首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low levels of reactive oxygen species (ROS) can function as redox-active signaling messengers, whereas high levels of ROS induce cellular damage. Menadione generates ROS through redox cycling, and high concentrations trigger cell death. Previous work suggests that menadione triggers cytochrome c release from mitochondria, whereas other studies implicate the activation of the mitochondrial permeability transition pore as the mediator of cell death. We investigated menadione-induced cell death in genetically modified cells lacking specific death-associated proteins. In cardiomyocytes, oxidant stress was assessed using the redox sensor RoGFP, expressed in the cytosol or the mitochondrial matrix. Menadione elicited rapid oxidation in both compartments, whereas it decreased mitochondrial potential and triggered cytochrome c redistribution to the cytosol. Cell death was attenuated by N-acetylcysteine and exogenous glutathione or by overexpression of cytosolic or mitochondria-targeted catalase. By contrast, no protection was observed in cells overexpressing Cu,Zn-SOD or Mn-SOD. Overexpression of antiapoptotic Bcl-XL protected against staurosporine-induced cell death, but it failed to confer protection against menadione. Genetic deletion of Bax and Bak, cytochrome c, cyclophilin D, or caspase-9 conferred no protection against menadione-induced cell death. However, cells lacking PARP-1 showed a significant decrease in menadione-induced cell death. Thus, menadione induces cell death through the generation of oxidant stress in multiple subcellular compartments, yet cytochrome c, Bax/Bak, caspase-9, and cyclophilin D are dispensable for cell death in this model. These studies suggest that multiple redundant cell death pathways are activated by menadione, but that PARP plays an essential role in mediating each of them.  相似文献   

2.
Apoptosis is a significant physiological function in the cell. P53 is known as tumor suppressor cellular factor, executive caspases are also the most involved pathway for apoptosis. Menadione (VK3) has apoptotic action on many harmful cells, but the molecular role of adipokines is not studied enough in this regard, so the ability of menadione to modify the adipokine (leptin hormone), caspase-3 and P53 signals to induce its apoptotic action on HepG2 cells was studied. The study revealed that menadione has anti-viability and apoptotic effect at sub-G1 phase of HepG2 cell cycle. Its cytotoxic effect is mediated by molecular mechanisms included: inhibiting leptin expression and level, activating caspase-3 pathway and up-regulating the expression of P53. Menadione exerts its apoptotic mechanisms in a concentration and time dependent way through ROS generation. In addition to the known apoptotic pathways, the results indicate that suppressing leptin pathway is a significant mechanism for menadione apoptotic effect which made it as a potential therapeutic vitamin in preventing hepatocyte survival and proliferation.  相似文献   

3.
The use of highly efficient high-throughput screening (HTS) platform has recently gained more attention as a plausible approach to identify de novo therapeutic application potential of conventional anti-tumor drugs for cancer treatments. In this study, we used hepatocellular carcinoma (HCC) cells as models to identify cytotoxic compounds by HTS. To identify cytotoxic compounds for potential HCC treatments, 3271 compounds from three well established small molecule libraries were screened against HCC cell lines. Thirty-two small molecules were identified from the primary screen to induce cell death. Particularly, mitoxantrone (MTX), which is an established antineoplastic drug, significantly and specifically inhibited the growth and proliferation of HCC cells in vitro. Mechanistic studies of LC3-II, p62 and phosphorylation of p70S6K in HepG2 cells revealed that MTX treatment induced mTOR-dependent autophagy activation, which was further confirmed by the autophagic flux assay using lysosomal inhibitor chloroquine (CQ). In the combined treatment of MTX and CQ, where autophagy was inhibited by CQ, the elevations of cleaved Caspase-3 and PARP were observed, indicating the enhanced apoptosis in HepG2 cells. Taken together, we hypothesize that MTX-induced autophagy plays an pro-survival role in HCC treatment. Combined treatment with autophagy inhibitor may combat the chemo-resistance of HCC to MTX treatment and therefore deserves future clinical investment.  相似文献   

