首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Surface expression of voltage-dependent K(+) channels (Kv) has a pivotal role in leukocyte physiology. Although little is known about the physiological role of lipid rafts, these microdomains concentrate signaling molecules and their ion channel substrates. Kv1.3 associates with Kv1.5 to form functional channels in macrophages. Different isoform stoichiometries lead to distinct heteromeric channels which may be further modulated by targeting the complex to different membrane surface microdomains. Kv1.3 targets to lipid rafts, whereas Kv1.5 localization is under debate. With this in mind, we wanted to study whether heterotetrameric Kv1.5-containing channels target to lipid rafts. While in transfected HEK-293 cells, homo- and heterotetrameric channels targeted to rafts, Kv1.5 did not target to rafts in macrophages. Therefore, Kv1.3/Kv1.5 hybrid channels are mostly concentrated in non-raft microdomains. However, LPS-induced activation, which increases the Kv1.3/Kv1.5 ratio and caveolin, targeted Kv1.5 back to lipid rafts. Moreover, Kv1.5 did not localize to low-buoyancy fractions in L6E9 skeletal myoblasts, which also coexpress both channels, heart membranes or cardiomyocyes. Coexpression of a Cav3(DGV)-mutant confined Kv1.5 to Cav3(DGV)-vesicles of HEK cells. Contrarily, coexpression of Kvbeta2.1 impaired the Kv1.5 targeting to raft microdomains in HEK cells. Our results indicate that Kv1.5 partnership interactions are underlying mechanisms governing channel targeting to lipid rafts.  相似文献   

2.
Tyrosine phosphorylation evokes functional changes in a variety of ion channels. Modulation of the actin cytoskeleton also affects the function of some channels. Little is known about how these avenues of ion channel regulation may interact. We report that the potassium channel Kv1.2 associates with the actin-binding protein cortactin and that the binding is modulated by tyrosine phosphorylation. Immunocytochemical and biochemical analyses show that Kv1.2 and cortactin co-localize to the cortical actin cytoskeleton at the leading edges of the cell. Binding assays using purified recombinant proteins reveal a 19-amino acid span within the carboxyl terminus of Kv1.2 that is necessary for direct cortactin binding. Phosphorylation of specific tyrosines within the C terminus of Kv1.2 attenuates that binding. In HEK293 cells, activation of the M1 muscarinic acetylcholine receptor evokes tyrosine phosphorylation-dependent suppression of Kv1.2 ionic current. We show that M1 receptor activation also reduces the interaction of cortactin with Kv1.2 and that mutant Kv1.2 channels deficient for cortactin binding exhibit strongly attenuated ionic current. These results demonstrate a dynamic, phosphorylation-dependent interaction between Kv1.2 and the actin cytoskeleton-binding protein cortactin and suggest a role for that interaction in the regulation of Kv1.2 ionic current.  相似文献   

3.
《Biophysical journal》2022,121(5):755-768
Ion channels are well known for their ability to regulate the cell membrane potential. However, many ion channels also have functions that do not involve ion conductance. Kv2 channels are one family of ion channels whose non-conducting functions are central to mammalian cell physiology. Kv2.1 and Kv2.2 channels form stable contact sites between the endoplasmic reticulum and plasma membrane via an interaction with endoplasmic reticulum resident proteins. To perform this structural role, Kv2 channels are expressed at extremely high densities on the plasma membranes of many cell types, including central pyramidal neurons, α-motoneurons, and smooth muscle cells. Research from our lab and others has shown that the majority of these plasma membrane Kv2.1 channels do not conduct potassium in response to depolarization. The mechanism of this channel silencing is unknown but is thought to be dependent on channel density in the membrane. Furthermore, the prevalence of a non-conducting population of Kv2.2 channels has not been directly tested. In this work we make improved measurements of the numbers of conducting and non-conducting Kv2.1 channels expressed in HEK293 cells and expand the investigation of non-conducting channels to three additional Kv α-subunits: Kv2.2, Kv1.4, and Kv1.5. By comparing the numbers of gating and conducting channels in individual HEK293 cells, we found that on average, only 50% of both Kv2.1 and Kv2.2 channels conducted potassium and, as previously suggested, that fraction decreased with increased channel density in the plasma membrane. At the highest spatial densities tested, which are comparable with those found at Kv2 clusters in situ, only 20% of Kv2.1 and Kv2.2 channels conducted potassium. We also show for the first time that Kv1.4 and Kv1.5 exhibit density-dependent silencing, suggesting that this phenomenon has an underlying mechanism that is shared by Kv channels from multiple families.  相似文献   

