首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Enzymes that catalyse the synthesis and breakdown of glycosidic bonds account for 1-3% of the proteins encoded by the genomes of most organisms. At the current rate, over 12 000 glycosyltransferase and glycoside hydrolase open reading frames will appear during 2006. Recent advances in the study of the structure and mechanism of these carbohydrate-active enzymes reveal that glycoside hydrolases continue to display a wide variety of scaffolds, whereas nucleotide-sugar-dependent glycosyltransferases tend to be grafted onto just two protein folds. The past two years have seen significant advances, including the discovery of a novel NAD+-dependent glycosidase mechanism, the dissection of the reaction coordinate of sialidases and a better understanding of the expanding roles of auxiliary carbohydrate-binding domains.  相似文献   

2.
Simple and complex carbohydrates have been described as "the last frontier of molecular and cell biology". The enzymes that are required for the synthesis and degradation of these compounds provide an enormous challenge in the post-genomic era. This reflects both the extreme chemical and functional diversity of sugars and the difficulties in characterizing both the substrates and the enzymes themselves. The vast myriad of enzymes involved in the synthesis, modification and degradation of oligosaccharides and polysaccharides is only just being unveiled by genomic sequencing. These so-called "carbohydrate-active enzymes" lend themselves to classification by sensitive sequence similarity detection methods. The modularity, often extremely complex, of these enzymes must first be dissected and annotated before high throughput characterization or "structural genomics" approaches may be employed. Once achieved, modular analysis also permits collation of a detailed "census" of carbohydrate-active enzymes for a whole organism or throughout an ecosystem. At the structural level, improvements in X-ray crystallography have opened up a three-dimensional understanding of the way these enzymes work. The mechanisms of many of the glycoside hydrolase families are becoming clearer, yet glycosyltransferases are only slowly revealing their secrets. What is clear from the genomic and structural data is that if we are to harness the latent power of glycogenomics, scientists must consider distant sequence relatives revealed by the sequence families or other sensitive detection methods.  相似文献   

3.
Biocatalysts are essential for the development of bioprocesses efficient for plant biomass degradation. Previously, a metagenomic clone containing DNA from termite gut microbiota was pinpointed in a functional screening that revealed the presence of arabinofuranosidase activity. Subsequent genetic and bioinformatic analysis revealed that the DNA fragment belonged to a member of the genus Bacteroides and encoded 19 open reading frames (ORFs), and annotation suggested the presence of hypothetical transporter and regulator proteins and others involved in the catabolism of pentose sugar. In this respect and considering the phenotype of the metagenomic clone, it was noted that among the ORFs, there are four putative arabinose-specific glycoside hydrolases, two from family GH43 and two from GH51. In this study, a thorough bioinformatics analysis of the metagenomic clone gene cluster has been performed and the four aforementioned glycoside hydrolases have been characterized. Together, the results provide evidence that the gene cluster is a polysaccharide utilization locus dedicated to the breakdown of the arabinan component in pectin and related substrates. Characterization of the two GH43 and the two GH51 glycoside hydrolases has revealed that each of these enzymes displays specific catalytic capabilities and that when these are combined the enzymes act synergistically, increasing the efficiency of arabinan degradation.  相似文献   

4.
An evolving hierarchical family classification for glycosyltransferases   总被引:4,自引:0,他引:4  
Glycosyltransferases are a ubiquitous group of enzymes that catalyse the transfer of a sugar moiety from an activated sugar donor onto saccharide or non-saccharide acceptors. Although many glycosyltransferases catalyse chemically similar reactions, presumably through transition states with substantial oxocarbenium ion character, they display remarkable diversity in their donor, acceptor and product specificity and thereby generate a potentially infinite number of glycoconjugates, oligo- and polysaccharides. We have performed a comprehensive survey of glycosyltransferase-related sequences (over 7200 to date) and present here a classification of these enzymes akin to that proposed previously for glycoside hydrolases, into a hierarchical system of families, clans, and folds. This evolving classification rationalises structural and mechanistic investigation, harnesses information from a wide variety of related enzymes to inform cell biology and overcomes recurrent problems in the functional prediction of glycosyltransferase-related open-reading frames.  相似文献   

