首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
为了建立家蚕Bombyx mori的药物筛选和毒性评价模型, 以剂量为2 000 mg/kg的抗结核模药异烟肼饲喂家蚕5龄第3天幼虫后检测其中肠和脂肪体的抗氧化解毒相关代谢的变化。结果表明: 雌蚕中肠组织中, 总谷胱甘肽(GSH+2GSSG)、 还原型谷胱甘肽(reduced glutathione, GSH)和氧化型谷胱甘肽(oxidized glutathione, GSSG)含量均呈现迅速上升再缓慢下降趋势; 谷胱甘肽S 转移酶(glutathione S-transferase, GST)活性升高到较大值后逐渐降低; GSH/GSSG的比值下降表明, 在72 min后中肠组织向氧化态转移。脂肪体组织中, 总谷胱甘肽、 GSH和GSSG含量变化均呈现迅速下降再迅速上升的趋势; GST活性达到最大值后逐渐降低后趋于平稳; GSH/GSSG比值升高表明, 在72 min后脂肪体组织向还原态转移。无论雌蚕还是雄蚕, 总谷胱甘肽、 GSH和GSSG含量以及GST活性均是脂肪体高于中肠。雌蚕的总谷胱甘肽含量、 GSH和GSSG含量高于雄蚕, 但雄蚕的GST活性高于雌性。结果说明, 摄入异烟肼引起了家蚕幼虫体内谷胱甘肽氧化还原状态的改变和酶活性的变化, 在这个过程中脂肪体起主要解毒代谢作用。  相似文献   

2.
首次从黑曲霉Aspergillus niger全基因组中克隆出黑曲霉硫氧还原蛋白基因AnTrx,并对其编码蛋白的第33-37位保守区的活性位点实施定点突变C34S、C37S及C34S-C37S,获得相应的3个定点突变基因。将野生型AnTrx及其突变子分别在大肠杆菌Escherichia coli中诱导表达,比浊法测定纯化的各表达产物还原牛胰岛素α与β链之间二硫键的活性。结果表明,AnTrx的3个突变体都不表现明显催化活性。当突变型与野生型AnTrx等量混合后,发现突变型AnTrx-C34S可显著提高野生型AnTrx的催化效率,而突变型AnTrx-C37S却无此功能。由此证明,AnTrx活性结构域的第37位Cys残基上的巯基能参与攻击硫氧还蛋白和底物蛋白所形成的二硫键而释放被还原的底物蛋白,而第34位Cys残基同其他微生物的同一活性域一样参与硫氧化还蛋白与底物的结合。这一结果有助于认识真菌硫氧还蛋白第37位活性位点的作用。  相似文献   

3.
虎纹捕鸟蛛毒素-Ⅳ(HWTX-Ⅳ)是从虎纹捕鸟蛛粗毒中分离纯化到的一种新型多肽类神经毒素,能明显抑制表达于大鼠背根神经节细胞的河豚毒素敏感型(TTX-S)钠通道.为了更好地研究该毒素的结构与功能之间的关系,采用芴甲氧羰基(Fmoc)固相多肽化学合成法合成了用谷氨酸(Glu)替代HWTX-Ⅳ第28位苏氨酸残基的突变体T28D-HWTX-Ⅳ,线性多肽合成产物经反相高效液相色谱(HPLC)分离纯化后进行谷胱甘肽氧化复性.复性产物采用基质辅助激光解析飞行时间质谱(MALDI-TOF/TOF MS)技术鉴定分子质量,通过全细胞膜片钳电生理技术测定其电压门控钠通道药理学活性.当第28位Thr残基被Glu取代后,突变体T28D-HWTX-Ⅳ对表达于大鼠DRG细胞膜上的TTX-S钠通道的IC50值约为362 nmol/L,对TTX-S钠通道的抑制活性比天然HWTX-Ⅳ(IC50值=30 nmol/L)下降了约12倍,显示第28位的Thr残基是HWTX-Ⅳ与TTX-S型钠通道相互作用的关键活性残基.目前的研究为进一步探索HWTX-Ⅳ的结构与功能关系及新型镇痛药物的研发奠定了基础.  相似文献   