4.
Voltage-dependent potassium channel trafficking and localization are regulated by proteins of the cytoskeleton, but the mechanisms by which these occur are still unclear. Using human embryonic kidney (HEK) cells as a heterologous expression system, we tested the role of the actin cytoskeleton in modulating the function of Kv4.2 channels. Pretreatment (>or=1 h) of HEK cells with 5 microM cytochalasin D to disrupt the actin microfilaments greatly augmented whole cell Kv4.2 currents at potentials positive to -20 mV. However, no changes in the voltage dependence of activation and inactivation of macroscopic currents were observed to account for this increase. Similarly, single channel recordings failed to reveal any significant changes in the single channel conductance, open probability, and kinetics. However, the mean patch current was increased from 0.9 +/- 0.2 pA in control to 6.7 +/- 3.0 pA in the presence of cytochalasin D. Imaging experiments revealed a clear increase in the surface expression of the channels and the appearance of "bright spot" features, suggesting that large numbers of channels were being grouped at specific sites. Our data provide clear evidence that increased numbers and altered distribution of Kv4.2 channels at the cell surface are primarily the result of reorganization of the actin cytoskeleton.  相似文献   

5.
The interaction between the amino terminus of Kv1-type potassium channels and alpha-actinin-2 has been investigated. Using a combination of yeast two-hybrid analysis and in vitro binding assays, alpha-actinin-2 was found to bind to the N-termini of both Kv1.4 and Kv1.5 but not to the equivalent segments of Kv1.1, Kv1.2 or Kv1.3. Deletion analysis in the in vitro binding assays delineated the actinin binding region of Kv1.5 to between amino acids 73 and 148 of the channel. The Kv1.5 binding sites in alpha-actinin-2 were found to lie within actinin's internal spectrin repeats. Unlike the reported interaction between actinin and the NMDA receptor, calmodulin was found to have no effect on actinin binding to Kv1.5.  相似文献   

6.
We have investigated the interactions of prototypical PDZ domains with both the C- and N-termini of Kv1.5 and other Kv channels. A combination of in vitro binding and yeast two-hybrid assays unexpectedly showed that PDZ domains derived from PSD95 bind both the C- and N-termini of the channels with comparable avidity. From doubly transfected HEK293 cells, Kv1.5 was found to co-immunoprecipitate with the PDZ protein, irrespective of the presence of the canonical C-terminal PDZ-binding motif in Kv1.5. Imaging analysis of the same HEK cell lines demonstrated that co-localization of Kv1.5 with PSD95 at the cell surface is similarly independent of the canonical PDZ-binding motif. Deletion analysis localized the N-terminal PDZ-binding site in Kv1.5 to the T1 region of the channel. Co-expression of PSD95 with Kv1.5 N- and C-terminal deletions in HEK cells had contrasting effects on the magnitudes of the potassium currents across the membranes of these cells. These findings may have important implications for the regulation of channel expression and function by PDZ proteins like PSD95.  相似文献   