4.
Poly (ADP-ribose) polymerase (PARP) enzymes play a key role in the cellular machinery responsible for DNA repair. Dehydroxymethylepoxyquinomicin (DHMEQ), a new inhibitor of NF-κB, induces oxidative stress and DNA damage. The effects of DHMEQ in combination with Olaparib (PARP inhibitor) were studied on hepatocellular carcinoma (HCC) cells. The DHMEQ–Olaparib combination synergistically inhibited cell viability, cell proliferation and colony formation of Hep3B, but had additive effects on Huh7 cells. The synergistic effects of the combination correlated with increased apoptosis, caspase 3/7 activity and PARP cleavage. There was an induction of an endoplasmic reticulum (ER) stress response with significant up-regulation of CHOP and TRB3 genes and splicing of XBP1 mRNA in Hep3B cells but not in Huh7 cells. Silencing of the TRB3 mRNA in Hep3B cells reversed the reduction in viability caused by DHMEQ–Olaparib treatment, while depletion of unspliced XBP1 mRNA in DHMEQ–Olaparib-treated Huh7 cells reduced viability. ROS production was increased after DHMEQ–Olaparib treatment of Hep3B, which caused DNA damage by an accumulation of γH2AX, increased AKT phosphorylation and reduced cell viability. The combination reduced Rad51 nuclear foci in Hep3B cells (not Huh7 cells), and silencing of Rad51 enhanced sensitivity of Huh7 cells to the DHMEQ–Olaparib combination. Knockdown of AKT in Hep3B cells restored the number of Rad51 nuclear foci after DHMEQ–Olaparib treatment. In summary, the DHMEQ–Olaparib combination induced ROS production, which killed HCC cells via DNA damage that could not be repaired by Rad51.SummaryPARPs and NF-κB are frequently deregulated in HCC. The DHMEQ–Olaparib combination exerted synergistic anti-tumour effects on HCC cells through ROS production via DNA damage that could not be repaired by Rad51. This suggested that the DHMEQ–Olaparib combination could be used to treat tumours that were resistant to Olaparib treatment.  相似文献   

5.
Guanine nucleotide regulatory proteins (G-proteins) play an important role in the onset and progression of malignancy. We hypothesized that alterations in inhibitory G-protein (Gi) expression and/or function may contribute to cellular invasion and formation of hepatocellular carcinoma (HCC). H4IIE hepatoma cells were inoculated directly into the liver parenchyma of ACI strain rats, and membranes were prepared from HCC livers and adjacent nonneoplastic livers 12 days following the initial inoculation. Expression of inhibitory Giα proteins was determined by Western blot analysis and changes in the functional activity of these proteins confirmed by pertussis toxin catalyzed ADP ribosylation and adenylyl cyclase activity. Inhibitory Giα1, Giα1/2, and Giα3 protein expression was significantly elevated in HCC when compared to adjacent nonneoplastic liver and sham-operated hepatic tissue. Pertussis toxin catalyzed ADP ribosylation of Giα substrates was significantly enhanced in HCC concomitant with increased basal and stimulated adenylyl cyclase activity following uncoupling of Gi-proteins with manganese ions. The role of Gi-proteins in cellular proliferation was confirmed using cultured H4IIE cells and normal hepatocytes. In quiescent H4IIE cells, mastoparan (Giα activator) increased [3H] thymidine incorporation and cell growth in a dose-dependent manner, whereas both pertussis toxin (a Gi-protein inhibitor) and 8-bromo-cAMP inhibited mitogenesis. In contrast, in isolated cultured hepatocytes, mastoparan inhibited [3H] thymidine incorporation, while pertussis toxin and 8-bromo-cAMP were mitogenic. We conclude that HCC is associated with marked changes in Giα-protein expression in vivo and in vitro, direct activation of which leads to increased mitogenesis in H4IIE cells in vitro. J. Cell. Physiol. 175:295–304, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
We recently established that asparanin A, a steroidal saponin extracted from Asparagus officinalis L., is an active cytotoxic component. The molecular mechanisms by which asparanin A exerts its cytotoxic activity are currently unknown. In this study, we show that asparanin A induces G2/M phase arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Following treatment of HepG2 cells with asparanin A, cell cycle-related proteins such as cyclin A, Cdk1 and Cdk4 were down-regulated, while p21WAF1/Cip1 and p-Cdk1 (Thr14/Tyr15) were up-regulated. Additionally, we observed poly (ADP-ribose) polymerase (PARP) cleavage and activation of caspase-3, caspase-8 and caspase-9. The expression ratio of Bax/Bcl-2 was increased in the treated cells, where Bax was also up-regulated. We also found that the expression of p53, a modulator of p21WAF1/Cip1 and Bax, was not affected in asparanin A-treated cells. Collectively, our findings demonstrate that asparanin A induces cell cycle arrest and triggers apoptosis via a p53-independent manner in HepG2 cells. These data indicate that asparanin A shows promise as a preventive and/or therapeutic agent against human hepatoma.  相似文献   

