首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We have previously shown that SNU-1103, which is a latency type III Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line (LCL) that was developed from a Korean cancer patient, resists serum starvation-induced G(1) arrest. In this study, we examined the role of latent membrane protein-1 (LMP-1) in serum starvation resistance, since LMP-1 is known to be essential for EBV-mediated immortalization of human B lymphocytes. The LMP-1 gene from SNU-1103 was introduced into the EBV-negative BJAB cell line, and shown to be associated with resistance to G(1) arrest during serum starvation. Western blot analyses of the LMP-1-transfected cells revealed several protein alterations as compared to vector-transfected control cells. The expression of key cell-cycle regulatory proteins was affected in the G(1) phase: the expression of cyclin D3, CDK2, p27, and E2F-4 was up-regulated, and the expression of cyclin D2, CDK6, p21, and p103 was down-regulated during serum starvation. These results imply that of the several EBV viral genes expressed in EBV-negative B lymphoma cells, LMP-1 mediates resistance to serum starvation-induced G(1) arrest. However, we cannot rule out the possibility that other EBV genes are also involved in the cell-cycle progression of the EBV-transformed LCL during serum starvation, since the altered protein expression profile of the LMP-1 transfectants was distinct from that of the SNU-1103 cells that expressed all of the EBV viral proteins.  相似文献   

3.
Xu J  Ahmad A  Menezes J 《Journal of virology》2002,76(8):4080-4086
The Epstein-Barr virus (EBV)-encoded latent membrane protein-1 (LMP-1) is thought to play a role in the EBV-induced B-cell transformation and immortalization. EBV has also been implicated in certain human T-cell lymphomas; however, the phenotypic effects of the expression of this oncoprotein in T cells are not known. To learn whether LMP-1 also induces phenotypic changes in T cells, we stably expressed it in human cell lines of T and B lineages and 25 LMP-1-expressing T-cell clones and 7 B-cell clones were examined. Our results show for the first time that, in sharp contrast to B cells, LMP-1 preferentially localizes to nuclei in T cells and does not induce the phenotypic changes in these cells that it induces in B cells, does not associate with TRAF proteins, and does not arrest the cell cycle in the G2/M phase. A computer-assisted analysis revealed that LMP-1 lacks the canonical nuclear localization signal. Our results suggest that this oncoprotein may not play the same role in the lymphomagenesis of T cells as it does in B cells.  相似文献   

4.
LIM mineralization protein 1 (LMP-1) is an essential positive regulator of osteoblast differentiation, maturation and bone formation. Our previous investigations on the distribution of LMP-1 in mature human teeth indicated that LMP-1 might play a role in the odontoblast differentiation and dentin matrix mineralization. The aim of the present study was to use immunohistochemistry to determine the expression of LMP-1 during tooth development in mouse molars. In embryonic and postnatal Kunming mice, LMP-1 protein was expressed during molar development, but the expression levels and patterns differed at various developmental stages. At embryonic day 13.5 (E13.5), LMP-1 was found in the enamel organ. At E14.5, LMP-1 was detected in the entire enamel organ and in the underlying mesenchyme. At E16.5, LMP-1 was observed in the inner and outer enamel epithelium and the stratum intermedium. The expression also converged at the cusps in the dental papilla. At E18.5 and postnatal day 2.5 (P2.5), LMP-1 was restricted to the stratum intermedium, in differentiating dental papilla cells at cusps, while it disappeared in terminal differentiated ameloblasts and odontoblasts. At P13.5, no positive staining was detected in the odontoblasts or in the dental pulp cells. Therefore, LMP-1 showed spatiotemporal expression patterns during molar development and might participate in molar crown morphogenesis and odontoblast differentiation at late molar development.  相似文献   

