟种类较少,这可能主要是由于两个湖泊所处地理区划的不同,并由此带来的气候环境的差异,以及植被条件的不同所造成的。这种差异主要是由于夯错海拔较高,紫外线很强,气候干燥,植被单一,栖息地类型多样性较低,因此水鸟的种数也相对较少一些。  相似文献   

20.
The damage-conservation interface illustrated by geese   总被引:2,自引:0,他引:2  
MYRFYN OWEN 《Ibis》1990,132(2):238-252
Changes in legislation, in public attitudes and in shooting practices, both in Britain and overseas, have allowed populations of geese which winter in Britain to increase in numbers. Since 1960 the number of individuals in the seven populations that come into conflict with agriculture has increased almost fivefold.
There are serious conflicts between geese and farmers in some localities, where damage is alleged to growing grass, cereals and high value cash crops. Despite extensive studies over 20 years, it has proved impossible to devise precise and cost-effective methods of assessing the damage caused by geese and to provide a fair and workable system of compensation
Farmers and their representatives are calling for a co-ordinated cull to reduce population sizes substantially. There are, however, a number of political and practical problems in undertaking population control, except perhaps in the feral populations of Greylag Anser anser and Canada Geese Branta canadensis in England.
Proposals are put forward for each species, which take into account the international responsibility of each country to safeguard the populations of migratory birds, and which provide solutions to the local serious problems of farmers. These proposals involve the setting aside of land for geese, either by the creation and management of reserve areas or by making payments to farmers to tolerate the birds on their land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号