首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 367 毫秒
1.
A sensitive chemiluminescence method has been proposed for Phenobarbital (PB) determination. It is based on the enhancive effect of PB on the chemiluminescence reaction between luminol and dissolved oxygen in a flow injection system. The chemiluminescence intensity linearly responded to the PB concentrations ranged from 0.05 to 10 ng/ml with the detection limit of 0.02 ng/ml (3σ). At a flow rate of 2.0 ml/ min, the whole procedure of PB determination (including sampling and washing) takes just 0.5 minute, offering the sampling efficiency of 120 per 1 h. The method was applied successfully for the PB assay in pharmaceutical preparations, human urine and serum without any pretreatment with recovery from 95.7 to 106.7% and RSDs of less than 3.0%.  相似文献   

2.
We have developed a new method for highly selective determination of the ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) concentration using a surface plasmon resonance imaging (SPRI) technique and two different biosensors. UCH-L1 was captured from a solution by immobilized specific rabbit monoclonal antibody or specific LDN-57444 inhibitor due to formation of receptor–UCH-L1 complex on the biosensor surface. The analytically useful dynamic response range of both biosensors is between 0.1 and 2.5 ng/ml. The detection limit is 0.06 ng/ml for the biosensor with antibody and 0.08 ng/ml for the biosensor with inhibitor. Biosensors based on both antibody and inhibitor were found to be suitable for quantitative determination of the UCH-L1 and exhibit good tolerance to the potential interferents. Both biosensors gave comparable results in the range of 0 to 0.20 ng/ml for plasma samples and 0.30 to 0.49 ng/ml for cerebrospinal fluid samples. To validate the new methods, comparative determination of UCH-L1 by the commercial enzyme-linked immunosorbent assay (ELISA) kit was performed. In general, in terms of UCH-L1 concentration, a good correlation between SPRI and ELISA was found. The developed biosensors can be used successfully for the determination of UCH-L1 in body fluids.  相似文献   

3.
A simple, sensitive spectrophotometric assay system for superoxide dismutase (SOD) has been developed. This assay is based on the inhibitory effects of SOD on the initial rate of 6-hydroxydopamine autoxidation. The inhibition of 6-hydroxydopamine autoxidation was virtually linear to an SOD concentration of approximately 100 ng of SOD/ml (about a 50% inhibition at 100 ng/ml; there was a greater inhibition at higher SOD concentrations). With this assay system it was determined that SOD levels in rat brain, liver, and spinal cord were 84, 660, and 56 μg of SOD/g of tissue, respectively. These results agree very well with results obtained by other assays.  相似文献   

4.
An important index of neutrophil function is the production of superoxide radicals (O2-) upon activation. Thus a development of a new adequate assay of O2- generation measurement is of great interest for phagocyte researchers. The present article considers the quantitative determination of O2- generation based on the interaction of O2- with 1-oxy-2,2,6,6-tetramethyl-4-oxypiperidine producing 4-oxo-2,2,6,6-piperidine-1-oxyl, detected by ESR. The kinetic curve of nitroxyl radical (NR) formation has a linear character. The NR formation rate after a short induction period (appr. 2 min.) approaches 3.3 X 10(-3) M/s, where cell concentration was 4 X 10(5) per ml. Hydroxylamine (3.8 mM) auto-oxidation rate is negligible as compared with activated neutrophils and is equal to 2 X 10(-9) M/s. Sensitivity NR to the presence of superoxide dismutase (SOD) came as evidence that NR formation is due O2- radicals. SOD (10(-7) M) inhibits NR formation by 90%. Hydroxylamine oxidation by O2- is an irreversible reaction--20-min incubation of activated neutrophils with NR do not influence NR concentration. The NR generation rate dependence upon the neutrophil concentration is linear in the cell concentration range from 4 X 10(5 up to 6 X 10(6) per ml. In this range a quantitative measurement of O2- production is suitable. The sensitivity of hydroxylamine assay is close to the sensitivity of chemiluminescent method, but specificity is higher, as SOD inhibits chemiluminescence only by 50%.  相似文献   

