首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Towards practical implementation of bioelectrochemical wastewater treatment   总被引:8,自引:0,他引:8  
Bioelectrochemical systems (BESs), such as microbial fuel cells (MFCs) and microbial electrolysis cells (MECs), are generally regarded as a promising future technology for the production of energy from organic material present in wastewaters. The current densities that can be generated with laboratory BESs now approach levels that come close to the requirements for practical applications. However, full-scale implementation of bioelectrochemical wastewater treatment is not straightforward because certain microbiological, technological and economic challenges need to be resolved that have not previously been encountered in any other wastewater treatment system. Here, we identify these challenges, provide an overview of their implications for the feasibility of bioelectrochemical wastewater treatment and explore the opportunities for future BESs.  相似文献   

2.
Microorganisms naturally form biofilms on solid surfaces for their mutual benefits including protection from environmental stresses caused by contaminants, nutritional depletion or imbalances. The biofilms are normally dangerous to human health due to their inherited robustness. On the other hand, a recent study suggested that electrochemically active biofilms (EABs) generated by electrically active microorganisms have properties that can be used to catalyze or control the electrochemical reactions in a range of fields, such as bioenergy production, bioremediation, chemical/biological synthesis, bio-corrosion mitigation and biosensor development. EABs have attracted considerable attraction in bioelectrochemical systems (BESs), such as microbial fuel cells and microbial electrolysis cells, where they act as living bioanode or biocathode catalysts. Recently, it was reported that EABs can be used to synthesize metal nanoparticles and metal nanocomposites. The EAB-mediated synthesis of metal and metal–semiconductor nanocomposites is expected to provide a new avenue for the greener synthesis of nanomaterials with high efficiency and speed than other synthetic methods. This review covers the general introduction of EABs, as well as the applications of EABs in BESs, and the production of bio-hydrogen, high value chemicals and bio-inspired nanomaterials.  相似文献   

3.
New applications and performance of bioelectrochemical systems   总被引:1,自引:0,他引:1  
Bioelectrochemical systems (BESs) are emerging technologies which use microorganisms to catalyze the reactions at the anode and/or cathode. BES research is advancing rapidly, and a whole range of applications using different electron donors and acceptors has already been developed. In this mini review, we focus on technological aspects of the expanding application of BESs. We will analyze the anode and cathode half-reactions in terms of their standard and actual potential and report the overpotentials of these half-reactions by comparing the reported potentials with their theoretical potentials. When combining anodes with cathodes in a BES, new bottlenecks and opportunities arise. For application of BESs, it is crucial to lower the internal energy losses and increase productivity at the same time. Membranes are a crucial element to obtain high efficiencies and pure products but increase the internal resistance of BESs. The comparison between production of fuels and chemicals in BESs and in present production processes should gain more attention in future BES research. By making this comparison, it will become clear if the scope of BESs can and should be further developed into the field of biorefineries.  相似文献   

4.
Abstract

Various new energy technologies have been developed to reduce reliance on fossil fuels. The bioelectrochemical system (BES), an integrated microbial–electrochemical energy conversion process, is projected to be a sustainable and environmentally friendly energy technology. However, low power density is still one of the main limiting factors restricting the practical application of BESs. To enhance power output, functional group modification on anode surfaces has been primarily developed to improve the bioelectrochemical performances of BESs in terms of startup, power density, chemical oxygen demand (COD) removal and coulombic efficiency (CE). This modification could change the anode surface characteristics: roughness, hydrophobicity, biocompatibility, chemical bonding and electrochemically active surface area. This will facilitate bacterial adhesion, biofilm formation and extracellular electron transfer (EET). Additionally, some antibacterial functional groups are applied on air cathodes in order to suppress aerobic biofilms and enhance cathodic oxygen reduction reactions (ORRs). Various modification strategies such as: soaking, heat treatment and plasma modification have been reported to introduce functional groups typically as O-, N- and S-containing groups. In this review, the effects of anode functional groups on electroactive bacteria through the whole biofilm formation process are summarized. In addition, the application of those modification technologies to improve bioelectricity generation, resource recovery, bioelectrochemical analysis and the production of value-added chemicals and biofuels is also discussed. Accordingly, this review aims to help scientists select the most appropriate functional groups and up-to-date methods to improve biofilm formation.  相似文献   