5.
Insulin-like growth factor binding protein (IGFBP)-6 has been reported to inhibit differentiation of myoblasts and osteoblasts. In the current study, we explored the mechanisms underlying IGFBP-6 effects on osteoblast differentiation. During MC3T3-E1 osteoblast differentiation, we found that IGFBP-6 protein was down-regulated. Overexpression of IGFBP-6 in MC3T3-E1 and human bone cells inhibited nodule formation, osteocalcin mRNA expression and ALP activity. Furthermore, accumulation of IGFBP-6 in the culture media was not required for any of these effects suggesting that IGFBP-6 suppressed osteoblast differentiation by an intracellular mechanism. A yeast two-hybrid screen of an osteosarcoma library was conducted to identify intracellular binding partners to account for IGFBP-6 inhibitory effects on osteoblast differentiation. LIM mineralizing protein (LMP-1) was identified as a high affinity IGFBP-6 binding partner. Physical interaction between IGFBP-6 and LMP-1 was confirmed by co-immunoprecipitation. Fluorescent protein fusion constructs for LMP-1 and IGFBP-6 were transiently transfected into osteoblasts to provide evidence of subcellular locations for each protein. Coexpression of LMP-1-GFP and IGFBP-6-RFP resulted in overlapping subcellular localization of LMP-1 and IGFBP-6. To determine if there was a functional association of IGFBP-6 and LMP-1 as well as a physical association, we studied the effect of IGFBP-6, LMP-1 and their combination on type I procollagen promoter activity. LMP-1 increased promoter activity while IGFBP-6 reduced promoter activity, and coexpression of LMP-1 with IGFBP-6 abrogated IGFBP-6 suppression. These studies provide evidence that overexpression of IGFBP-6 suppresses human and murine osteoblast differentiation, that IGFBP-6 and LMP-1 physically interact, and supports the conclusion that this interaction may be functionally relevant.  相似文献   

6.
Epstein-Barr virus (EBV) latency has been associated with a variety of human cancers. Latent membrane protein 1 (LMP-1) is one of the key viral proteins required for transformation of primary B cells in vitro and establishment of EBV latency. We have previously shown that LMP-1 induces the expression of several interferon (IFN)-stimulated genes and has antiviral effect (Zhang, J., Das, S. C., Kotalik, C., Pattnaik, A. K., and Zhang, L. (2004) J. Biol. Chem. 279, 46335-46342). In this report, a novel mechanism related to the antiviral effect of LMP-1 is identified. We show that EBV type III latency cells, in which LMP-1 is expressed, are primed to produce robust levels of endogenous IFNs upon infection of Sendai virus. The priming action is due to the expression of LMP-1 but not EBV nuclear antigen 2 (EBNA-2). The signaling events from the C-terminal activator regions of LMP-1 are essential to prime cells for high IFN production. LMP-1-mediated activation of NF-kappaB is apparently necessary and sufficient for LMP-1-mediated priming effect in DG75 cells, a human B cell line. IFN regulatory factor 7 (IRF-7) that can be activated by LMP-1 is also implicated in the priming action. Taken together, these data strongly suggest that LMP-1 may prime EBV latency cells for IFN production and that the antiviral property of LMP-1 may be an intrinsic part of EBV latency program, which may assist the establishment and/or maintenance of viral latency.  相似文献   

7.
Bone marrow mesenchymal stem cells (MSCs) can differentiate into different types of cells and have tremendous potential for cell therapy and tissue engineering. Transforming growth factor beta1 (TGF-beta) plays an important role in cell differentiation and vascular remodeling. We showed that TGF-beta induced cell morphology change and an increase in actin fibers in MSCs. To determine the global effects of TGF-beta on MSCs, we employed a proteomic strategy to analyze the effect of TGF-beta on the human MSC proteome. By using two-dimensional gel electrophoresis and electrospray ionization coupled to quadrupole/time-of-flight tandem mass spectrometers, we have generated a proteome reference map of MSCs, and we identified approximately 30 proteins with an increase or decrease in expression or phosphorylation in response to TGF-beta. The proteins regulated by TGF-beta included cytoskeletal proteins, matrix synthesis proteins, membrane proteins, metabolic enzymes, etc. TGF-beta increased the expression of smooth muscle alpha-actin and decreased the expression of gelsolin. Overexpression of gelsolin inhibited TGF-beta-induced assembly of smooth muscle alpha-actin; on the other hand, knocking down gelsolin expression enhanced the assembly of alpha-actin and actin filaments without significantly affecting alpha-actin expression. These results suggest that TGF-beta coordinates the increase of alpha-actin and the decrease of gelsolin to promote MSC differentiation. This study demonstrates that proteomic tools are valuable in studying stem cell differentiation and elucidating the underlying molecular mechanisms.  相似文献   