5.
A high-performance liquid chromatographic determination of a neuronal cell protective compound, propentofylline [3-methyl-1-(5-oxohexyl)-7-propyl-7H-purine-2(3H),6(1H)-dione] was performed combining a microdialysis technique with peroxyoxalate chemiluminescence (PO-CL) detection. The microdialysate was subjected to a fluorescent derivatization of propentofylline with 4-(N,N-dimethylaminosulfonyl)-7-hydrazino-2,1,3-benzoxadiazole (DBD-H) without further cleanup, because the membrane used in the microdialysis excluded high-molecular-mass proteins. The proposed method showed a good linearity in the determination range of 0.031 to 1.25 ng/injection; y (μV)=4234 x (ng)−13.43, r=0.9993 (y=peak height and x=amount of propentofylline). The very low determination limit of 0.031 ng/injection was ca. 200 times more sensitive than that of HPLC–UV determination. The HPLC–PO-CL method was applied for the first time to determine propentofylline concentration in the dialysate obtained from the rat hippocampus after a single oral administration (25 mg/kg). Propentofylline showed its maximum extracellular fluid (ECF) concentration of 125.1±15.1 ng/ml (mean±SD, n=3) at 0.33 h after administration.  相似文献   

6.
All methods used for quantitation of superoxide have limitations when it comes to differentiating between extracellular and intracellular sites of superoxide production. In the present study, we monitored dihydroethidium (DHE)-derived fluorescence at 570 nm, which indicates hydroxyethidium derived from reaction with superoxide produced by human leukemia cells (HL-60) and microvascular endothelial cells (HMEC-1). Phorbol-12-myristate 13-acetate (PMA; 100 ng/ml) caused an increase in fluorescence and lucigenin chemiluminescence in HL-60, which was abolished by superoxide dismutase (SOD; 600 U/ml) indicating that DHE detects extracellular superoxide. Furthermore, both HL-60 cells and HMEC-1 generated a fluorescence signal in the presence of DHE under resting conditions, which was unaffected by SOD, but abolished by polyethylene glycosylated-SOD (PEG-SOD) (100 U/ml) and MnTmPyP (25 μM), indicating that DHE also detects superoxide produced intracellularly. In HMEC-1, silencing of either Nox2 or Nox4 components of NADPH oxidase with small interference RNA (siRNA) resulted in a significant reduction in superoxide detected by both DHE fluorescence (Nox2 siRNA; 71 ± 6% and Nox4 siRNA 83 ± 7% of control) and lucigenin chemiluminescence (Nox2; 54 ± 6% and Nox4 74 ± 4% of control). In conclusion, DHE-derived fluorescence at 570 nm is a convenient method for detection of intracellular and extracellular superoxide produced by phagocytic and vascular NADPH oxidase.  相似文献   

7.
A chemiluminescent method for the determination of riboflavin is described. The method is based on the chemiluminescence (CL) generated during the oxidation of luminol by N-bromosuccinimide (NBS) and N-chlorosuccinimide (NCS) in alkaline medium. It was found that riboflavin could greatly enhance this CL intensity when present in the luminol solution. Based on this observation, a new flow-injection CL method for the determination of riboflavin is proposed in this paper. The detection limits were 7.5 ng/mL and 3.5 ng/mL of riboflavin for the NBS- and NCS-luminol CL systems, respectively. The relative CL intensity was linear, with riboflavin concentration in the range 19-600 ng/mL and 600-2000 ng/mL for the NBS-luminol CL system, and 12-200 ng/mL and 200-2000 ng/mL for the NCS-luminol CL system. The results obtained for the assay of pharmaceutical preparations compared well with those obtained by the official method and demonstrated good accuracy and precision.  相似文献   

8.
A method for the simultaneous determination of selegiline and its metabolite, desmethylselegiline, in human whole blood and urine is presented. The method, which combines a fiber-based headspace solid-phase microextraction (SPME) technique with gas chromatography-mass spectrometry (GC-MS), required optimization of various parameters (e.g., salt additives, extraction temperatures, extraction times and the extraction properties of the SPME fiber coatings). Pargyline was used as the internal standard. Extraction efficiencies for both selegiline and desmethylselegiline were 2.0-3.4% for whole blood, and 8.0-13.2% for urine. The regression equations for selegiline and desmethylselegiline extracted from whole blood were linear (r(2)=0.996 and 0.995) within the concentration ranges 0.1-10 and 0.2-20 ng/ml, respectively. For urine, the regression equations for selegiline and desmethylselegiline were linear (r(2)=0.999 and 0.998) within the concentration ranges 0.05-5.0 and 0.1-10 ng/ml, respectively. The limit of detection for selegiline and desmethylselegiline was 0.01-0.05 ng/ml for both samples. The lower and upper limits of quantification for each compound were 0.05-0.2 and 5-20 ng/ml, respectively. Intra- and inter-day coefficients of variation for selegiline and desmethylselegiline in both samples were not greater than 8.7 and 11.7%, respectively. The determination of selegiline and desmethylselegiline concentrations in Parkinson's disease patients undergoing continuous selegiline treatment is presented and is shown to validate the present methodology.  相似文献   