5.
Microbial electrochemical systems (MESs) use microorganisms to covert the chemical energy stored in biodegradable materials to direct electric current and chemicals. Compared to traditional treatment-focused, energy-intensive environmental technologies, this emerging technology offers a new and transformative solution for integrated waste treatment and energy and resource recovery, because it offers a flexible platform for both oxidation and reduction reaction oriented processes. All MESs share one common principle in the anode chamber, in which biodegradable substrates, such as waste materials, are oxidized and generate electrical current. In contrast, a great variety of applications have been developed by utilizing this in situ current, such as direct power generation (microbial fuel cells, MFCs), chemical production (microbial electrolysis cells, MECs; microbial electrosynthesis, MES), or water desalination (microbial desalination cells, MDCs). Different from previous reviews that either focus on one function or a specific application aspect, this article provides a comprehensive and quantitative review of all the different functions or system constructions with different acronyms developed so far from the MES platform and summarizes nearly 50 corresponding systems to date. It also provides discussions on the future development of this promising yet early-stage technology.  相似文献   

6.
Microbial fuel cell (MFC) systems employ the catalytic activity of microbes to produce electricity from the oxidation of organic, and in some cases inorganic, substrates. MFC systems have been primarily explored for their use in bioremediation and bioenergy applications; however, these systems also offer a unique strategy for the cultivation of synergistic microbial communities. It has been hypothesized that the mechanism(s) of microbial electron transfer that enable electricity production in MFCs may be a cooperative strategy within mixed microbial consortia that is associated with, or is an alternative to, interspecies hydrogen (H2) transfer. Microbial fermentation processes and methanogenesis in ruminant animals are highly dependent on the consumption and production of H2in the rumen. Given the crucial role that H2 plays in ruminant digestion, it is desirable to understand the microbial relationships that control H2 partial pressures within the rumen; MFCs may serve as unique tools for studying this complex ecological system. Further, MFC systems offer a novel approach to studying biofilms that form under different redox conditions and may be applied to achieve a greater understanding of how microbial biofilms impact animal health. Here, we present a brief summary of the efforts made towards understanding rumen microbial ecology, microbial biofilms related to animal health, and how MFCs may be further applied in ruminant research.  相似文献   

7.
Du Z  Li H  Gu T 《Biotechnology advances》2007,25(5):464-482
A microbial fuel cell (MFC) is a bioreactor that converts chemical energy in the chemical bonds in organic compounds to electrical energy through catalytic reactions of microorganisms under anaerobic conditions. It has been known for many years that it is possible to generate electricity directly by using bacteria to break down organic substrates. The recent energy crisis has reinvigorated interests in MFCs among academic researchers as a way to generate electric power or hydrogen from biomass without a net carbon emission into the ecosystem. MFCs can also be used in wastewater treatment facilities to break down organic matters. They have also been studied for applications as biosensors such as sensors for biological oxygen demand monitoring. Power output and Coulombic efficiency are significantly affected by the types of microbe in the anodic chamber of an MFC, configuration of the MFC and operating conditions. Currently, real-world applications of MFCs are limited because of their low power density level of several thousand mW/m2. Efforts are being made to improve the performance and reduce the construction and operating costs of MFCs. This article presents a critical review on the recent advances in MFC research with emphases on MFC configurations and performances.  相似文献   