8.
9.
Transporter associated with antigen processing 2 (Tap-2) is responsible for ATP-dependent transport of peptides from the cytosol to the endoplasmic reticulum, where peptides bind to newly synthesized human leukocyte antigen (HLA) class I molecules, which are essential for cellular immune responses. Epstein-Barr virus (EBV) latent membrane protein 1 (LMP-1) has been shown to induce the expression of Tap-2. In this study, the induction of endogenous Tap-2 by LMP-1 is shown to be associated with and requires the expression of interferon regulatory factor 7 (IRF-7). In DG75 Burkitt's lymphoma (BL) cells, in which LMP-1 induces the expression of IRF-7, LMP-1 induced endogenous Tap-2, and ectopic expression of IRF-7 could enhance the induction. In Akata BL cells, in which LMP-1 could not induce IRF-7, LMP-1 could not induce Tap-2. Addition of IRF-7, which complements the defect in Akata cells, could stimulate the expression of Tap-2. Furthermore, LMP-1 and IRF-7A but not other IRF-7 splicing variants could activate endogenous Tap-2. A Tap-2 promoter reporter construct could be activated by the overexpression of IRF-7A. The activation could be specifically enhanced by LMP-1 and was dependent on an intact interferon-stimulated response element (ISRE) present in the Tap-2 promoter. Also, IRF-7 can bind to the Tap-2 promoter under physiological conditions in vivo, as shown by formaldehyde cross-linking, as well as to the Tap-2 ISRE in vitro, as shown by gel mobility shift assays. Furthermore, LMP-1 facilitates the phosphorylation and nuclear translocation of IRF-7. These data point to the role of IRF-7 as a secondary mediator of LMP-1-activated signal transduction for Tap-2 as follows: LMP-1 stimulates the expression of IRF-7 and facilitates its phosphorylation and nuclear translocation, and then the activated IRF-7 mediates the activation of the cellular Tap-2 gene. The induction of Tap-2 by IRF-7 and LMP-1 may have an important implication for the immune response to EBV and its persistence in vivo.  相似文献   

10.
It has been known for some time that functional properties of dendritic cells (DC), and in particular their ability to process and present Ags to T cells, can be modulated by cytokine-induced maturation and by interactions with tumor cells. However, the molecular basis for these functional changes is unknown. We have investigated whether changes in expression of Ag-processing machinery (APM) components in DC are associated with alterations in their ability to present tumor-derived Ags to T cells. Using a panel of mAbs specific for individual APM components and a quantitative flow cytometry-based method, the level of APM components was measured in DC generated from peripheral blood monocytes of 12 normal donors and of 8 patients with cancer. Immature DC had significantly lower (p < 0.01) expression of MB1, LMP-7, LMP-10, TAP-1, and tapasin than mature DC. However, maturation in the presence of a cytokine mixture up-regulated expression of these components in DC obtained from normal donors and patients with cancer. Immature DC incubated with tumor cells had significantly lower (p < 0.001) expression of MB1, LMP-2, LMP-7, LMP-10, and endoplasmic reticulum p75 than controls. These changes were associated with a decreased ability of DC to present tumor-derived Ags to T cells, as measured in ELISPOT assays and with apoptosis of T cells in DC-T cell cultures. Thus, tumor cells have a significant suppressive effect on DC; however, ex vivo maturation of DC derived from patients with cancer in a polarizing cytokine mix restores normal expression of APM components and Ag-processing capabilities.  相似文献   

11.
The BNLF-1 open reading frame of Epstein-Barr virus (EBV) encodes two related proteins, latent membrane protein-1 (LMP-1) and lytic LMP-1 (lyLMP-1). LMP-1 is a latent protein required for immortalization of human B cells by EBV, whereas lyLMP-1 is expressed during the lytic cycle and is found in the EBV virion. We show here that, in contrast to LMP-1, lyLMP-1 is stable, with a half-life of >20 h in tetradecanoyl phorbol acetate- and butyrate-treated B95-8 cells. Although lyLMP-1 itself has negligible effects on NF-kappaB activity, it inhibits NF-kappaB activation by LMP-1 in a dose-dependent manner. The lyLMP-1 protein does not oligomerize with LMP-1, and the negative effect of lyLMP-1 on NF-kappaB activation by LMP-1 does not result from lyLMP-1-mediated disruption of LMP-1 oligomers. Modulation of LMP-1-activated signaling pathways is the first identified biological activity associated with lyLMP-1, and this activity may contribute to the progression of EBV's lytic cycle.  相似文献   