9.
This study used chemiluminescence, an "on-line" photon-counting technique, to detect and characterize activated O2 species in vitro and in isolated rat lungs. The sensitivity and specificity of enhanced chemiluminescence for superoxide anion (O2-.) and hydrogen peroxide (H2O2) was evaluated in vitro. The effect of media conditions (such as O2 tension, albumin concentration, and sulfhydryl group availability) on luminescence was assessed in vitro. Xanthine-xanthine oxidase (X-XO) primarily produced superoxide anion in vitro. Enhanced chemiluminescence varied directly with the dose of luminescent probe used and the quantity of activated O2 species administered. The strength of the luminescent signal was also dependent on the concentration of albumin and O2 in the media. Lucigenin was more sensitive than luminol to the presence of O2-. and, unlike luminol, lucigenin did not alter radical production by XO. However, neither luminescent probe was specific for O2-., as both detected H2O2 and O2 in vitro. H2O2-induced chemiluminescence was inhibited by catalase but not superoxide dismutase (SOD), while X-XO-induced luminescence was inhibited by SOD but not catalase. SOD-inhibitable chemiluminescence was a sensitive and specific marker for O2-. production in vitro. Once the sensitivity-specificity of enhanced chemiluminescence was defined in vitro, this technique was used to explore the mechanism by which exogenous X-XO reduced hypoxic vasoconstriction in isolated rat lungs. The vascular paresis, caused by administration of X-XO to the rat lung, resulted from a brief burst of O2-. production rather than a sustained alteration of lung radical levels.  相似文献   

10.
A novel flow injection chemiluminescence (CL) method for the determination of dihydralazine sulphate (DHZS) is described. The method is based on the CL produced during the oxidation of DHZS by acidic permanganate solution in the presence of rhodamine B. Rhodamine B is suggested as a fluorescing compound for the energy-transferred excitation. The CL emission allows quantitation of DHZS concentration in the range 5-800 ng/mL, with a detection limit of 1.9 ng/mL (3sigma). The experimental conditions for the CL reaction are optimized and the possible reaction mechanism is discussed. The method has been applied to the determination of DHZS in pharmaceutical preparations and compares well with the high performance liquid chromatography (HPLC) method.  相似文献   

11.
A method is proposed for the determination of nicotine and cotinine in human urine, plasma and saliva. Nicotine and cotinine were extracted from alkalinized sample with ethyl ether and concentrated to minimum volume with nitrogen stream. The volatility of nicotine was prevented by the addition of acetic acid to the organic solvent during evaporation. Peak shapes and quantitation of nicotine and cotinine are excellent, with linear calibration curves over a wide range of 1-10,000 ng/ml. The detection limits of nicotine and cotinine are 0.2 ng/ml in urine and 1.0 ng/ml in plasma and saliva. The intra-day precision of nicotine and cotinine in all samples was <5% relative standard deviation (RSD). Urine, plasma and saliva samples of 303 non-smoking and 41 smoking volunteers from a girl's high school in Korea were quantified by the described procedure. As a result, the concentrations of nicotine and cotinine in plasma ranged from 6 to 498 ng/ml and 4 to 96 ng/ml. Otherwise, those of nicotine and cotinine in saliva ranged from 0 to 207 ng/ml and 0 to 42 ng/ml, and those of nicotine and cotinine in urine ranged from 0 to 1,590 ng/ml and 0 to 2,986 ng/ml, respectively. We found that the concentration of cotinine in plasma was successfully predicted from the salivary cotinine concentration by the equation y=2.31x+4.76 (x=the concentration of cotinine in saliva, y=the concentration of cotinine in plasma). The results show that through the accurate determination of cotinine in saliva, the risk of ETS-exposed human can be predicted.  相似文献   