7.
Hepatocellular carcinoma (HCC) is one of the most common solid cancers, representing the third cause of cancer-related death among cirrhotic patients. Treatment of advanced HCC has become a very active area of research. Perifosine, a new synthetic alkylphospholipid Akt inhibitor, has shown anti-tumor activity by inhibition of Akt phosphorylation. In this study, the effect of perifosine on the cell proliferation and apoptosis in hepatoma cells has been investigated. Cell growth inhibition was detected by MTT assay, cell cycle was analyzed by flow cytometry, AnnexinV-FITC apoptosis detection kit was used to detect cell apoptosis, and protein expression was examined by Western blotting analysis. Our present studies showed that Akt phosphorylation was inhibited by perifosine in HepG2 and Bel-7402 human hepatocellular carcinoma cells. Perifosine inhibited the growth of HepG2 cells and Bel-7402 cells in a dose-dependent manner, and arrested cell cycle progression at the G2 phase. Apoptosis induction became more effective with increasing perifosine concentration. The caspase cascade and its downstream effectors, Poly (ADP-ribose) polymerase (PARP), were also activated simultaneously upon perifosine treatment. The proapoptotic effect of perifosine was in part depending on regulation of the phosphorylation level of ERK and JNK. Perifosine cotreatment substantially increased cytotoxic effects of cisplatin in HepG2 cells. Down-regulating the expression of Bcl-2 and up-regulating the level of Bax may be the potential mechanism for this synergistic effect. Our findings suggest that the small molecule Akt inhibitor perifosine shows substantial anti-tumor activity in human hepatoma cancer cell lines, and is a good candidate for treatment combinations with classical cytostatic compounds in hepatocellular carcinoma.  相似文献   

8.
Zinc (Zn) is an essential component of Zn-finger proteins and acts as a cofactor for enzymes required for cellular metabolism and in the maintenance of DNA integrity. The study investigated the genotoxic and cytotoxic effects of Zn deficiency or excess in a primary human oral keratinocyte cell line and determined the optimal concentration of two Zn compounds (Zn Sulphate (ZnSO4) and Zn Carnosine (ZnC)) to minimise DNA damage. Zn-deficient medium (0 μM) was produced using Chelex treatment, and the two Zn compounds ZnSO4 and ZnC were tested at concentrations of 0.0, 0.4, 4.0, 16.0, 32.0 and 100.0 μM. Cell viability was decreased in Zn-depleted cells (0 μM) as well as at 32 μM and 100 μM for both Zn compounds (P < 0.0001) as measured via the MTT assay. DNA strand breaks, as measured by the comet assay, were found to be increased in Zn-depleted cells compared with the other treatment groups (P < 0.05). The Cytokinesis Block Micronucleus Cytome assay showed a significant increase in the frequency of both apoptotic and necrotic cells under Zn-deficient conditions (P < 0.05). Furthermore, elevated frequencies of micronuclei (MNi), nucleoplasmic bridges (NPBs) and nuclear buds (NBuds) were observed at 0 and 0.4 μM Zn, whereas these biomarkers were minimised for both Zn compounds at 4 and 16 μM Zn (P < 0.05), suggesting these concentrations are optimal to maintain genome stability. Expression of PARP, p53 and OGG1 measured by western blotting was increased in Zn-depleted cells indicating that DNA repair mechanisms are activated. These results suggest that maintaining Zn concentrations within the range of 4–16 μM is essential for DNA damage prevention in cultured human oral keratinocytes.  相似文献   