12.
Embryonic stem (ES) cells are pluripotent stem cells and give rise to a variety of differentiated cell types including neurons. To study a molecular basis for differentiation from ES cells to neural cells, we searched for proteins involved in mouse neurogenesis from ES cells to neural stem (NS) cells and neurons by two-dimensional gel electrophoresis (2-DE) and peptide mass fingerprinting, using highly homogeneous cells differentiated from ES cells in vitro. We newly identified seven proteins with increased expression and one protein with decreased expression from ES cells to NS cells, and eight proteins with decreased expression from NS cells to neurons. Western blot analysis confirmed that a tumor-specific transplantation antigen, HS90B, decreased, and an extracellular matrix and membrane glycoprotein (such as laminin)-binding protein, galectin 1 (LEG1), increased in NS cells, and LEG1 and a cell adhesion receptor, laminin receptor (RSSA), decreased in neurons. The results of RT-PCR showed that mRNA of LEG1 was also up-regulated in NS cells and down-regulated in neurons, implying an important role of LEG1 in regulating the differentiation. The differentially expressed proteins identified here provide insight into the molecular basis of neurogenesis from ES cells to NS cells and neurons.  相似文献   

13.
Mutations in the Treacher Collins syndrome gene, TCOF1, cause a disorder of craniofacial development. We manipulated the levels of Tcof1 and its protein treacle in a murine neuroblastoma cell line to identify downstream changes in gene expression using a microarray platform. We identified a set of genes that have similar expression with Tcof1 as well as a set of genes that are negatively correlated with Tcof1 expression. We also showed that the level of Tcof1 and treacle expression is downregulated during differentiation of neuroblastoma cells into neuronal cells. Inhibition of Tcof1 expression by siRNA induced morphological changes in neuroblastoma cells that mimic differentiation. Thus, expression of Tcof1 and treacle synthesis play an important role in the proliferation of neuroblastoma cells and we have identified genes that may be important in this pathway.  相似文献   

14.
15.
16.
17.
18.
The multipotent mouse F9 embryonic carcinoma cell is an ideal model system to investigate the mechanism of retinoic acid (RA) in cell differentiation and cell growth control and the biochemical basis of early embryonic development. We reported here a proteomics approach to study protein expression changes during the differentiation of F9 cells into the visceral endoderm. F9 cells were incubated with or without RA at 0, 24, 48, and 72 h. Total proteins extracted were separated by two‐dimensional electrophoresis (2‐DE) and the protein patterns on the gels were comparatively analyzed by computer. Approximately 1,100 protein spots were detected in the F9 proteome, within the pH 3–10 range. Fourteen protein spots which the levels of expression were found to be altered dramatically during the F9 cells differentiating, and were identified by MALDI‐TOF MS or ESI‐MS/MS. These proteins included metabolism enzymes, HSP60s, RAN, hnRNP K, FUBP1, VDAC1, STI1, and prohibitin. These proteins are involved in cellar metabolism, gene expression regulation, stress response, and apoptosis, respectively. The data from proteomic analyze are consistent with the result obtained from Western blot analysis. This study increases our understanding of the proteomics changes during F9 cells differentiation induced by RA. J. Cell. Biochem. 113: 1811–1819, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
20.
To look for a more stable and convenient way of constructing short hairpin RNA expression vectors targeting the latent membrane protein-1(LMP-1) encoded by Epstein-Barr virus(pshLMP1), and to study the inhibition function of pshLMP1 expression vectors in HNE1 cells, we designed the pshLMP1 expression cassette and pshLMP1 expression vectors by both the annealing method and PCR method and then co-transfected with pEGFP-N1-1158 into HNE1 cells to observe the mRNA and protein levels of LMP-1 genes by green fluorescence analysis, RT-PCR and western blot. pshLMP1 expression vectors were successfully obtained by both methods but better cloning efficiency was achieved and fewer deletions and mutations of nucleotides were achieved with the PCR method. Furthermore, the mRNA and protein levels of LMP-1 genes were down-regulated by pshLMP1 expression vectors. According to our research, we found that the PCR method provides a more efficient way to construct pshLMP1 expression vectors which have the ability to inhibit the function of LMP-1 genes expressed in HNE1 cells, and also provides a novel application of RNA interference technology against-EBV.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号