12.
A fluorescence-based continuous-flow immunosensor for sensitive, precise, accurate and fast determination of paclitaxel was developed. The sensor utilizes anti-paclitaxel antibody immobilized through its Fc region and crosslinked by dimethylpimelimidate to protein A attached covalently onto the silanized inner walls of a glass capillary column followed by saturation of the paclitaxel-binding sites with rhodamine-labeled paclitaxel. The assay is based on the displacement and detection downstream of the rhodamine-labeled paclitaxel, by a flow-through spectrofluorometer, as a result of the competition with paclitaxel introduced as a pulse into the stream of carrier buffer flowing through the system. The peak height of the fluorescence intensity profile of the displaced rhodamine-labeled paclitaxel was directly proportional to the concentration of paclitaxel applied and was a function of the carrier buffer flow rate. The sensitivity of the immunosensor response ranged from 0.31 relative fluorescence units (RFU)/ng/ml at a flow rate 0.1 ml/min to 0.52 RFU/ng/ml at 1 ml/min, while the lower detection limit ranged from 1 ng/ml at 0.1 ml/min to 4 ng/ml at 1 ml/min. The immunosensor response was very reproducible (RSD=4.8%; n=10) and linear up to 100 ng/ml. The assay time ranged from 2 min at 1 ml/min to 8 min at 0.1 ml/min. A technique developed to resaturate the antigen binding sites of the immobilized antibody with rhodamine-labeled paclitaxel was successful in regenerating the capillary column without affecting its performance, thus enhancing the economic viability of the immunosensor. The immunosensor was successfully applied for the determination of paclitaxel in human plasma.  相似文献   

13.
All methods used for quantitation of superoxide have limitations when it comes to differentiating between extracellular and intracellular sites of superoxide production. In the present study, we monitored dihydroethidium (DHE)-derived fluorescence at 570 nm, which indicates hydroxyethidium derived from reaction with superoxide produced by human leukemia cells (HL-60) and microvascular endothelial cells (HMEC-1). Phorbol-12-myristate 13-acetate (PMA; 100 ng/ml) caused an increase in fluorescence and lucigenin chemiluminescence in HL-60, which was abolished by superoxide dismutase (SOD; 600 U/ml) indicating that DHE detects extracellular superoxide. Furthermore, both HL-60 cells and HMEC-1 generated a fluorescence signal in the presence of DHE under resting conditions, which was unaffected by SOD, but abolished by polyethylene glycosylated-SOD (PEG-SOD) (100 U/ml) and MnTmPyP (25 μM), indicating that DHE also detects superoxide produced intracellularly. In HMEC-1, silencing of either Nox2 or Nox4 components of NADPH oxidase with small interference RNA (siRNA) resulted in a significant reduction in superoxide detected by both DHE fluorescence (Nox2 siRNA; 71 ± 6% and Nox4 siRNA 83 ± 7% of control) and lucigenin chemiluminescence (Nox2; 54 ± 6% and Nox4 74 ± 4% of control). In conclusion, DHE-derived fluorescence at 570 nm is a convenient method for detection of intracellular and extracellular superoxide produced by phagocytic and vascular NADPH oxidase.  相似文献   

14.
The development of an enantioselective flow-through chemiluminescence immunosensor for amino acids is described. The approach is based on a competitive assay using enantioselective antibodies. Two different instrumental approaches, a flow-injection (FIA) and a sequential-injection system (SIA), are used. Compared to the flow-injection technique, the sequential injection-mode showed better repeatability. Both systems use an immunoreactor consisting of a flow cell packed with immobilized haptens. The haptens (4-amino-L- or D-phenylalanine) are immobilized onto a hydroxysuccinimide-activated polymer (Affi-prep 10) via a tyramine spacer. Stereoselective antibodies, raised against 4-amino-L- or D-phenylalanine, are labeled with an acridinium ester. Stereoselective inhibition of binding of the acridinum-labeled antibodies to the immobilized hapten by amino acids takes place. Chiral recognition was observed not only for the hapten molecule but also for a series of different amino acids. One assay cycle including regeneration takes 6:30 min in the FIA mode and 4:40 min in the SIA mode. Using D-phenylalanine as a sample, the detection limit was found to be 6.13 pmol/ml (1.01 ng/ml) for the flow-injection immunoassay (FIIA) and 1.76 pmol/ml (0.29 ng/ml ) for the sequential-injection immunoassay (SIIA) which can be lowered to 0.22 pmol/ml (0.036 ng/ml) or 0.064 pmol/ml (0.01 ng/ml) by using a stopped flow system. The intra-assay repeatability was found to be about 5% RSD and the inter-assay repeatability below 6% (within 3 days).  相似文献   