7.
Voltage-gated K(+) (Kv) channels regulate membrane potential in many cell types. Although the channel surface density and location must be well controlled, little is known about Kv channel delivery and retrieval on the cell surface. The Kv2.1 channel localizes to micron-sized clusters in neurons and transfected human embryonic kidney (HEK) cells, where it is nonconducting. Because Kv2.1 is postulated to be involved in soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated membrane fusion, we examined the hypothesis that these surface clusters are specialized platforms involved in membrane protein trafficking. Total internal reflection-based fluorescence recovery after photobleaching studies and quantum dot imaging of single Kv2.1 channels revealed that Kv2.1-containing vesicles deliver cargo at the Kv2.1 surface clusters in both transfected HEK cells and hippocampal neurons. More than 85% of cytoplasmic and recycling Kv2.1 channels was delivered to the cell surface at the cluster perimeter in both cell types. At least 85% of recycling Kv1.4, which, unlike Kv2.1, has a homogeneous surface distribution, is also delivered here. Actin depolymerization resulted in Kv2.1 exocytosis at cluster-free surface membrane. These results indicate that one nonconducting function of Kv2.1 is to form microdomains involved in membrane protein trafficking. This study is the first to identify stable cell surface platforms involved in ion channel trafficking.  相似文献   

8.
Protein tyrosine phosphatase epsilon (PTP epsilon) is strongly expressed in the nervous system; however, little is known about its physiological role. We report that mice lacking PTP epsilon exhibit hypomyelination of sciatic nerve axons at an early post-natal age. This occurs together with increased activity of delayed- rectifier, voltage-gated potassium (Kv) channels and with hyperphosphorylation of Kv1.5 and Kv2.1 Kv channel alpha-subunits in sciatic nerve tissue and in primary Schwann cells. PTP epsilon markedly reduces Kv1.5 or Kv2.1 current amplitudes in XENOPUS: oocytes. Kv2.1 associates with a substrate-trapping mutant of PTP epsilon, and PTP epsilon profoundly reduces Src- or Fyn-stimulated Kv2.1 currents and tyrosine phosphorylation in transfected HEK 293 cells. In all, PTP epsilon antagonizes activation of Kv channels by tyrosine kinases in vivo, and affects Schwann cell function during a critical period of Schwann cell growth and myelination.  相似文献   

9.
The localization of ion channels to specific membrane microdomains can impact the functional properties of channels and their role in cellular physiology. We determined the membrane localization of human Kv11.1 (hERG1) alpha-subunit protein, which underlies the rapidly activating, delayed rectifier K(+) current (I(Kr)) in the heart. Immunocytochemistry and membrane fractionation using discontinuous sucrose density gradients of adult canine ventricular tissue showed that Kv11.1 channel protein localized to both the cell surface and T-tubular sarcolemma. Furthermore, density gradient membrane fractionation using detergent (Triton X-100) and non-detergent (OptiPrep) methods from canine ventricular myocytes or HEK293 cells demonstrated that Kv11.1 protein, along with MiRP1 and Kv7.1 (KCNQ1) proteins, localize in cholesterol and sphingolipid enriched membrane fractions. In HEK293 cells, Kv11.1 channels, but not long QT-associated mutant G601S-Kv11.1 channels, also localized to cholesterol and sphingolipid enriched membrane fractions. Depletion of membrane cholesterol from HEK293 cells expressing Kv11.1 channels using methyl-beta-cyclodextrin (MbetaCD) caused a positive shift of the voltage dependence of activation and an acceleration of deactivation kinetics of Kv11.1 current (I(Kv11.1)). Cholesterol loading of HEK293 cells reduced the steep voltage dependence of I(Kv11.1) activation and accelerated the inactivation kinetics of I(Kv11.1). Incubation of neonatal mouse myocytes in MbetaCD also accelerated the deactivation kinetics of I(Kr). We conclude that Kv11.1 protein localizes in cholesterol and sphingolipid enriched membranes and that membrane cholesterol can modulate I(Kv11.1) and I(Kr).  相似文献   