8.
Within the past 5?years, tremendous advances have been made to maximize the performance of microbial fuel cells (MFCs) for both “clean” bioenergy production and bioremediation. Most research efforts have focused on parameters including (i) optimizing reactor configuration, (ii) electrode construction, (iii) addition of redox-active, electron donating mediators, (iv) biofilm acclimation and feed nutrient adjustment, as well as (v) other parameters that contribute to enhanced MFC performance. To date, tremendous advances have been made, but further improvements are needed for MFCs to be economically practical. In this review, the diversity of electrogenic microorganisms and microbial community changes in mixed cultures are discussed. More importantly, different approaches including chemical/genetic modifications and gene regulation of exoelectrogens, synthetic biology approaches and bacterial community cooperation are reviewed. Advances in recent years in metagenomics and microbiomes have allowed researchers to improve bacterial electrogenicity of robust biofilms in MFCs using novel, unconventional approaches. Taken together, this review provides some important and timely information to researchers who are examining additional means to enhance power production of MFCs.  相似文献   

9.
生物电化学系统(Bioelectrochemical systems,BESs)可将污染物的降解转化与电能紧密耦联,具有适用基质广泛、反应过程温和且效率高的特点,在环境污染治理中具有广阔的应用前景。近几年,BESs也逐渐被应用到废气处理。由于微生物和电化学过程的复合作用,BESs显示出较高的处理效率和良好的应用前景。本文在对废气类型、效果及反应器构型进行总结的基础上,还对BESs中的重要功能微生物和微生物电化学反应机理进行介绍和讨论,并对BESs在废气处理方面需要解决的问题和研究方向进行展望,以期为提高生物电化学系统的处理性能提供参考。  相似文献   

10.
The electricity production of Shewanella-inoculated microbial fuel cells (MFCs) under magnetic field (MF) exposure was investigated in different reactor systems. The persistency of the MF effect and the influences of MF intensity and direction on MFC performance were also studied. Application of a 100-mT static MF to the MFCs improved electricity production considerably, with an increase in the maximum voltage by 20-27% in both single- and two-chamber MFCs, while a more conspicuous improvement in the electricity generation was observed in a three-electrode cell. The MF effects were found to be immediate and reversible, and adverse effects seemed to occur when the MF was suddenly removed. The medium components analysis demonstrated that the application of MF led to an enhanced bioelectrochemical activity of Shewanella, and no significant promotion in mediator secretion was found. The improvement in the electricity production of MFCs under MF was mainly attributed to the enhanced bioelectrochemical activity, possibly through the oxidative stress mechanism. An accelerated cell growth under MF might also contribute to the enhanced substrate degradation and power generation.  相似文献   

11.
Microbial fuel cells (MFCs) are a promising technology for electricity production from a variety of materials, such as natural organic matter, complex organic waste or renewable biomass, and can be advantageously combined with applications in wastewater treatment. The problem with MFCs is that they are technically still very far from attaining acceptable levels of power output, since the performance of this type of fuel cells is affected by limitations based on irreversible reactions and processes occurring both on the anode and cathode side. However, in the last years, there has been a growing amount of work on MFCs which managed to increase power outputs by an order of magnitude.The present review article discusses a number of biological and engineering aspects related to improvement of MFC performance including the effect of important parameters, such as pH, temperature, feed rate, shear stress and organic load. The recent progresses on scale-up MFC are summarized and the different modelling approaches to describe the different biological and transport phenomena in MFCs are also provided.  相似文献   

12.
Tang X  Guo K  Li H  Du Z  Tian J 《Bioresource technology》2011,102(3):3558-3560
In this paper, graphite felts were continuously electrochemically oxidized to increase the current generation in microbial fuel cells (MFCs). The treated and untreated graphite felts were utilized as anodes in MFCs and current production was compared. The current production on electrochemically treated graphite felt anodes was about 1.13 mA, 39.5% higher compared with that of MFCs containing untreated anodes. The results demonstrated that the electronic coupling between graphite felt electrodes and electrogenic bacteria could be enhanced by electrochemical oxidization of the electrodes. Further study showed that the newly generated carboxyl containing functional groups from electrochemical oxidization were responsible for the enhanced electron transfer, due to their strong hydrogen bonding with peptide bonds in bacterial cytochromes.  相似文献   