9.
Background: The current chemotherapeutic outcomes for hepatocellular carcinoma (HCC) are not encouraging, and long-term survival of this patient group remains poor. Recent studies have demonstrated the utility of histone deacetylase inhibitors that can disrupt cell proliferation and survival in HCC management. However, the effects of droxinostat, a type of histone deacetylase inhibitor, on HCC remain to be established. Methods: The effects of droxinostat on HCC cell lines SMMC-7721 and HepG2 were investigated. Histone acetylation and apoptosis-modulating proteins were assessed via Western blot. Proliferation was examined with 3-(4, 5 dimetyl-2-thiazolyl)-2, 5-diphenyl 2H-tetrazolium bromide, cell proliferation, and real-time cell viability assays, and apoptosis with flow cytometry. Results: Droxinostat inhibited proliferation and colony formation of the HCC cell lines examined. Hepatoma cell death was induced through activation of the mitochondrial apoptotic pathway and downregulation of FLIP expression. Droxinostat suppressed histone deacetylase (HDAC) 3 expression and promoted acetylation of histones H3 and H4. Knockdown of HDAC3 induced hepatoma cell apoptosis and histone H3 and H4 acetylation. Conclusions: Droxinostat suppresses HDAC3 expression and induces histone acetylation and HCC cell death through activation of the mitochondrial apoptotic pathway and downregulation of FLIP, supporting its potential application in the treatment of HCC.  相似文献   

10.
Chen TA  Wang JL  Hung SW  Chu CL  Cheng YC  Liang SM 《PloS one》2011,6(8):e23317

Background

The application of viral elements in tumor therapy is one facet of cancer research. Recombinant capsid protein VP1 (rVP1) of foot-and-mouth disease virus has previously been demonstrated to induce apoptosis in cancer cell lines. Here, we aim to further investigate its apoptotic mechanism and possible anti-metastatic effect in murine models of hepatocellular carcinoma (HCC), one of the most common human cancers worldwide.

Methodology/Principal Findings

Treatment with rVP1 inhibited cell proliferation in two murine HCC cell lines, BNL and Hepa1-6, with IC50 values in the range of 0.1–0.2 µM. rVP1 also induced apoptosis in these cells, which was mediated by Akt deactivation and dissociation of Ku70-Bax, and resulted in conformational changes and mitochondrial translocation of Bax, leading to the activation of caspases-9, -3 and -7. Treatment with 0.025 µM rVP1, which did not affect the viability of normal hepatocytes, suppressed cell migration and invasion via attenuating CCL2 production. The production of CCL2 was modulated by Akt-dependent NF-κB activation that was decreased after rVP1 treatment. The in vivo antitumor effects of rVP1 were assessed in both subcutaneous and orthotopic mouse models of HCC in immune-competent BALB/c mice. Intratumoral delivery of rVP1 inhibited subcutaneous tumor growth as a result of increased apoptosis. Intravenous administration of rVP1 in an orthotopic HCC model suppressed tumor growth, inhibited intra-hepatic metastasis, and prolonged survival. Furthermore, a decrease in the serum level of CCL2 was observed in rVP1-treated mice.

Conclusions/Significance

The data presented herein suggest that, via inhibiting Akt phosphorylation, rVP1 suppresses the growth, migration, and invasion of murine HCC cells by inducing apoptosis and attenuating CCL2 production both in vitro and in vivo. Recombinant protein VP1 thus has the potential to be developed as a new therapeutic agent for HCC.  相似文献   

11.

Background

The members of inhibitor of apoptosis proteins (IAPs) family are key negative regulators of apoptosis. Overexpression of IAPs are found in hepatocellular carcinoma (HCC), and can contribute to chemotherapy resistance and recurrence of HCC. Small-molecule Second mitochondria-derived activator of caspases (Smac) mimetics have recently emerged as novel anticancer drugs through targeting IAPs. The specific aims of this study were to 1) examine the anticancer activity of Smac mimetics as a single agent and in combination with chemotherapy in HCC cells, and 2) investigate the mechanism of anticancer action of Smac mimetics.