10.
Membrane- associated guanylate kinase proteins (MAGUKs) are important determinants of localization and organization of ion channels into specific plasma membrane domains. However, their exact role in channel function and cardiac excitability is not known. We examined the effect of synapse-associated protein 97 (SAP97), a MAGUK abundantly expressed in the heart, on the function and localization of Kv1.5 subunits in cardiac myocytes. Recombinant SAP97 or Kv1.5 subunits tagged with green fluorescent protein (GFP) were overexpressed in rat neonatal cardiac myocytes and in Chinese hamster ovary (CHO) cells from adenoviral or plasmidic vectors. Immunocytochemistry, fluorescence recovery after photobleaching, and patch-clamp techniques were used to study the effects of SAP97 on the localization, mobility, and function of Kv1.5 subunits. Adenovirus-mediated SAP97 overexpression in cardiac myocytes resulted in the clustering of endogenous Kv1.5 subunits at myocyte-myocyte contacts and an increase in both the maintained component of the outward K(+) current, I(Kur) (5.64 +/- 0.57 pA/pF in SAP97 myocytes vs. 3.23 +/- 0.43 pA/pF in controls) and the number of 4-aminopyridine-sensitive potassium channels in cell-attached membrane patches. In live myocytes, GFP-Kv1.5 subunits were mobile and organized in clusters at the basal plasma membrane, whereas SAP97 overexpression reduced their mobility. In CHO cells, Kv1.5 channels were diffusely distributed throughout the cell body and freely mobile. When coexpressed with SAP97, Kv subunits were organized in plaquelike clusters and poorly mobile. In conclusion, SAP97 regulates the K(+) current in cardiac myocytes by retaining and immobilizing Kv1.5 subunits in the plasma membrane. This new regulatory mechanism may contribute to the targeting of Kv channels in cardiac myocytes.  相似文献   

11.
Kv1.3 activity is determined by raft association. In addition to Kv1.3, leukocytes also express Kv1.5, and both channels control physiological responses. Because the oligomeric composition may modify the channel targeting to the membrane, we investigated heterotetrameric Kv1.3/Kv1.5 channel traffic and targeting in HEK cells. Kv1.3 and Kv1.5 generate multiple heterotetramers with differential surface expression according to the subunit composition. FRET analysis and pharmacology confirm the presence of functional hybrid channels. Raft association was evaluated by cholesterol depletion, caveolae colocalization, and lateral diffusion at the cell surface. Immunoprecipitation showed that both Kv1.3 and heteromeric channels associate with caveolar raft domains. However, homomeric Kv1.3 channels showed higher association with caveolin traffic. Moreover, FRAP analysis revealed higher mobility for hybrid Kv1.3/Kv1.5 than Kv1.3 homotetramers, suggesting that heteromers target to distinct surface microdomains. Studies with lipopolysaccharide-activated macrophages further supported that different physiological mechanisms govern Kv1.3 and Kv1.5 targeting to rafts. Our results implicate the traffic and localization of Kv1.3/Kv1.5 heteromers in the complex regulation of immune system cells.  相似文献   

12.
The intercalated disc serves as an organizing center for various cell surface components at the termini of the cardiomyocyte, thus ensuring proper mechanoelectrical coupling throughout the myocardium. The cell adhesion molecule, N-cadherin, is an essential component of the intercalated disc. Cardiac-specific deletion of N-cadherin leads to abnormal electrical conduction and sudden arrhythmic death in mice. The mechanisms linking the loss of N-cadherin in the heart and spontaneous malignant ventricular arrhythmias are poorly understood. To investigate whether ion channel remodeling contributes to arrhythmogenesis in N-cadherin conditional knock-out (N-cad CKO) mice, cardiac myocyte excitability and voltage-gated potassium channel (Kv), as well as inwardly rectifying K(+) channel remodeling, were investigated in N-cad CKO cardiomyocytes by whole cell patch clamp recordings. Action potential duration was prolonged in N-cad CKO ventricle myocytes compared with wild type. Relative to wild type, I(K,slow) density was significantly reduced consistent with decreased expression of Kv1.5 and Kv accessory protein, Kcne2, in the N-cad CKO myocytes. The decreased Kv1.5/Kcne2 expression correlated with disruption of the actin cytoskeleton and reduced cortactin at the sarcolemma. Biochemical experiments revealed that cortactin co-immunoprecipitates with Kv1.5. Finally, cortactin was required for N-cadherin-mediated enhancement of Kv1.5 channel activity in a heterologous expression system. Our results demonstrate a novel mechanistic link among the cell adhesion molecule, N-cadherin, the actin-binding scaffold protein, cortactin, and Kv channel remodeling in the heart. These data suggest that in addition to gap junction remodeling, aberrant Kv1.5 channel function contributes to the arrhythmogenic phenotype in N-cad CKO mice.  相似文献   