15.
The detection of brucellosis and tularaemia infection agents is of particular interest for medical practice. The possibility of using enhanced chemiluminescence reactions for the determination of these agents is studied in this work. Light intensity depends on both the conjugate concentration used and the conditions at which the adsorption was performed. Optimal conditions for these test-systems were: ~ 20 μg/mL of Ig and 200 μg/mL (titre 1:20) of conjugate. As is seen from the chemiluminescent and spectrophotometric results the lowest determined concentrations are 10 and 30 ng/mL (for brucellosis) and 1 and 5 ng/mL (for tularaemia), respectively. Calibration curves in the antigen concentrations ranging from 10 to 2500 ng/mL (for brucellosis) and from 1 to 500 ng/mL (for tularaemia) are observed. Optical density depends linearly on the logarithm of the antigen concentration from 30 to 5000 ng/mL (for brucellosis) and from 5 to 250 ng/mL (for tularaemia). The results obtained permit the conclusion that the chemiluminescence method can be used in enzyme immunoanalysis for brucellosis and tularaemia antigens.  相似文献   

16.
This study presents the first analytical application of the luminol chemiluminescence (CL) reaction for the sensitive detection of carbamate residues. Some experiments have been carried out to check the influence of the presence of traces of a N-methylcarbamate (carbaryl) on the CL emission produced from the oxidation of luminol using different oxidants, showing a significant enhancing effect on the CL emission when the oxidation of luminol is produced by potassium permanganate in alkaline medium, this enhancement being proportional to the carbaryl concentration. This fact has permitted the establishment of a sensitive chemiluminescence flow-injection (CL-FIA) method for the direct determination of carbaryl. The optimization of instrumental and chemical variables influencing the CL response has been carried out by applying experimental designs. Under the optimal conditions, the CL intensity was linear for a carbaryl concentration over the range 5-100 ng/mL with a detection limit of 4.9 ng/mL. This luminol-KMnO4-based FIA-CL system in basic medium shows an easy, fast and cheap alternative detection mode for the analysis of carbaryl residues in environmental water samples.  相似文献   

17.
An inexpensive enzyme immunoassay method was designed for the determination of thyroglobulin concentration in human blood serum. The range of concentrations of thyroglobulin which can be measured by the method is between 6 and 800 ng/ml. The sensitivity of the method is comparable to that of the commercial test kits. The values of thyroglobulin concentration obtained with the use of the described method are strongly correlated (r = 0.946) with those obtained by using the reference method (IRMA kit of Byk, Sweden). The intraassay coefficient of variation ranged from 5.5 to 10.2% and interassay coefficient of variation from 9.5 to 13.2% depending on the thyroglobulin concentration. The upper limit of blood serum thyroglobulin concentration in healthy subjects was 70 ng/ml. The results of thyroglobulin determination obtained with the described method are falsely lowered in the presence of antithyroglobulin antibodies; simultaneous determination of these antibodies is thus necessary in such a case. It seems that the described method may be used for monitoring the patients after surgical treatment of differentiated thyroid cancer aimed at early detection of metastases.  相似文献   

18.
19.
本文合成了生物素—氨基丁基乙基异鲁米诺偶联物,此物与亲和素结合后,降低了发光强度,亲和素含量与发光强度的变化有定量关系。因此,利用此特性于C—反应蛋白(CRP)发光免疫测定中。CRP标准曲线范围为1.25到160ng/mL。批内和批间变异系数分别为4.8%及14.8%。60名献血员血清CRP平均值为1.3μg/mL。此法与火箭电泳法测定同一血清CRP,相关性很好,r=0.96(n=20)。  相似文献   

20.
An HPLC method has been developed and validated for the determination of spironolactone, 7 alpha-thiomethylspirolactone and canrenone in paediatric plasma samples. The method utilises 200 microl of plasma and sample preparation involves protein precipitation followed by Solid Phase Extraction (SPE). Determination of standard curves of peak height ratio (PHR) against concentration was performed by weighted least squares linear regression using a weighting factor of 1/concentration2. The developed method was found to be linear over concentration ranges of 30-1000 ng/ml for spironolactone and 25-1000 ng/ml for 7 alpha-thiomethylspirolactone and canrenone. The lower limit of quantification for spironolactone, 7 alpha-thiomethylspirolactone and canrenone were calculated as 28, 20 and 25 ng/ml, respectively. The method was shown to be applicable to the determination of spironolactone, 7 alpha-thiomethylspirolactone and canrenone in paediatric plasma samples and also plasma from healthy human volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号