首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Siglecs, an immunoglobulin-like lectin family that recognizes the sialic acid moiety, regulate various aspects of immune responses. In the present study, we investigated the effects of Siglecs on the macrophage cell line RAW264, which was stimulated with interleukin-4 (IL-4). The induction of arginase-1 (Arg1) by IL-4 was stronger in Siglec-9-expressing cells than in mock cells. Mutations in the cytoplasmic tyrosine-based inhibitory motifs in Siglec-9 markedly reduced the expression of Arg1. The phosphorylation of Akt by IL-4 and extracellular signal-regulated kinase (ERK) without IL-4 was stronger in Siglec-9-expressing cells, indicating the enhanced activation of the phosphatidylinositol 3 kinase (PI-3K) and mitogen-activated protein kinase kinase (MEK)/ERK pathways, respectively. The enhanced expression of Arg1 was inhibited by MEK inhibitors, but not by PI-3K inhibitor. These results indicate that Siglec-9 affects several different signaling pathways in IL-4-stimulated macrophages, which resulted in enhanced induction of Arg1 in Siglec-9-expressing RAW264 cells.  相似文献   

4.
Siglecs are immunoglobulin lectin group proteins that recognize the sialic acid moiety. We previously reported that the expression of Siglec-9 on the macrophage cell line RAW264 markedly enhanced Toll-like receptor (TLR)-induced interleukin (IL)-10 production and inhibited the production of proinflammatory cytokines. In this study, we examined the lectin-dependent anti-inflammatory activities of Siglec-9. IL-10 production was modestly reduced by a mutation that disrupted the lectin activity of Siglec-9, while the reduction in tumor necrosis factor-α was not affected. Membrane fractionation experiments revealed that a part of Siglec-9 resided in the detergent-insoluble microdomain, the so-called lipid raft fraction. The amount of Siglec-9 in the lipid raft fraction rapidly increased following TLR2 stimulation by peptidoglycan and peaked after 3–10 min. This time course was similar to that of TLR2. The double tyrosine mutant in immunoreceptor tyrosine-based inhibitory motifs moved to lipid rafts in a similar manner, while lectin-defective Siglec-9 was not detected in the lipid raft fraction. The production of IL-10 was partially reduced by cholesterol oxidase that disturbed lipid raft organization. Taken together, these results suggest that Siglecs exhibit lectin-dependent changes in cellular localization, which may be partly linked to its control mechanism that increases the production of IL-10.  相似文献   

5.
We examined whether Siglec-9 modulates cytokine production in the macrophage cell line RAW264. Cells expressing Siglec-9 produced low levels of tumor necrosis factor (TNF)-α upon stimulation with lipopolysaccharide, peptidoglycan, unmethylated CpG DNA, and double-stranded RNA. On the other hand, interleukin (IL)-10 production was strongly enhanced in Siglec-9-expressing cells. Similar activities were also exhibited by Siglec-5. However, the up-regulation of IL-10 as well as the down-regulation of TNF-α was abrogated when two tyrosine residues in the cytoplasmic tail of Siglec-9 were mutated to phenylalanine. A membrane proximal ITIM mutant of Siglec-9 did not enhance IL-10 production but partly inhibited TNF-α production, indicating diverse regulation mechanisms of TNF-α and IL-10. Siglec-9 also enhanced the production of IL-10 in the human macrophage cell line THP-1. These results demonstrate that Siglec-9 enhances the production of the anti-inflammatory cytokine IL-10 in macrophages.  相似文献   

6.
Because MUC1 carries a variety of sialoglycans that are possibly recognized by the siglec family, we examined MUC1-binding siglecs and found that Siglec-9 prominently bound to MUC1. An immunochemical study showed that Siglec-9-positive immune cells were associated with MUC1-positive cells in human colon, pancreas, and breast tumor tissues. We investigated whether or not this interaction has any functional implications for MUC1-expressing cells. When mouse 3T3 fibroblast cells and a human colon cancer cell line, HCT116, stably transfected with MUC1cDNA were ligated with recombinant soluble Siglec-9, β-catenin was recruited to the MUC1 C-terminal domain, which was enhanced on stimulation with soluble Siglec-9 in dose- and time-dependent manners. A co-culture model of MUC1-expressing cells and Siglec-9-expressing cells mimicking the interaction between MUC1-expressing malignant cells, and Siglec-9-expressing immune cells in a tumor microenvironment was designed. Brief co-incubation of Siglec-9-expressing HEK293 cells, but not mock HEK293 cells, with MUC1-expressing cells similarly enhanced the recruitment of β-catenin to the MUC1 C-terminal domain. In addition, treatment of MUC1-expressing cells with neuraminidase almost completely abolished the effect of Siglec-9 on MUC1-mediated signaling. The recruited β-catenin was thereafter transported to the nucleus, leading to cell growth. These findings suggest that Siglec-9 expressed on immune cells may play a role as a potential counterreceptor for MUC1 and that this signaling may be another MUC1-mediated pathway and function in parallel with a growth factor-dependent pathway.  相似文献   

7.
8.
9.
10.