13.
Mutations in one of the ion channels shaping the cardiac action potential can lead to action potential prolongation. However, only in a minority of cardiac arrest cases mutations in the known arrhythmia-related genes can be identified. In two patients with arrhythmia and cardiac arrest, we identified the point mutations P91L and E33V in the KCNA5 gene encoding the Kv1.5 potassium channel that has not previously been associated with arrhythmia. We functionally characterized the mutations in HEK293 cells. The mutated channels behaved similarly to the wild-type with respect to biophysical characteristics and drug sensitivity. Both patients also carried a D85N polymorphism in KCNE1, which was neither found to influence the Kv1.5 nor the Kv7.1 channel activity. We conclude that although the two N-terminal Kv1.5 mutations did not show any apparent electrophysiological phenotype, it is possible that they may influence other cellular mechanisms responsible for proper electrical behaviour of native cardiomyocytes.  相似文献   

14.
Kv1 potassium channels are widely distributed in mammalian tissues and are involved in a variety of functions from controlling the firing rate of neurons to maturation of T-lymphocytes. Here we show that the newly described KCNE4 beta-subunit has a drastic inhibitory effect on currents generated by Kv1.1 and Kv1.3 potassium channels. The inhibition is found on channels expressed heterologously in both Xenopus oocytes and mammalian HEK293 cells. mKCNE4 does not inhibit Kv1.2, Kv1.4, Kv1.5, or Kv4.3 homomeric complexes, but it does significantly reduce current through Kv1.1/Kv1.2 and Kv1.2/Kv1.3 heteromeric complexes. Confocal microscopy and Western blotting reveal that Kv1.1 is present at the cell surface together with KCNE4. Real-time RT-PCR shows a relatively high presence of mKCNE4 mRNA in several organs, including uterus, kidney, lung, intestine, and in embryo, whereas a much lower mRNA level is detected in the heart and in five different parts of the brain. Having the broad distribution of Kv1 channels in mind, the demonstrated inhibitory property of KCNE4-subunits could locally and/or transiently have a dramatic influence on cellular excitability and on setting resting membrane potentials.  相似文献   

15.
Yang XF  Yang Y  Lian YT  Wang ZH  Li XW  Cheng LX  Liu JP  Wang YF  Gao X  Liao YH  Wang M  Zeng QT  Liu K 《PloS one》2012,7(4):e36379
Selective blockade of Kv1.3 channels in effector memory T (T(EM)) cells was validated to ameliorate autoimmune or autoimmune-associated diseases. We generated the antibody directed against one peptide of human Kv1.3 (hKv1.3) extracellular loop as a novel and possible Kv1.3 blocker. One peptide of hKv1.3 extracellular loop E3 containing 14 amino acids (E314) was chosen as an antigenic determinant to generate the E314 antibody. The E314 antibody specifically recognized 63.8KD protein stably expressed in hKv1.3-HEK 293 cell lines, whereas it did not recognize or cross-react to human Kv1.1(hKv1.1), Kv1.2(hKv1.2), Kv1.4(hKv1.4), Kv1.5(hKv1.5), KCa3.1(hKCa3.1), HERG, hKCNQ1/hKCNE1, Nav1.5 and Cav1.2 proteins stably expressed in HEK 293 cell lines or in human atrial or ventricular myocytes by Western blotting analysis and immunostaining detection. By the technique of whole-cell patch clamp, the E314 antibody was shown to have a directly inhibitory effect on hKv1.3 currents expressed in HEK 293 or Jurkat T cells and the inhibition showed a concentration-dependence. However, it exerted no significant difference on hKv1.1, hKv1.2, hKv1.4, hKv1.5, hKCa3.1, HERG, hKCNQ1/hKCNE1, L-type Ca(2+) or voltage-gated Na(+) currents. The present study demonstrates that the antibody targeting the E314 peptide of hKv1.3 pore region could be a novel, potent and specific hKv1.3 blocker without affecting a variety of closely related K(v)1 channels, KCa3.1 channels and functional cardiac ion channels underlying central nervous system (CNS) disorders or drug-acquired arrhythmias, which is required as a safe clinic-promising channel blocker.  相似文献   