4.
采用营养液培养方法,研究外源NO对铜胁迫下番茄(Lycopersicon esculentum Mill.)幼苗根系抗坏血酸(AsA)-谷胱甘肽(GSH)循环中抗氧化物质和抗氧化酶系的影响.结果表明:外施适量NO(硝普钠)可提高铜胁迫下番茄幼苗根系AsA、GSH含量和AsA/DHA(氧化型抗坏血酸)、GSH/GSSG(氧化型谷胱甘肽),降低DHA和GSSG含量.添加100 μmol·L-1 BSO(谷胱甘肽合成酶抑制剂)处理下,外源NO可提高铜胁迫下番茄幼苗根系的AsA含量、AsA/DHA及抗坏血酸酶(AAO)、单脱氢抗坏血酸还原酶(MDHAR)和脱氢抗坏血酸还原酶(DHAR)比活性,降低DHA、GSH、GSSG含量及抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)比活性;添加250 μmol·L-1 BSO处理下,外源NO提高了铜胁迫下番茄幼苗根系的AsA、GSH、GSSG含量、AsA/DHA及APX和GR比活性,降低了DHA含量及AAO、DHAR和MDHAR比活性.说明外源NO影响了铜胁迫下番茄根系的AsA-GSH代谢循环,并通过调节AsA/DHA、GSH/GSSG的变化来减轻氧化胁迫,从而缓解铜胁迫对番茄根系的伤害.  相似文献   

5.
樊怀福    郭世荣    段九菊  杜长霞  孙锦 《生态学报》2008,28(6):2511-2511~2517
采用营养液水培,研究了外源一氧化氮(NO)对黄瓜(Cucumis sativus L.)幼苗生长和叶片谷胱甘肽抗氧化酶系统的影响.结果表明,正常生长条件下添加NO能促进黄瓜幼苗生长,而添加NO信号传递途径关键酶鸟苷酸环化酶(cGC)抑制剂亚甲基蓝(MB-1)显著抑制了黄瓜幼苗的生长;添加NO显著缓解了盐胁迫对黄瓜幼苗生长的抑制,提高了叶片谷胱甘肽还原酶(GR)活性、脱氢抗坏血酸还原酶(DHAR)活性、抗坏血酸过氧化物酶(APX)及还原型谷胱甘肽(GSH)、抗坏血酸(ASA)含量,降低了氧化型谷胱甘肽(GSSG)含量,提高了GSH/GSSG,对单脱氢抗坏血酸还原酶(MDAR)活性无显著影响;NaCl胁迫下添加NO的同时添加MB-1抑制了GR活性的提高,GSH和ASA含量、GSH/GSSG均降低,GSSG含量提高,但对MDAR、APX和DHAR活性无显著影响,表明NaCl胁迫下NO对GR活性、GSH和ASA含量、GSH/GSSG的调节可能是通过cGC介导的,对MDAR无明显的调节作用,对DHAR、APX的调节还存在其它途径.  相似文献   

6.
采用营养液培养方法,研究外源NO对铜胁迫下番茄(Lycopersicon esculentum Mill.)幼苗根系抗坏血酸(AsA)-谷胱甘肽(GSH)循环中抗氧化物质和抗氧化酶系的影响.结果表明:外施适量NO(硝普钠)可提高铜胁迫下番茄幼苗根系AsA、GSH含量和AsA/DHA(氧化型抗坏血酸)、GSH/GSSG(氧化型谷胱甘肽),降低DHA和GSSG含量.添加100 μmol·L-1 BSO(谷胱甘肽合成酶抑制剂)处理下,外源NO可提高铜胁迫下番茄幼苗根系的AsA含量、AsA/DHA及抗坏血酸酶(AAO)、单脱氢抗坏血酸还原酶(MDHAR)和脱氢抗坏血酸还原酶(DHAR)比活性,降低DHA、GSH、GSSG含量及抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)比活性;添加250 μmol·L-1 BSO处理下,外源NO提高了铜胁迫下番茄幼苗根系的AsA、GSH、GSSG含量、AsA/DHA及APX和GR比活性,降低了DHA含量及AAO、DHAR和MDHAR比活性.说明外源NO影响了铜胁迫下番茄根系的AsA-GSH代谢循环,并通过调节AsA/DHA、GSH/GSSG的变化来减轻氧化胁迫,从而缓解铜胁迫对番茄根系的伤害.  相似文献   