13.
A convenient and promising alternative to surface modification of carbon mesh anode was fulfilled by electrochemical oxidation in the electrolyte of nitric acid or ammonium nitrate at ambient temperature. It was confirmed that such an anode modification method was low cost and effective not only in improving the efficiency of power generation in microbial fuel cells (MFCs) for synthetic wastewater treatment, but also helping to reduce the period for MFCs start-up. The MFCs with anode modification in electrolyte of nitric acid performed the best, achieving a Coulombic efficiency enhancement of 71 %. As characterized, the electrochemical modification resulted in the decrease of the anode potential and internal resistance but the increase of current response and nitrogen-containing and oxygen-containing functional groups on the carbon surface, which might contribute to the enhancement on the performances of MFCs.  相似文献   

14.
Electricity-producing bacterial communities in microbial fuel cells   总被引:29,自引:0,他引:29  
Microbial fuel cells (MFCs) are not yet commercialized but they show great promise as a method of water treatment and as power sources for environmental sensors. The power produced by these systems is currently limited, primarily by high internal (ohmic) resistance. However, improvements in the system architecture will soon result in power generation that is dependent on the capabilities of the microorganisms. The bacterial communities that develop in these systems show great diversity, ranging from primarily delta-Proteobacteria that predominate in sediment MFCs to communities composed of alpha-, beta-, gamma- or delta-Proteobacteria, Firmicutes and uncharacterized clones in other types of MFCs. Much remains to be discovered about the physiology of these bacteria capable of exocellular electron transfer, collectively defined as a community of "exoelectrogens". Here, we review the microbial communities found in MFCs and the prospects for this emerging bioenergy technology.  相似文献   

15.
Electricity can be directly generated by bacteria in microbial fuel cells (MFCs) from a variety of biodegradable substrates, including cellulose. Particulate materials have not been extensively examined for power generation in MFCs, but in general power densities are lower than those produced with soluble substrates under similar conditions likely as a result of slow hydrolysis rates of the particles. Cellulases are used to achieve rapid conversion of cellulose to sugar for ethanol production, but these enzymes have not been previously tested for their effectiveness in MFCs. It was not known if cellulases would remain active in an MFC in the presence of exoelectrogenic bacteria or if enzymes might hinder power production by adversely affecting the bacteria. Electricity generation from cellulose was therefore examined in two-chamber MFCs in the presence and absence of cellulases. The maximum power density with enzymes and cellulose was 100 +/- 7 mW/m(2) (0.6 +/- 0.04 W/m(3)), compared to only 12 +/- 0.6 mW/m(2) (0.06 +/- 0.003 W/m(3)) in the absence of the enzymes. This power density was comparable to that achieved in the same system using glucose (102 +/- 7 mW/m(2), 0.56 +/- 0.038 W/m(3)) suggesting that the enzyme successfully hydrolyzed cellulose and did not otherwise inhibit electricity production by the bacteria. The addition of the enzyme doubled the Coulombic efficiency (CE) to CE = 51% and increased COD removal to 73%, likely as a result of rapid hydrolysis of cellulose in the reactor and biodegradation of the enzyme. These results demonstrate that cellulases do not adversely affect exoelectrogenic bacteria that produce power in an MFC, and that the use of these enzymes can increase power densities and reactor performance.  相似文献   