Methods

Four HCC cell lines, including SMMC-7721, BEL-7402, HepG2 and Hep3B, and 12 primary HCC cells were used in this study. Smac mimetic SM-164 was used to treat HCC cells. Cell viability, cell death induction and clonal formation assays were used to evaluate the anticancer activity. Western blotting analysis and a pancaspase inhibitor were used to investigate the mechanisms.

Results

Although SM-164 induced complete cIAP-1 degradation, it displayed weak inhibitory effects on the viability of HCC cells. Nevertheless, SM-164 considerably potentiated Apo2 ligand or TNF-related apoptosis-inducing ligand (APO2L/TRAIL)- and Doxorubicin-mediated anticancer activity in HCC cells. Mechanistic studies demonstrated that SM-164 in combination with chemotherapeutic agents resulted in enhanced activation of caspases-9, -3 and cleavage of poly ADP-ribose polymerase (PARP), and also led to decreased AKT activation.

Conclusions

Smac mimetics can enhance chemotherapeutic-mediated anticancer activity by enhancing apoptosis signaling and suppressing survival signaling in HCC cells. This study suggests Smac mimetics are potential therapeutic agents for HCC.  相似文献   

12.
《Free radical research》2013,47(8):975-985
Abstract

Recent investigations suggest that cellular redox status may play a key role in the regulation of several immune functions. Treatment of lymphocytes with vitamin K3 (menadione) resulted in a significant decrease in cellular GSH/GSSG ratio and concomitant increase in the ROS levels. It also suppressed Concanavalin A (Con A)-induced proliferation and cytokine production in lymphocytes and CD4 + T cells in vitro. Immunosuppressive effects of menadione were abrogated only by thiol containing antioxidants. Mass spectrometric analysis showed that menadione directly interacted with thiol antioxidant GSH. Menadione completely suppressed Con A-induced activation of ERK, JNK and NF-κB in lymphocytes. It also significantly decreased the homeostasis driven proliferation of syngeneic CD4 + T cells. Further, menadione significantly delayed graft-vs-host disease morbidity and mortality in mice. Menadione suppressed phytohemagglutinin-induced cytokine production in human peripheral blood mononuclear cells. These results reveal that cellular redox perturbation by menadione is responsible for significant suppression of lymphocyte responses.  相似文献   

13.
Despite recent pharmaceutical advancements in therapeutic drugs, multiple myeloma (MM) remains an incurable disease. Recently, ploy(ADP-ribose) polymerase 1 (PARP1) has been shown as a potentially promising target for MM therapy. A previous report suggested bufalin, a component of traditional Chinese medicine (“Chan Su”), might target PARP1. However, this hypothesis has not been verified. We here showed that bufalin could inhibit PARP1 activity in vitro and reduce DNA–damage-induced poly(ADP-ribosyl)ation in MM cells. Molecular docking analysis revealed that the active site of bufalin interaction is within the catalytic domain of PAPR1. Thus, PARP1 is a putative target of bufalin. Furthermore, we showed, for the first time that the proliferation of MM cell lines (NCI-H929, U266, RPMI8226 and MM.1S) and primary CD138+ MM cells could be inhibited by bufalin, mainly via apoptosis and G2-M phase cell cycle arrest. MM cell apoptosis was confirmed by apoptotic cell morphology, Annexin-V positive cells, and the caspase3 activation. We further evaluated the role of PARP1 in bufalin-induced apoptosis, discovering that PARP1 overexpression partially suppressed bufalin-induced cell death. Moreover, bufalin can act as chemosensitizer to enhance the cell growth-inhibitory effects of topotecan, camptothecin, etoposide and vorinostat in MM cells. Collectively, our data suggest that bufalin is a novel PARP1 inhibitor and a potentially promising therapeutic agent against MM alone or in combination with other drugs.  相似文献   