5.
The cell wall plays a key role in controlling the size and shape of the plant cell during plant development and in the interactions of the plant with its environment. The cell wall structure is complex and contains various components such as polysaccharides, lignin and proteins whose composition and concentration change during plant development and growth. Many studies have revealed changes in cell walls which occur during cell division, expansion, and differentiation and in response to environmental stresses; i.e. pathogens or mechanical stress. Although many proteins and enzymes are necessary for the control of cell wall organization, little information is available concerning them. An important advance was made recently concerning cell wall organization as plant enzymes that belong to the superfamily of glycoside hydrolases and transglycosidases were identified and characterized; these enzymes are involved in the degradation of cell wall polysaccharides. Glycoside hydrolases have been characterized using molecular, genetic and biochemical approaches. Many genes encoding these enzymes have been identified and functional analysis of some of them has been performed. This review summarizes our current knowledge about plant glycoside hydrolases that participate in the degradation and reorganisation of cell wall polysaccharides in plants focussing particularly on those from Arabidopsis thaliana.  相似文献   

6.
7.
Physiological roles of plant glycoside hydrolases   总被引:2,自引:0,他引:2  
Minic Z 《Planta》2008,227(4):723-740
The functions of plant glycoside hydrolases and transglycosidases have been studied using different biochemical and molecular genetic approaches. These enzymes are involved in the metabolism of various carbohydrates containing compounds present in the plant tissues. The structural and functional diversity of the carbohydrates implies a vast spectrum of enzymes involved in their metabolism. Complete genome sequence of Arabidopsis and rice has allowed the classification of glycoside hydrolases in different families based on amino acid sequence data. The genomes of these plants contain 29 families of glycoside hydrolases. This review summarizes the current research on plant glycoside hydrolases concerning their principal functional roles, which were attributed to different families. The majority of these plant glycoside hydrolases are involved in cell wall polysaccharide metabolism. Other functions include their participation in the biosynthesis and remodulation of glycans, mobilization of energy, defence, symbiosis, signalling, secondary plant metabolism and metabolism of glycolipids.  相似文献   

8.
The past year has witnessed the expected increase in the number of solved structures of glycoside hydrolases and glycosyltransferases, and their constitutive modules. These structures show that, while glycoside hydrolases display an extraordinary variety of folds, glycosyltransferases and carbohydrate-binding modules appear to belong to a much smaller number of folding families.  相似文献   

9.
The fungus Aspergillus niger is an industrial producer of pectin-degrading enzymes. The recent solving of the genomic sequence of A. niger allowed an inventory of the entire genome of the fungus for potential carbohydrate-degrading enzymes. By applying bioinformatics tools, 12 new genes, putatively encoding family 28 glycoside hydrolases, were identified. Seven of the newly discovered genes form a new gene group, which we show to encode exoacting pectinolytic glycoside hydrolases. This group includes four exo-polygalacturonan hydrolases (PGAX, PGXA, PGXB and PGXC) and three putative exo-rhamnogalacturonan hydrolases (RGXA, RGXB and RGXC). Biochemical identification using polygalacturonic acid and xylogalacturonan as substrates demonstrated that indeed PGXB and PGXC act as exo-polygalacturonases, whereas PGXA acts as an exo-xylogalacturonan hydrolase. The expression levels of all 21 genes were assessed by microarray analysis. The results from the present study demonstrate that exo-acting glycoside hydrolases play a prominent role in pectin degradation.  相似文献   

10.
Abstract

Glycosylation is considered to be an important reaction for the chemical modification of compounds with useful biological activities. Glycoside hydrolases are biotechnologically attractive enzymes which can be used in synthetic reactions for assembling glycosidic linkages with absolute stereoselectivity at an anomeric centre. Most of these enzymes are commercially available but there is great interest in the search for new biocatalysts with original catalytic characteristics. The marine environment has shown to be a very interesting source for new glycosyl hydrolases for both hydrolytic and synthetic aspects. In particular, Aplysia fasciata a marine herbivorous mollusc has been shown to be a potent producer of a library of glycoside hydrolases applied to the synthesis of glycosidic bonds. The impressive assortment of glycosidases in marine organisms clearly indicates that the potential biodiversity of these enzymes is still largely unexplored and that potential applications of biocatalysts from the sea will increase in the near future.  相似文献   