7.
为进一步阐明大肠杆菌AE 109青霉素G酰化酶(PA,E.C.3.5.1.11)的结构与功能关系,研究了数种修饰剂对酶活性的影响;同时测定了四种作用物存在下对各修饰剂修饰酶的影响。结果表明Ser残基处于酶的活性部位,Met残基可能处于与底物结合的部位,His和Cys残基与酶的活性无关。  相似文献   

8.
虎纹捕鸟蛛毒素Ⅴ是从虎纹捕鸟蛛毒液中分离得到的一种昆虫毒素.它含有35个氨基酸残基,其中6个半胱氨酸形成三对二硫键.首先采用多酶将天然的肽链裂解后,通过MALDI-TOF质谱分析酶解肽段,推断出1对二硫键位于Cys9-Cys21,然后利用改进的部分还原分步测序法,确定虎纹捕鸟蛛毒素Ⅴ的另外2对二硫键的配对方式为Cys2-Cys16和Cys15-Cys28.因此,虎纹捕鸟蛛毒素Ⅴ的3对二硫键分别以Cys2-Cys16,Cys9-Cys21,Cys15-Cys28(即1-4、2-5和3-6)的方式配对.  相似文献   

9.
赵林川  时连根 《昆虫学报》2010,53(12):1333-1338
即时浸酸在阻止家蚕Bombyx mori卵滞育发动的同时, 显著提高了家蚕卵H2O2含量。还原型谷胱甘肽(reduced glutathione, GSH)与氧化型谷胱甘肽(oxidized glutathione, GSSG)的比值是一种氧化胁迫状态的动态指标。为了调查即时浸酸是否造成滞育家蚕卵氧化胁迫, 本研究利用分光光度法分别测定了滞育家蚕卵和5 min即时浸酸滞育家蚕卵中GSH和GSSG含量以及谷胱甘肽转移酶(glutathione-S-transferase, GST)活性。结果表明: 处理后24 h, 即时浸酸处理家蚕卵的总谷胱甘肽(GSH+2GSSG)含量、 GSH含量、 GSSG含量、 GSH/GSSG比值和GST活性分别相当于同期滞育家蚕卵的204%, 78%, 550%, 14%和97%。据此推测, 即时浸酸在阻止滞育发动的同时, 可能通过促进GSH氧化为GSSG, 而显著降低了GSH/GSSG比值, 使家蚕卵处于过氧化状态。  相似文献   

10.
以津春2号黄瓜为材料,采用营养液水培的方法,研究了外源一氧化氮(NO)对黄瓜幼苗生长和根系谷胱甘肽抗氧化酶系统的影响.结果表明,(1)正常生长条件下添加NO能促进黄瓜幼苗生长,而添加亚甲基蓝(MB-1)显著抑制黄瓜幼苗的生长;(2)添加NO显著缓解了NaCl胁迫对黄瓜幼苗生长的抑制,提高根系还原型谷胱甘肽(GSH)含量、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性,而氧化型谷胱甘肽(GSSG)含量略有下降,同时缓解了NaCl胁迫下抗坏血酸(ASA)含量的下降幅度;(3)NaCl胁迫下添加NO的同时添加MB-1可部分解除NO的作用,与NaCl胁迫下单独添加NO处理比较,GR活性、GSH和ASA含量均降低,GSSG含量提高,APX先升高后下降.研究发现,外源NO可能通过鸟苷酸环化酶(cGC)介导来调节NaCl胁迫下黄瓜幼苗根系GR活性和GSH、GSSG、ASA含量,提高抗氧化酶活性和非酶抗氧化物质含量,增强植株对活性氧的清除能力,减少膜脂过氧化,缓解NaCl胁迫对黄瓜幼苗造成的伤害.  相似文献   