14.
The interaction of organic compounds with apoptosis regulatory proteins is an attractive field of research because of its relevance in the development of new chemotherapeutic agents for cancer treatment. Our group designed four new adamantane thiadiazole derivatives (ATDs). The four ATDs were theoretically tested for their binding affinities to a model of an apoptosis inhibitor protein using molecular modeling. ATD-4 which interacted with the highest binding affinity was synthesized and characterized. The in vitro cytotoxicity of ATD-4 against different cancer cell lines as well as normal cell line was determined and compared with 5-fluorouracil as a standard positive control. The lung carcinoma cell line that showed the highest cytotoxic activity due to ATD-4 treatment was chosen to further study if ATD-4 can perform its cytotoxic activity through the induction of apoptosis as expected from molecular modeling. Inducing apoptosis by ATD-4 in lung carcinoma cell line was assessed by various biochemical and morphological characteristics. Biochemically: The effect of ATD-4 on cell cycle and its ability to induce apoptosis were checked through flow cytometry. Caspase-3 activity was detected by a colorimetric method. Real time-polymerase chain reaction (q-PCR) was used to detect p53, caspase-3, bcl-2 and bax gene expression. Morphologically: Changes in cell surface morphology, granulation and average surface roughness were detected using atomic force microscopy (AFM). Cell shrinkage, increase in cytoplasmic organelles, changes in mitochondrial number and morphology, chromatin condensation, membrane blebbing and formation of apoptotic bodies were detected using transmission electron microscopy (TEM). The obtained results suggest that ATD-4 exerted its antitumor activity against A549 cells through the induction of the intrinsic (mitochondrial) apoptotic pathway.  相似文献   

15.

Background

Current chemotherapeutic drugs kill cancer cells mainly by inducing apoptosis. However, they become ineffective once cancer cell has the ability to metastasize, hence the poor prognosis and high mortality rate. Therefore, the purpose of this study was to evaluate the antimetastatic potential of Phyllanthus (P. niruri, P. urinaria, P. watsonii, and P. amarus) on lung and breast carcinoma cells.

Methodology/Principal Findings

Cytotoxicity of Phyllanthus plant extracts were first screened using the MTS reduction assay. They were shown to inhibit MCF-7 (breast carcinoma) and A549 (lung carcinoma) cells growth with IC50 values ranging from 50–180 µg/ml and 65–470 µg/ml for methanolic and aqueous extracts respectively. In comparison, they have lower toxicity on normal cells with the cell viability percentage remaining above 50% when treated up to 1000 µg/ml for both extracts. After determining the non-toxic effective dose, several antimetastasis assays were carried out and Phyllanthus extracts were shown to effectively reduce invasion, migration, and adhesion of both MCF-7 and A549 cells in a dose-dependent manner, at concentrations ranging from 20–200 µg/ml for methanolic extracts and 50–500 µg/ml for aqueous extracts. This was followed by an evaluation of the possible modes of cell death that occurred along with the antimetastatic activity. Phyllanthus was shown to be capable of inducing apoptosis in conjunction with its antimetastastic action, with more than three fold increase of caspases-3 and -7, the presence of DNA-fragmentation and TUNEL-positive cells. The ability of Phyllanthus to exert antimetastatic activities is mostly associated to the presence of polyphenol compounds in its extracts.

Conclusions/Significance

The presence of polyphenol compounds in the Phyllanthus plant is critically important in the inhibition of the invasion, migration, and adhesion of cancer cells, along with the involvement of apoptosis induction. Hence, Phyllanthus could be a valuable candidate in the treatment of metastatic cancers.  相似文献   

16.
17.
Menadione promoted the production of active oxygen species (AOS) in both yeast cell suspension and the crude enzymes from the cells, but menadione sodium bisulfite (MSB) had little effect on the production of AOS in the cell suspension. MSB kept the stable increase in the electron transfer from intact yeast cells to anode compared to menadione, but the electron transfer promoted by MSB was inhibited in permeabilized yeast cell suspension. Menadione promoted oxidation of NAD(P)H much faster than MSB in permeabilized yeast cell suspension, suggesting the oxidative stress due to consumption of NAD(P)H. The proliferation of yeast cells was inhibited by menadione under aerobic conditions rather than anaerobic conditions, and the inhibitory effect was reduced by superoxide dismutase and catalase. The effect of MSB on the proliferation was much smaller than that of menadione. The above facts suggest that harmless MSB promotes the electron transfer from plasma membrane of yeast cells to anode. On the other hand, harmful menadione might promote the electron transfer from cytosol and plasma membrane to anode and dissolved oxygen.  相似文献   