16.
The PDZ-LIM family of proteins (Enigma/LMP-1, ENH, ZASP/Cypher, RIL, ALP, and CLP-36) has been suggested to act as adapters that direct LIM-binding proteins to the cytoskeleton. Most interactions of PDZ-LIM proteins with the cytoskeleton have been identified in striated muscle, where several PDZ-LIM proteins are predominantly expressed. By contrast, CLP-36 mRNA is expressed in several nonmuscle tissues, and here we demonstrate high expression of CLP-36 in epithelial cells by in situ hybridization analysis. Our subcellular localization studies indicate that in nonmuscle cells, CLP-36 protein localizes to actin stress fibers. This localization is mediated via the PDZ domain of CLP-36 that associates with the spectrin-like repeats of alpha-actinin. Interestingly, immunoprecipitation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis indicate that both nonmuscle alpha-actinin-1 and alpha-actinin-4 form complexes with CLP-36. The high expression of alpha-actinin-4 in the colon, together with these results, suggests a specific function for the alpha-actinin-4-CLP-36 complex in the colonic epithelium. More generally, results presented here demonstrate that the association of PDZ-LIM proteins with the cytoskeleton extends to the actin stress fibers of nonmuscle cells.  相似文献   

17.
Evidence from both human and murine cardiomyocytes suggests that truncated isoforms of Kv1.5 can be expressed in vivo. Using whole-cell patch-clamp recordings, we have characterized the activation and inactivation properties of Kv1.5DeltaN209, a naturally occurring short form of human Kv1.5 that lacks roughly 75% of the T1 domain. When expressed in HEK 293 cells, this truncated channel exhibited a V(1/2) of -19.5 +/- 0.9 mV for activation and -35.7 +/- 0.7 mV for inactivation, compared with a V(1/2) of -11.2 +/- 0.3 mV for activation and -0.9 +/- 1.6 mV for inactivation in full-length Kv.15. Kv1.5DeltaN209 channels exhibited several features rarely observed in voltage-gated K(+) channels and absent in full-length Kv1.5, including a U-shaped voltage dependence of inactivation and "excessive cumulative inactivation," in which a train of repetitive depolarizations resulted in greater inactivation than a continuous pulse. Kv1.5DeltaN209 also exhibited a stronger voltage dependence to recovery from inactivation, with the time to half-recovery changing e-fold over 30 mV compared with 66 mV in full-length Kv1.5. During trains of human action potential voltage clamps, Kv1.5DeltaN209 showed 30-35% greater accumulated inactivation than full-length Kv1.5. These results can be explained with a model based on an allosteric model of inactivation in Kv2.1 (Klemic, K.G., C.-C. Shieh, G.E. Kirsch, and S.W. Jones. 1998. Biophys. J. 74:1779-1789) in which an absence of the NH(2) terminus results in accelerated inactivation from closed states relative to full-length Kv1.5. We suggest that differential expression of isoforms of Kv1.5 may contribute to K(+) current diversity in human heart and many other tissues.  相似文献   