11.
Trypanosomatids, the causative agents of several tropical diseases, lack glutathione reductase and thioredoxin reductase but have a trypanothione reductase instead. The main low molecular weight thiols are trypanothione (N(1),N(8)-bis-(glutathionyl)spermidine) and glutathionyl-spermidine, but the parasites also contain free glutathione. To elucidate whether trypanosomes employ S-thiolation for regulatory or protection purposes, six recombinant parasite thiol redox proteins were studied by ESI-MS and MALDI-TOF-MS for their ability to form mixed disulfides with glutathione or glutathionylspermidine. Trypanosoma brucei mono-Cys-glutaredoxin 1 is specifically thiolated at Cys(181). Thiolation of this residue induced formation of an intramolecular disulfide bridge with the putative active site Cys(104). This contrasts with mono-Cys-glutaredoxins from other sources that have been reported to be glutathionylated at the active site cysteine. Both disulfide forms of the T. brucei protein were reduced by tryparedoxin and trypanothione, whereas glutathione cleaved only the protein disulfide. In the glutathione peroxidase-type tryparedoxin peroxidase III of T. brucei, either Cys(47) or Cys(95) became glutathionylated but not both residues in the same protein molecule. T. brucei thioredoxin contains a third cysteine (Cys(68)) in addition to the redox active dithiol/disulfide. Treatment of the reduced protein with GSSG caused glutathionylation of Cys(68), which did not affect its capacity to catalyze reduction of insulin disulfide. Reduced T. brucei tryparedoxin possesses only the redox active Cys(32)-Cys(35) couple, which upon reaction with GSSG formed a disulfide. Also glyoxalase II and Trypanosoma cruzi trypanothione reductase were not sensitive to thiolation at physiological GSSG concentrations.  相似文献   

12.
Thimet oligopeptidase (EP24.15) is a cysteine-rich metallopeptidase containing fifteen Cys residues and no intra-protein disulfide bonds. Previous work on this enzyme revealed that the oxidative oligomerization of EP24.15 is triggered by S-glutathiolation at physiological GSSG levels (10-50 μM) via a mechanism based on thiol-disulfide exchange. In the present work, our aim was to identify EP24.15 Cys residues that are prone to S-glutathiolation and to determine which structural features in the cysteinyl bulk are responsible for the formation of mixed disulfides through the reaction with GSSG and, in this particular case, the Cys residues within EP24.15 that favor either S-glutathiolation or inter-protein thiol-disulfide exchange. These studies were conducted by in silico structural analyses and simulations as well as site-specific mutation. S-glutathiolation was determined by mass spectrometric analyses and western blotting with anti-glutathione antibody. The results indicated that the stabilization of a thiolate sulfhydryl and the solvent accessibility of the cysteines are necessary for S-thiolation. The Solvent Access Surface analysis of the Cys residues prone to glutathione modification showed that the S-glutathiolated Cys residues are located inside pockets where the sulfur atom comes into contact with the solvent and that the positively charged amino acids are directed toward these Cys residues. The simulation of a covalent glutathione docking onto the same Cys residues allowed for perfect glutathione posing. A mutation of the Arg residue 263 that forms a saline bridge to the Cys residue 175 significantly decreased the overall S-glutathiolation and oligomerization of EP24.15. The present results show for the first time the structural requirements for protein S-glutathiolation by GSSG and are consistent with our previous hypothesis that EP24.15 oligomerization is dependent on the electron transfer from specific protonated Cys residues of one molecule to previously S-glutathionylated Cys residues of another one.  相似文献   

13.
The active site cysteine of pig liver thioltransferase was identified as Cys22. The kinetics of the reaction between Cys22 of the reduced enzyme and iodoacetic acid as a function of pH revealed that the active site sulfhydryl group had a pKa of 2.5. Incubation of reduced enzyme with [1-14C]cysteine prevented the inactivation of the enzyme by iodoacetic acid at pH 6.5, and no stable protein-cysteine disulfide was found when the enzyme was separated from excess [1-14C]cysteine, suggesting an intramolecular disulfide formation. The results suggested a reaction mechanism for thioltransferase. The thiolated Cys22 first initiates a nucleophilic attack on a disulfide substrate, resulting in the formation of an unstable mixed disulfide between Cys22 and the substrate. Subsequently, the sulfhydryl group at Cys25 is deprotonated as a result of micro-environmental changes within the active site domain, releasing the mixed disulfide and forming an intramolecular disulfide bond. Reduced glutathione, the second substrate, reduces the intramolecular disulfide forming a transient mixed disulfide which is then further reduced by glutathione to regenerate the reduced enzyme and form oxidized glutathione. The rate-limiting step for a typical reaction between a disulfide and reduced glutathione is proposed to be the reduction of the intramolecular disulfide form of the enzyme by reduced glutathione.  相似文献   