18.
Quinones are widely distributed in the environment, both as natural products and as pollutants. This paper reports that one of the simplest quinones, 2-methyl-1,4-naphthoquinone (menadione), effectively inhibited apoptosis in the presence of UVA. Menadione suppressed the apoptosis induced by serum depletion and cell detachment. This effect was significantly enhanced by UVA irradiation. An antioxidant, N-acetylcysteine, completely inhibited the antiapoptotic effects of both menadione itself and menadione plus UVA, and peroxidation of the cells after treatment was observed using a probe to detect the intracellular production of peroxides. By contrast, 2-hydroxy-1,4-naphtoquinone (lawsone) showed no antiapoptotic effect in the presence or absence of UVA. Lawsone is reported not to undergo the redox process that produces reactive oxygen species. These results indicated that intracellular peroxidation contributed to the antiapoptotic effects of both menadione itself and menadione plus UVA. Dysregulation of the apoptotic process is critical to carcinogenesis. The photosensitization of quinone compounds as it relates to the inhibition of apoptosis should be examined in the future.  相似文献   

19.
Hung JH  Teng YN  Wang LH  Su IJ  Wang CC  Huang W  Lee KH  Lu KY  Wang LH 《PloS one》2011,6(12):e28977

Background

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with poor prognosis due to resistance to conventional chemotherapy and limited efficacy of radiotherapy. Our previous studies have indicated that expression of Hepatitis B virus pre-S2 large mutant surface antigen (HBV pre-S2Δ) is associated with a significant risk of developing HCC. However, the relationship between HBV pre-S2Δ protein and the resistance of chemotherapeutic drug treatment is still unclear.

Methodology/Principal Findings

Here, we show that the expression of HBV pre-S2Δ mutant surface protein in Huh-7 cell significantly promoted cell growth and colony formation. Furthermore, HBV pre-S2Δ protein increased both mRNA (2.7±0.5-fold vs. vehicle, p = 0.05) and protein (3.2±0.3-fold vs. vehicle, p = 0.01) levels of Bcl-2 in Huh-7 cells. HBV pre-S2Δ protein also enhances Bcl-2 family, Bcl-xL and Mcl-1, expression in Huh-7 cells. Meanwhile, induction of NF-κB p65, ERK, and Akt phosphorylation, and GRP78 expression, an unfolded protein response chaperone, were observed in HBV pre-S2Δ and HBV pre-S-expressing cells. Induction of Bcl-2 expression by HBV pre-S2Δ protein resulted in resistance to 5-fluorouracil treatment in colony formation, caspase-3 assay, and cell apoptosis, and can enhance cell death by co-incubation with Bcl-2 inhibitor. Similarly, transgenic mice showed higher expression of Bcl-2 in liver tissue expressing HBV pre-S2Δ large surface protein in vivo.

Conclusion/Significance

Our result demonstrates that HBV pre-S2Δ increased Bcl-2 expression which plays an important role in resistance to 5-fluorouracil-caused cell death. Therefore, these data provide an important chemotherapeutic strategy in HBV pre-S2Δ-associated tumor.  相似文献   

20.
Hepatocarcinoma cells (TLT) were incubated in the presence of ascorbate and menadione, either alone or in combination. Cell death was only observed when such compounds were added simultaneously, most probably due to hydrogen peroxide (H2O2) generated by ascorbate-driven menadione redox cycling. TLT cells were particularly sensitive to such an oxidative stress due to its poor antioxidant status. DNA strand breaks were induced by this association but this process did not correspond to oligosomal DNA fragmentation (a hallmark of cell death by apoptosis). Neither caspase-3-like DEVDase activity, nor processing of procaspase-3 and cleavage of poly(ADP-ribose) polymerase (PARP) were observed in the presence of ascorbate and menadione. Cell death induced by such an association was actively dependent on protein phosphorylation since it was totally prevented by preincubating cells with sodium orthovanadate, a tyrosine phosphatase inhibitor. Finally, while H2O2, when administered as a bolus, strongly enhances a constitutive basal NF-kappaB activity in TLT cells, their incubation in the presence of ascorbate and menadione results in a total abolition of such a constitutive activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号