11.
Complete enzymatic degradation of plant polysaccharides is a result of combined action of various carbohydrate-active enzymes (CAZymes). In this paper, we demonstrate the potential of the filamentous fungus Scytalidium candidum 3C for processing of plant biomass. Structural annotation of the improved assembly of S. candidum 3C genome and functional annotation of CAZymes revealed putative gene sequences encoding such proteins. A total of 190 CAZyme-encoding genes were identified, including 104 glycoside hydrolases, 52 glycosyltransferases, 28 oxidative enzymes, and 6 carbohydrate esterases. In addition, 14 carbohydrate-binding modules were found. Glycoside hydrolases secreted during the growth of S. candidum 3C in three media were analyzed with a variety of substrates. Mass spectrometry analysis of the fungal culture liquid revealed the presence of peptides identical to 36 glycoside hydrolases, three proteins without known enzymatic function belonging to the same group of families, and 11 oxidative enzymes. The activity of endohemicellulases was determined using specially synthesized substrates in which the glycosidic bond between monosaccharide residues was replaced by a thiolinkage. During analysis of the CAZyme profile of S. candidum 3C, four β-xylanases from the GH10 family and two β-glucanases from the GH7 and GH55 families were detected, partially purified, and identified.  相似文献   

12.
Many pathogenic microorganisms invade mammalian and/or plant cells by producing polysaccharide-degrading enzymes (lyases and hydrolases). Mammalian glycosaminoglycans and plant pectins that form part of the cell surface matrix are typical targets for these microbial enzymes. Unsaturated glycoside hydrolase catalyzes the hydrolytic release of an unsaturated uronic acid from oligosaccharides, which are produced through the reaction of matrix-degrading polysaccharide lyase. This enzymatic ability suggests that unsaturated glycoside hydrolases function as virulence factors in microbial infection. This review focuses on the molecular identification, bacterial distribution, and structure/function relationships of these enzymes. In contrast to general glycoside hydrolases, in which the catalytic mechanism involves the retention or inversion of an anomeric configuration, unsaturated glycoside hydrolases uniquely trigger the hydrolysis of vinyl ether groups in unsaturated saccharides but not of their glycosidic bonds.  相似文献   

13.
倪新  杨帆 《微生物学报》2023,63(6):2330-2339
碳水化合物结合模块(carbohydrate-binding module, CBM)是碳水化合物活性酶的重要组成部分,其功能是识别并结合到特定的多糖底物上以提高催化结构域在底物附近的浓度及催化效率,帮助其更好地降解如纤维素、木聚糖、几丁质和黄原胶等大分子化合物。不同家族的CBM因其来源或结构不同往往会具有不同的底物结合特性。本文从CBM的家族、结构和功能等方面对CBM近年来的研究进行了综述,特别是对其作为融合单元运用到多糖底物的降解和糖苷水解酶改造方面的应用进行了总结。  相似文献   

14.
Lotus Cell Walls and the Genes Involved in its Synthesis and Modification   总被引:1,自引:0,他引:1  
The lotus genome (Nelumbo nucifera (Gaertn.)) lacks the paleo-triplication found in other eudicots and has evolved remarkably slowly with fewer nucleotide mutations. It is thought to have greater retention of duplicated genes than other angiosperms. We evaluated the potential genes involved in cell wall synthesis and its modification, and ethylene synthesis and response. In many cell wall transferases and hydrolases families, lotus had fewer members in most families when compared to Arabidopsis. Lotus had similar or fewer members in each family as found in poplar, grape and papaya. The exceptions were in the sialyl and beta-glucuronsyl transferases where similar number were found as in the core eudicots. Lotus had similar numbers of polygalacturonase and pectin methyl esterases as found in Arabidopsis but fewer in all other hydrolases families. For starch degradation, lotus had only two alpha amylases predicted genes versus eight to ten in other eudicots, with similar numbers of beta amylase genes predicted. Lotus also had less than half the number of genes predicted for the enzymes involved in lignin and tannin synthesis compared to Arabidopsis. The stress plant growth regulator ethylene’s synthesis, reception and response predicted genes were fewer in lotus than other eudicots. Only two ethylene receptor genes were predicted in lotus with five reported for Arabidopsis and six for tomato. Our analysis does not supports the conclusion that this species has greater retention of duplicated genes though our data does support the conclusion that lotus split occurred at the base of the eudicots.  相似文献   