18.
In an attempt to find podocyte-expressed proteins that may interact with the tight junction protein MAGI-1, we screened a glomerulus-enriched cDNA library with a probe consisting of both WW domains of MAGI-1. One of the isolated clones contained two WW domain-binding motifs and was identified as a portion of the actin-bundling protein synaptopodin. In vitro binding assays confirmed this interaction between MAGI-1 and synaptopodin and identified the second WW domain of MAGI-1 to be responsible for the interaction. MAGI-1 and synaptopodin can also interact in vivo, as they can be immunoprecipitated together from HEK293 cell lysates. Another actin-bundling protein that is found in glomerular podocytes and shown to be mutated in an inheritable form of glomerulosclerosis is alpha-actinin-4. We show that alpha-actinin-4 is also capable of binding to MAGI-1 in in vitro binding assays and that this interaction is mediated by the fifth PDZ domain of MAGI-1 binding to the C terminus of alpha-actinin-4. Exogenously expressed synaptopodin and alpha-actinin-4 were found to colocalize along with endogenous MAGI-1 at the tight junction of Madin-Darby canine kidney cells. The interaction and colocalization of MAGI-1 with two actin-bundling proteins suggest that MAGI-1 may play a role in actin cytoskeleton dynamics within polarized epithelial cells.  相似文献   

19.
The T1 domain is a cytosolic NH2-terminal domain present in all Kv (voltage-dependent potassium) channels, and is highly conserved between Kv channel subfamilies. Our characterization of a truncated form of Kv1.5 (Kv1.5deltaN209) expressed in myocardium demonstrated that deletion of the NH2 terminus of Kv1.5 imparts a U-shaped inactivation-voltage relationship to the channel, and prompted us to investigate the NH2 terminus as a regulatory site for slow inactivation of Kv channels. We examined the macroscopic inactivation properties of several NH2-terminal deletion mutants of Kv1.5 expressed in HEK 293 cells, demonstrating that deletion of residues up to the T1 boundary (Kv1.5deltaN19, Kv1.5deltaN91, and Kv1.5deltaN119) did not alter Kv1.5 inactivation, however, deletion mutants that disrupted the T1 structure consistently exhibited inactivation phenotypes resembling Kv1.5deltaN209. Chimeric constructs between Kv1.5 and the NH2 termini of Kv1.1 and Kv1.3 preserved the inactivation kinetics observed in full-length Kv1.5, again suggesting that the Kv1 T1 domain influences slow inactivation. Furthermore, disruption of intersubunit T1 contacts by mutation of residues Glu(131) and Thr(132) to alanines resulted in channels exhibiting a U-shaped inactivation-voltage relationship. Fusion of the NH2 terminus of Kv2.1 to the transmembrane segments of Kv1.5 imparted a U-shaped inactivation-voltage relationship to Kv1.5, whereas fusion of the NH2 terminus of Kv1.5 to the transmembrane core of Kv2.1 decelerated Kv2.1 inactivation and abolished the U-shaped voltage dependence of inactivation normally observed in Kv2.1. These data suggest that intersubunit T1 domain interactions influence U-type inactivation in Kv1 channels, and suggest a generalized influence of the T1 domain on U-type inactivation between Kv channel subfamilies.  相似文献   

20.
Axonal outgrowth and the formation of the axon initial segment (AIS) are early events in the acquisition of neuronal polarity. The AIS is characterized by a high concentration of voltage-dependent sodium and potassium channels. However, the specific ion channel subunits present and their precise localization in this axonal subdomain vary both during development and among the types of neurons, probably determining their firing characteristics in response to stimulation. Here, we characterize the developmental expression of different subfamilies of voltage-gated potassium channels in the AISs of cultured mouse hippocampal neurons, including subunits Kv1.2, Kv2.2 and Kv7.2. In contrast to the early appearance of voltage-gated sodium channels and the Kv7.2 subunit at the AIS, Kv1.2 and Kv2.2 subunits were tethered at the AIS only after 10 days in vitro. Interestingly, we observed different patterns of Kv1.2 and Kv2.2 subunit expression, with each confined to distinct neuronal populations. The accumulation of Kv1.2 and Kv2.2 subunits at the AIS was dependent on ankyrin G tethering, it was not affected by disruption of the actin cytoskeleton and it was resistant to detergent extraction, as described previously for other AIS proteins. This distribution of potassium channels in the AIS further emphasizes the heterogeneity of this structure in different neuronal populations, as proposed previously, and suggests corresponding differences in action potential regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号