14.
Thioredoxin (Trx) is a protein disulfide reductase that, together with nicotinamide adenine dinucleotide phosphate (NADPH) and thioredoxin reductase (TrxR), controls oxidative stress or redox signaling via thiol redox control. Human cytosolic Trx1 has Cys32 and Cys35 as the active site and three additional cysteine residues (Cys62, Cys69, and Cys73), which by oxidation generates inactive Cys62 to Cys69 two-disulfide Trx. This, combined with TrxR with a broad substrate specificity, complicates assays of mammalian Trx and TrxR. We sought to understand the autoregulation of Trx and TrxR and to generate new methods for quantification of Trx and TrxR. We optimized the synthesis of two fluorescent substrates, di-eosin–glutathione disulfide (Di-E–GSSG) and fluorescein isothiocyanate-labeled insulin (FiTC–insulin), which displayed higher fluorescence on disulfide reduction. Di-E–GSSG showed a very large increase in fluorescence quantum yield but had a relatively low affinity for Trx and was also a weak direct substrate for TrxR, in contrast to GSSG. FiTC–insulin was used to develop highly sensitive assays for TrxR and Trx. Reproducible conditions were developed for reactivation of modified Trx, commonly present in frozen or oxidized samples. Trx in cell extracts and tissue samples, including plasma and serum, were subsequently analyzed, showing highly reproducible results and allowing measurement of trace amounts of Trx.  相似文献   

15.
The determination of the disulfide pairings of SETI-II, a trypsin inhibitor isolated from Sechium edule, is described herein. The inhibitor contains 31 amino acid residues per mol, 6 of which are cysteine. Forty-five nmol (160 microg) of SETI-II was hydrolyzed with 20 microg thermolysin for 48 hr at 45 degrees C, and peptides were separated by reverse phase high performance liquid chromatography (RP-HPLC). The major products were identified by amino acid composition, Edman degradation, and on the basis of the sequence of the inhibitor. The disulfide bridge pairings and (yields) are: Cys1-Cys4 (79%), Cys2-Cys5 (21%) and Cys3-Cys6 (43%). When the reduced inhibitor was reoxidized with glutathione reduced form (GSH)/glutathione oxidized form (GSSG) at pH 8.5 for 3 hr, full activity was recovered. These data show that disulfide bridge pairing and oxidation can be determined at nanomole levels and that sensitive and quantitative Edman degradation can eliminate the final time- and material-consuming step of disulfide determinations by eliminating the need to purify and cleave each peptide containing a disulfide bridge.  相似文献   

16.
Erv2p is a small, dimeric FAD-dependent sulfhydryl oxidase that generates disulfide bonds in the lumen of the endoplasmic reticulum. Mutagenic and structural studies suggest that Erv2p uses an internal thiol-transfer relay between the FAD-proximal active site cysteine pair (Cys121-Cys124) and a second cysteine pair (Cys176-Cys178) located in a flexible, substrate-accessible C-terminal tail of the adjacent dimer subunit. Here, we demonstrate that Cys176 and Cys178 are the only amino acids in the tail region required for disulfide transfer and that their relative positioning within the tail peptide is important for activity. However, intragenic suppressor mutations could be isolated that bypass the requirement for Cys176 and Cys178. These mutants were found to disrupt Erv2p dimerization and to increase the activity of Erv2p for thiol substrates such as glutathione. We propose that the two Erv2p subunits act together to direct the disulfide transfer to specific substrates. One subunit provides the catalytic domain composed of the active site cysteine residues and the FAD cofactor, while the second subunit appears to have two functions: it facilitates disulfide transfer to substrates via the tail cysteine residues, while simultaneously shielding the active site cysteine residues from non-specific reactions.  相似文献   

17.
Regulation of PTP1B via glutathionylation of the active site cysteine 215.   总被引:6,自引:0,他引:6  
The reversible regulation of protein tyrosine phosphatase is an important mechanism in processing signal transduction and regulating cell cycle. Recent reports have shown that the active site cysteine residue, Cys215, can be reversibly oxidized to a cysteine sulfenic derivative (Denu and Tanner, 1998; Lee et al., 1998). We propose an additional modification that has implications for the in vivo regulation of protein tyrosine phosphatase 1B (PTP1B, EC 3.1.3.48): the glutathionylation of Cys215 to a mixed protein disulfide. Treatment of PTP1B with diamide and reduced glutathione or with only glutathione disulfide (GSSG) results in a modification detected by mass spectrometry in which the cysteine residues are oxidized to mixed disulfides with glutathione. The activity is recovered by the addition of dithiothreitol, presumably by reducing the cysteine disulfides. In addition, inactivated PTP1B is reactivated enzymatically by the glutathione-specific dethiolase enzyme thioltransferase (glutaredoxin), indicating that the inactivated form of the phosphatase is a glutathionyl mixed disulfide. The cysteine sulfenic derivative can easily oxidize to its irreversible sulfinic and sulfonic forms and hinder the regulatory efficiency if it is not converted to a more stable and reversible end product such as a glutathionyl derivative. Glutathionylation of the cysteine sulfenic derivative will prevent the enzyme from further oxidation to its irreversible forms, and constitutes an efficient regulatory mechanism.  相似文献   