Introduction

The present study assessed the potential functions of interleukin (IL)-32α on inflammatory arthritis and endotoxin shock models using IL-32α transgenic (Tg) mice. The potential signaling pathway for the IL-32-tumor necrosis factor (TNF)α axis was analyzed in vitro.

Methods

IL-32α Tg mice were generated under control of a ubiquitous promoter. Two disease models were used to examine in vivo effects of overexpressed IL-32α: Toll-like receptor (TLR) ligand-induced arthritis developed using a single injection of lipopolysaccharide (LPS) or zymosan into the knee joints; and endotoxin shock induced with intraperitoneal injection of LPS and D-galactosamine. TNFα antagonist etanercept was administered simultaneously with LPS in some mice. Using RAW264.7 cells, in vitro effects of exogenous IL-32α on TNFα, IL-6 or macrophage inflammatory protein 2 (MIP-2) production were assessed with or without inhibitors for nuclear factor kappa B (NFκB) or mitogen-activated protein kinase (MAPK).

Results

Single injection of LPS, but not zymosan, resulted in development of severe synovitis with substantial articular cartilage degradation in knees of the Tg mice. The expression of TNFα mRNA in inflamed synovia was highly upregulated in the LPS-injected Tg mice. Moreover, the Tg mice were more susceptive to endotoxin-induced lethality than the wild-type control mice 48 hours after LPS challenge; but blockade of TNFα by etanercept protected from endotoxin lethality. In cultured bone marrow cells derived from the Tg mice, overexpressed IL-32α accelerated production of TNFα upon stimulation with LPS. Of note, exogenously added IL-32α alone stimulated RAW264.7 cells to express TNFα, IL-6, and MIP-2 mRNAs. Particularly, IL-32α -induced TNFα, but not IL-6 or MIP-2, was inhibited by dehydroxymethylepoxyquinomicin (DHMEQ) and U0126, which are specific inhibitors of nuclear factor kappa B (NFκB) and extracellular signal regulated kinase1/2 (ERK1/2), respectively.

Conclusions

These results show that IL-32α contributed to the development of inflammatory arthritis and endotoxin lethality. Stimulation of TLR signaling with LPS appeared indispensable for activating the IL-32α-TNFα axis in vivo. However, IL-32α alone induced TNFα production in RAW264.7 cells through phosphorylation of inhibitor kappa B (IκB) and ERK1/2 MAPK. Further studies on the potential involvement of IL-32α-TNFα axis will be beneficial in better understanding the pathology of autoimmune-related arthritis and infectious immunity.  相似文献   

11.
12.
13.
Serum amyloid A (SAA) reduces fat deposition in adipocytes and hepatoma cells. Human SAA1 mRNA is increased by docosahexaenoic acid (DHA) treatment in human cells. These studies asked whether DHA decreases fat deposition through SAA1 and explored the mechanisms involved. We demonstrated that DHA increased human SAA1 and C/EBPβ mRNA expression in human hepatoma cells, SK-HEP-1. Utilizing a promoter deletion assay, we found that a CCAAT/enhancer-binding protein β (C/EBPβ)-binding site in the SAA1 promoter region between −242 and −102 bp was critical for DHA-mediated SAA1 expression. Mutation of the putative C/EBPβ-binding site suppressed the DHA-induced SAA1 promoter activity. The addition of the protein kinase A inhibitor H89 negated the DHA-induced increase in C/EBPβ protein expression. The up-regulation of SAA1 mRNA and protein by DHA was also inhibited by H89. We also demonstrated that DHA increased protein kinase A (PKA) activities. These data suggest that C/EBPβ is involved in the DHA-regulated increase in SAA1 expression via PKA-dependent mechanisms. Furthermore, the suppressive effect of DHA on triacylglycerol accumulation was abolished by H89 in SK-HEP-1 cells and adipocytes, indicating that DHA also reduces lipid accumulation via PKA. The observation of increased SAA1 expression coupled with reduced fat accumulation mediated by DHA via PKA suggests that SAA1 is involved in DHA-induced triacylglycerol breakdown. These findings provide new insights into the complicated regulatory network in DHA-mediated lipid metabolism and are useful in developing new approaches to reduce body fat deposition and fatty liver.  相似文献   

14.
15.
Oida T  Weiner HL 《PloS one》2010,5(11):e15523

Background

It has been reported that human FOXP3+ CD4 Tregs express GARP-anchored surface latency-associated peptide (LAP) after activation, based on the use of an anti-human LAP mAb. Murine CD4 Foxp3+ Tregs have also been reported to express surface LAP, but these studies have been hampered by the lack of suitable anti-mouse LAP mAbs.