16.
Historically, N availability has limited agricultural production as well as primary production in coastal waters. Prior to the middle of the last century, N available for grain production generally was limited to that supplied by previous legume crops, released from soil organic matter, or returned to the soil in animal wastes. The development of infrastructure to produce relatively low-cost inorganic N fertilizers eliminated the need to focus management of the entire agricultural system on increasing soil N availability. Increased N availability has contributed to dramatic increases in agricultural production but also has led to increased losses of both N and C from agricultural systems. N losses from cropland have been linked to increased algal production in the Chesapeake Bay, with N loss from cropland estimated to be the primary N input to the Bay from Coastal Plain regions of the watershed. The decade-long effort to reduce these losses has focused on reducing agricultural N use, but this strategy has yet to yield apparent reductions in N loadings to Coastal Plain tributaries. Although nitrate leaching losses are often attributed to inefficient use of N inputs, soil nitrate data indicate that both corn and soybeans can utilize nearly all available soil nitrate during periods of active growth. However, both crops tend to stop utilizing nitrate before mineralization has ceased, resulting in a late season buildup of root zone nitrate levels and significant leaching losses even when no N was applied. Reducing nitrate losses due to the inherent N inefficiency of summer annual grain crops will require the addition of winter annual crops to rotations or changes in weed management approaches that result in plant N uptake capacity being more closely matched to soil microbial N processes.  相似文献   

17.
Power densities produced by microbial fuel cells (MFCs) in natural systems are changed by exposure to light through the enrichment of photosynthetic microorganisms. When MFCs with brush anodes were exposed to light (4000 lx), power densities increased by 8–10% for glucose-fed reactors, and 34% for acetate-fed reactors. Denaturing gradient gel electrophoresis (DGGE) profiles based on the 16S rRNA gene showed that exposure to high light levels changed the microbial communities on the anodes. Based on 16S rRNA gene clone libraries of light-exposed systems the anode communities using glucose were also significantly different than those fed acetate. Dominant bacteria that are known exoelectrogens were identified in the anode biofilm, including a purple nonsulfur (PNS) photosynthetic bacterium, Rhodopseudomonas palustris, and a dissimilatory iron-reducing bacterium, Geobacter sulfurreducens. Pure culture tests confirmed that PNS photosynthetic bacteria increased power production when exposed to high light intensities (4000 lx). These results demonstrate that power production and community composition are affected by light conditions as well as electron donors in single-chamber air-cathode MFCs.  相似文献   

18.
微生物燃料电池生物质能利用现状与展望   总被引:3,自引:0,他引:3  
作为一种新概念的废物处理与能源化技术,微生物燃料电池研究在过去10年里取得了长足的进步和技术突破。本文在简要介绍微生物燃料电池研究现状基础上,系统综述了该技术及与其他技术耦合在生物质能利用方面的最新研究进展,重点分析了其中存在的问题,并展望了该技术在生物质能转化和利用方面的研究前景。  相似文献   

19.
Microbial fuel cells (MFCs) have been shown to be capable of clean energy production through the oxidation of biodegradable organic waste using various bacterial species as biocatalysts. In this study we found Saccharomyces cerevisiae, previously known electrochemcially inactive or less active species, can be acclimated with an electron mediator thionine for electrogenic biofilm formation in MFC, and electricity production is improved with facilitation of electron transfer. Power generation of MFC was also significantly increased by thionine with both aerated and non-aerated cathode. With electrochemically active biofilm enriched with swine wastewater, MFC power increased more significantly by addition of thionine. The optimum mediator concentration was 500 mM of thionine with S. cerevisae in MFC with the maximum voltage and current generation in the microbial fuel cell were 420 mV and 700 mA/m(2), respectively. Cyclic voltametry shows that thionine improves oxidizing and reducing capability in both pure culture and acclimated biofilm as compared to non-mediated cell. The results obtained indicated that thionine has great potential to enhance power generation from unmediated yeast or electrochemically active biofilm in MFC.  相似文献   

20.
Characterization of the various microbial populations present in exoelectrogenic biofilms provides insight into the processes required to convert complex organic matter in wastewater streams into electrical current in bioelectrochemical systems (BESs). Analysis of the community profiles of exoelectrogenic microbial consortia in BESs fed different substrates gives a clearer picture of the different microbial populations present in these exoelectrogenic biofilms. Rapid utilization of fermentation end products by exoelectrogens (typically Geobacter species) relieves feedback inhibition for the fermentative consortia, allowing for rapid metabolism of organics. Identification of specific syntrophic processes and the communities characteristic of these anodic biofilms will be a valuable aid in improving the performance of BESs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号