18.
Glutathione reductase from rat liver has been purified greater than 5000-fold in a yield of 20%. The molecular weights of the enzyme and its subunits were estimated to be 125,000 and 60,000, respectively, indicating that the native enzyme is a dimer. The enzyme molecular contains 2 FAD molecules, which are reducible by NADPH, GSH or dithioerythritol. The reduced flavin is instantaneously reoxidized by addition of GSSG. The steady state kinetic data are consistent with a branching reaction mechanism previously proposed for glutathione reductase from yeast (MANNERVIK, B. (1973) Biochem. Biophy. Res. Commun. 53, 1151-1158). This mechanism is also favored by the nonlinear inhibition pattern produced by NADP-+. However, at low GSSG concentrations the rate equation can be approximated by that of a simple ping pong mechanism. NADPH and the mixed disulfide of coenzyme A and GSH were about 10% as active as NADPH and GSSG, respectively, whereas some sulfenyl derivatives related to GSSG were less active as substrates. The pH activity profiles of these substrates differed from that of the NADPH-GSSG substrate pair.  相似文献   

19.
Arscott LD  Veine DM  Williams CH 《Biochemistry》2000,39(16):4711-4721
Glutathione reductase catalyzes the reduction of glutathione disulfide by NADPH. The FAD of the reductase is reduced by NADPH, and reducing equivalents are passed to a redox-active disulfide to complete the first half-reaction. The nascent dithiol of two-electron reduced enzyme (EH(2)) interchanges with glutathione disulfide forming two molecules of glutathione in the second half-reaction. It has long been assumed that a mixed disulfide (MDS) between one of the nascent thiols and glutathione is an intermediate in this reaction. In addition to the nascent dithiol composed of Cys(45) and Cys(50), the enzyme contains an acid catalyst, His(456), having a pK(a) of 9.2 that protonates the first glutathione (residue numbers refer to the yeast enzyme sequence). Reduction of yeast glutathione reductase by glutathione and reoxidation of EH(2) by glutathione disulfide indicate that the mixed disulfide accumulates, in particular, at low pH. The reaction of glutathione disulfide with EH(2) is stoichiometric in the absence of an excess of glutathione. The equilibrium position among E(ox), MDS, and EH(2) is determined by the glutathione concentration and is not markedly influenced by pH between 6.2 and 8.5. The mixed disulfide is the principal product in the reaction of glutathione with oxidized enzyme (E(ox)) at pH 6. 2. Its spectrum can be distinguished from that of EH(2) by a slightly lower thiolate (Cys(50))-FAD charge-transfer absorbance at 540 nm. The high GSH/GSSG ratio in the cytoplasm dictates that the mixed disulfide will be the major enzyme species.  相似文献   

20.
Urig S  Lieske J  Fritz-Wolf K  Irmler A  Becker K 《FEBS letters》2006,580(15):3595-3600
The substrate spectrum of human thioredoxin reductase (hTrxR) is attributed to its C-terminal extension of 16 amino acids carrying a selenocysteine residue. The concept of an evolutionary link between thioredoxin reductase and glutathione reductase (GR) is presently discussed and supported by the fact that almost all residues at catalytic and substrate recognition sites are identical. Here, we addressed the question if a deletion of the C-terminal part of TrxR leads to recognition of glutathione disulfide (GSSG), the substrate of GR. We introduced mutations at the putative substrate binding site to enhance GSSG binding and turnover. However, none of these enzyme species accepted GSSG as substrate better than the full length cysteine mutant of TrxR, excluding a role of the C-terminal extension in preventing GSSG binding. Furthermore, we show that GSSG binding at the N-terminal active site of TrxR is electrostatically disfavoured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号