首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
3.
4.
5.

Introduction

Previous studies highlight a complex relationship between lineage and phenotype for adipose tissue macrophages (ATMs), adipose stem cells (ASCs), and adipocytes, suggesting a high degree of plasticity of these cells. In the present study, using a novel co-culture system, we further characterized the interaction between ATMs, ASCs and adipocytes.

Research Design and Methods

Human adipocytes and the stromal vascular fraction containing ATMs and ASCs were isolated from human adipose tissue and co-cultured for 24 hours. FACS was used to characterize ATMs and ASCs before and after co-culture. Preadipocytes generated after co-culture were characterized by immunostaining for DLK (preadipocytes), CD14 and CD68 (ATMs), CD34 (ASCs), and Nile Red staining for lipid drops. qRT-PCR was used to quantify adipogenic markers such as C/EBPα and PPARγ. A novel fluorescent nanobead lineage tracing method was utilized before co-culture where fluorescent nanobeads were internalized by CD68 (+) ATMs.

Results

Co-culture of adipocytes with ATMs and ASCs increased the formation of new preadipocytes, thereby increasing lipid accumulation and C/EBPα and PPARγ gene expression. Preadipocytes originating after co-culture were positive for markers of preadipocytes, ATMs and ASCs. Moreover, fluorescent nanobeads were internalized by ATMs before co-culture and the new preadipocytes formed after co-culture also contained fluorescent nanobeads, suggesting that new preadipocytes originated in part from ATMs. The formation of CD34(+)/CD68(+)/DLK (+) cell spheres supported the interaction of ATMs, ASCs and preadipocytes.

Conclusions

Cross-talk between adipocytes, ATMs and ASCs promotes preadipocyte formation. The regulation of this novel adipogenic pathway involves differentiation of ATMs to preadipocytes. The presence of CD34(+)/CD68(+)/DLK(+) cells grouped in spheres suggest that paracrine interactions between these cell types plays an important role in the generation and proliferation of new preadipocytes. This phenomenon may reflect the in vivo plasticity of adipose tissue in which ATMs play an additional role during inflammation and other disease states. Understanding this novel pathway could influence adipogenesis, leading to new treatments for obesity, inflammation, and type 2 diabetes.  相似文献   

6.
Prostaglandin (PG) F suppresses adipocyte differentiation by inhibiting the function of peroxisome proliferator-activated receptor γ. However, PGF synthase (PGFS) in adipocytes remains to be identified. Here, we studied the expression of members of the aldo-keto reductase (AKR) 1B family acting as PGFS during adipogenesis of mouse 3T3-L1 cells. AKR1B3 mRNA was expressed in preadipocytes, and its level increased about 4-fold at day 1 after initiation of adipocyte differentiation, and then quickly decreased the following day to a level lower than that in the preadipocytes. In contrast, the mRNA levels of Akr1b8 and 1b10 were clearly lower than that level of Akr1b3 in preadipocytes and remained unchanged during adipogenesis. The transient increase in Akr1b3 during adipogenesis was also observed by Western blot analysis. The mRNA for the FP receptor, which is selective for PGF, was also expressed in preadipocytes. Its level increased about 2-fold within 1 h after the initiation of adipocyte differentiation and was maintained at almost the same level throughout adipocyte differentiation. The small interfering RNA for Akr1b3, but not for Akr1b8 or 1b10, suppressed PGF production and enhanced the expression of adipogenic genes such as peroxisome proliferator-activated receptor γ, fatty acid-binding protein 4 (aP2), and stearoyl-CoA desaturase. Moreover, an FP receptor agonist, Fluprostenol, suppressed the expression of those adipogenic genes in 3T3-L1 cells; whereas an FP receptor antagonist, AL-8810, efficiently inhibited the suppression of adipogenesis caused by the endogenous PGF. These results indicate that AKR1B3 acts as the PGFS in adipocytes and that AKR1B3-produced PGF suppressed adipocyte differentiation by acting through FP receptors.  相似文献   

7.
8.
Hydroxysafflor yellow A (HSYA), a main component of safflor yellow, has been demonstrated to prevent steroid-induced avascular necrosis of femoral head by inhibiting primary bone marrow-derived mesenchymal stromal cells adipogenic differentiation induced by steroid. In this study, we investigate the effect of HSYA on the proliferation and adipogenesis of mouse 3T3-L1 preadipocytes. The effects of HSYA on proliferation and differentiation of 3T3-L1 cells and its possible mechanism were studied by 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide spectrophotometry, Oil Red O staining, intracellular triglyceride assays, real-time quantitative RT-PCR, transient transfection and dual luciferase reporter gene methods. HSYA inhibited the proliferation of 3T3-L1 preadipocytes and cell viability greatly decreased in a dose and time dependent manner. HSYA (1 mg/l) notably reduced the amount of intracellular lipid and triglyceride content in adipocytes by 21.3 % (2.13 ± 0.36 vs 2.71 ± 0.40, P < 0.01) and 22.6 % (1.33 ± 0.07 vs 1.72 ± 0.07, P < 0.01) on days 8 following the differentiation, respectively. HSYA (1 mg/l) significantly increased hormone-sensitive lipase (HSL) mRNA expression and promoter activities by 2.4- and 1.55-fold, respectively (P < 0.01), in differentiated 3T3-L1 adipocytes. HSYA inhibits the proliferation and adipogenesis of 3T3-L1 preadipocytes. The inhibitory action of HYSA on adipogenesis may be due to the promotion of lipolytic-specific enzyme HSL expression by increasing HSL promoter activity.  相似文献   