Methodology/Principal Findings

We generated anti-mouse LAP mAbs by immunizing TGF-β−/− animals with a mouse Tgfb1-transduced P3U1 cell line. Using these antibodies, we demonstrated that murine Foxp3+ CD4 Tregs express LAP on their surface. In addition, retroviral transduction of Foxp3 into mouse CD4+CD25 T cells induced surface LAP expression. We then examined surface LAP expression after treating CD4+CD25 T cells with TGF-β and found that TGF-β induced surface LAP not only on T cells that became Foxp3+ but also on T cells that remained Foxp3 after TGF-β treatment. GARP expression correlated with the surface LAP expression, suggesting that surface LAP is GARP-anchored also in murine T cells.

Conclusions/Significance

Unlike human CD4 T cells, surface LAP expression on mouse CD4 T cells is controlled by Foxp3 and TGF-β. Our newly described anti-mouse LAP mAbs will provide a useful tool for the investigation and functional analysis of T cells that express LAP on their surface.  相似文献   

16.
17.
Wang Y  Sun DQ  Liu DG 《PloS one》2011,6(1):e16543

Background

Since the end of last century, RNAs from the 3′untranslated region (3′UTR) of several eukaryotic mRNAs have been found to exert tumor suppression activity when introduced into malignant cells independent of their whole mRNAs. In this study, we sought to determine the molecular mechanism of the tumor suppression activity of a short RNA from 3′UTR of C/EBPβ mRΝΑ (C/EBPβ 3′UTR RNA) in human hepatocarcinoma cells SMMC-7721.

Methodology/Principal Findings

By using Western blotting, immunocytochemistry, molecular beacon, confocal microscopy, protein kinase inhibitors and in vitro kinase assays, we found that, in the C/EBPβ 3′UTR-transfectant cells of SMMC-7721, the overexpressed C/EBPβ 3′UTR RNA induced reorganization of keratin 18 by binding to this keratin; that the C/EBPβ 3′UTR RNA also reduced phosphorylation and expression of keratin 18; and that the enzyme responsible for phosphorylating keratin 18 is protein kinase Cε. We then found that the C/EBPβ 3′UTR RNA directly inhibited the phosphorylating activity of protein kinase Cε; and that C/EBPβ 3′UTR RNA specifically bound with the protein kinase Cε-keratin 18 conjugate.

Conclusion/Significance

Together, these facts suggest that the tumor suppression in SMMC-7721 by C/EBPβ 3′UTR RNA is due to the inhibition of protein kinase Cε activity through direct physical interaction between C/EBPβ 3′UTR RNA and protein kinase Cε. These facts indicate that the 3′UTR of some eukaryotic mRNAs may function as regulators for genes other than their own.  相似文献   

18.
19.
LPS-activated neutrophils secrete IL-1β by activation of TLR-4. Based on studies in macrophages, it is likely that ROS and lysosomal destabilization regulated by Syk activation may also be involved. Since neutrophils have abundant expression of the ITIM-containing co-receptor CEACAM1 and Gram-negative bacteria such as Neisseria utilize CEACAM1 as a receptor that inhibits inflammation, we hypothesized that the overall production of IL-1β in LPS treated neutrophils may be negatively regulated by CEACAM1. We found that LPS treated neutrophils induced phosphorylation of Syk resulting in the formation of a complex including TLR4, p-Syk, and p-CEACAM1, which in turn, recruited the inhibitory phosphatase SHP-1. LPS treatment leads to ROS production, lysosomal damage, caspase-1 activation and IL-1β secretion in neutrophils. The absence of this regulation in Ceacam1−/− neutrophils led to hyper production of IL-1β in response to LPS. The hyper production of IL-1β was abrogated by in vivo reconstitution of wild type but not ITIM-mutated CEACAM1 bone marrow stem cells. Blocking Syk activation by kinase inhibitors or RNAi reduced Syk phosphorylation, lysosomal destabilization, ROS production, and caspase-1 activation in Ceacam1−/− neutrophils. We conclude that LPS treatment of neutrophils triggers formation of a complex of TLR4 with pSyk and pCEACAM1, which upon recruitment of SHP-1 to the ITIMs of pCEACAM1, inhibits IL-1β production by the inflammasome. Thus, CEACAM1 fine-tunes IL-1β production in LPS treated neutrophils, explaining why the additional utilization of CEACAM1 as a pathogen receptor would further inhibit inflammation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号