9.
10.
Fatty acid binding protein 4 (FABP4), also known as adipocyte FABP or aP2, is secreted from adipocytes in association with lipolysis as a novel adipokine, and elevated serum FABP4 level is associated with obesity, insulin resistance, and atherosclerosis. However, little is known about the modulation of serum FABP4 level by therapeutic drugs. Sitagliptin (50 mg/day), a dipeptidyl peptidase 4 (DPP-4) inhibitor that increases glucagon-like peptide 1 (GLP-1), was administered to patients with type 2 diabetes (n = 24) for 12 weeks. Treatment with sitagliptin decreased serum FABP4 concentration by 19.7% (17.8 ± 1.8 vs. 14.3 ± 1.5 ng/ml, P < 0.001) and hemoglobin A1c without significant changes in adiposity or lipid variables. In 3T3-L1 adipocytes, sitagliptin or exendin-4, a GLP-1 receptor agonist, had no effect on short-term (2 h) secretion of FABP4. However, gene expression and long-term (24 h) secretion of FABP4 were significantly reduced by sitagliptin, which was not mimicked by exendin-4. Treatment with recombinant DPP-4 increased gene expression and long-term secretion of FABP4, and the effects were cancelled by sitagliptin. Furthermore, knockdown of DPP-4 in 3T3-L1 adipocytes decreased gene expression and long-term secretion of FABP4. In conclusion, sitagliptin decreases serum FABP4 level, at least in part, via reduction in the expression and consecutive secretion of FABP4 in adipocytes by direct inhibition of DPP-4.  相似文献   

11.
12.
13.
14.
15.
The role of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in Harvey sarcoma ras (Hras)-expressing cells was examined. Ligand activation of PPARβ/δ caused a negative selection with respect to cells expressing higher levels of the Hras oncogene by inducing a mitotic block. Mitosis-related genes that are predominantly regulated by E2F were induced to a higher level in HRAS-expressing Pparβ/δ-null keratinocytes compared to HRAS-expressing wild-type keratinocytes. Ligand-activated PPARβ/δ repressed expression of these genes by direct binding with p130/p107, facilitating nuclear translocation and increasing promoter recruitment of p130/p107. These results demonstrate a novel mechanism of PPARβ/δ cross talk with E2F signaling. Since cotreatment with a PPARβ/δ ligand and various mitosis inhibitors increases the efficacy of increasing G2/M arrest, targeting PPARβ/δ in conjunction with mitosis inhibitors could become a suitable option for development of new multitarget strategies for inhibiting RAS-dependent tumorigenesis.  相似文献   

16.
17.
18.
19.
20.
Conjugated linoleic acids (CLAs) are natural PPARγ ligands, which showed conflicting effects on metabolism in humans. We examined metabolic effects of different isomers of CLA in subjects with PPARγ2 Pro12Ala polymorphisms. A total of 35 men underwent four intervention periods in a crossover study design: subjects with either genotypes received c9, t11 CLA or t10, c12 CLA, a commercially available 1:1 mix of both isomers or reference oil (linoleic acid (LA)). Adipocytokines, insulin, glucose and triglycerides were assessed in the fasting state and after a standardized mixed meal. Across all genotypes, there was a significant (p = 0.025) CLA treatment effect upon postprandial (pp) HOMA-IR values, with c9, t11 CLA and CLA isomer mix improving, but t10, c12 CLA isomer worsening. In Ala12Ala subjects, the t10, c12 isomer caused weight gain (p = 0.03) and tended to increase postprandial insulin levels (p = 0.05). In Pro12Pro subjects, t10, c12 resulted in reduction in waist circumference (p = 0.03). The comparison of the different genotype groups revealed statistically different changes in fasting and postprandial insulin, HOMA-IR and leptin after intervention. c9, t11 CLA and the commercial CLA mix showed beneficial effects on insulin sensitivity compared with LA, while t10, c12 CLA adversely affects body weight and insulin sensitivity in different PPAR genotypes. CLA isomers have different effects on metabolism in Ala and Pro carriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号