15.
The discovery of a large number of genes encoding cellulose synthases and related glycosyltransferases in plants has led to a renewed interest in the biosynthesis of cell-wall polysaccharides. A number of approaches, including virus-induced gene silencing have proven useful in the functional analysis of these genes. X-ray analysis of the structures of a few glycosyltransferases has led to the identification and confirmation of the role of conserved residues within this group of enzymes. Analysis of related enzymes has provided useful information on the possible domain organization of cellulose synthases and the requirement for at least two separate glycosyltransferase activities in the processive synthesis of sugar chains.  相似文献   

16.
To metabolize both dietary fiber constituent carbohydrates and host glycans lining the intestinal epithelium, gut bacteria produce a wide range of carbohydrate-active enzymes, of which glycoside hydrolases are the main components. In this study, we describe the ability of phosphorylases to participate in the breakdown of human N-glycans, from an analysis of the substrate specificity of UhgbMP, a mannoside phosphorylase of the GH130 protein family discovered by functional metagenomics. UhgbMP is found to phosphorolyze β-d-Manp-1,4-β-d-GlcpNAc-1,4-d-GlcpNAc and is also a highly efficient enzyme to catalyze the synthesis of this precious N-glycan core oligosaccharide by reverse phosphorolysis. Analysis of sequence conservation within family GH130, mapped on a three-dimensional model of UhgbMP and supported by site-directed mutagenesis results, revealed two GH130 subfamilies and allowed the identification of key residues responsible for catalysis and substrate specificity. The analysis of the genomic context of 65 known GH130 sequences belonging to human gut bacteria indicates that the enzymes of the GH130_1 subfamily would be involved in mannan catabolism, whereas the enzymes belonging to the GH130_2 subfamily would rather work in synergy with glycoside hydrolases of the GH92 and GH18 families in the breakdown of N-glycans. The use of GH130 inhibitors as therapeutic agents or functional foods could thus be considered as an innovative strategy to inhibit N-glycan degradation, with the ultimate goal of protecting, or restoring, the epithelial barrier.  相似文献   

17.
18.
Beta-D-Xylosidases are glycoside hydrolases that catalyse the release of xylose units from short xylooligosaccharides and are engaged in the final breakdown of plant cell-wall hemicelluloses. beta-D-Xylosidases are found in glycoside hydrolase families 3, 39, 43, 52 and 54. The first crystal structure of a GH39 beta-xylosidase revealed a multi-domain organization with the catalytic domain having the canonical (beta/alpha)8 barrel fold. Here, we report the crystal structure of the GH39 Geobacillus stearothermophilus beta-D-xylosidase, inactivated by a point mutation of the general acid-base residue E160A, in complex with the chromogenic substrate molecule 2,5-dinitrophenyl-beta-D-xyloside. Surprisingly, six of the eight active sites present in the crystallographic asymmetric unit contain the trapped covalent glycosyl-enzyme intermediate, while two of them still contain the uncleaved substrate. The structural characterization of these two critical species along the reaction coordinate of this enzyme identifies the residues forming its xyloside-binding pocket as well as those essential for its aglycone recognition.  相似文献   

19.
Agars are abundant polysaccharides from marine red algae, and their chemical structure consists of alternating D-galactose and 3,6-anhydro-L-galactose residues, the latter of which are presumed to make the polymer recalcitrant to degradation by most terrestrial bacteria. Here we study a family 117 glycoside hydrolase (BpGH117) encoded within a recently discovered locus from the human gut bacterium Bacteroides plebeius. Consistent with this locus being involved in agarocolloid degradation, we show that BpGH117 is an exo-acting 3,6-anhydro-α-(1,3)-L-galactosidase that removes the 3,6-anhydrogalactose from the non-reducing end of neoagaro-oligosaccharides. A Michaelis complex of BpGH117 with neoagarobiose reveals the distortion of the constrained 3,6-anhydro-L-galactose into a conformation that favors catalysis. Furthermore, this complex, supported by analysis of site-directed mutants, provides evidence for an organization of the active site and positioning of the catalytic residues that are consistent with an inverting mechanism of catalysis and suggests that a histidine residue acts as the general acid. This latter feature differs from the vast majority of glycoside hydrolases, which use a carboxylic acid, highlighting the alternative strategies that enzymes may utilize in catalyzing the cleavage of glycosidic bonds.  相似文献   

20.
The process of dark-induced senescence in plants is not fully understood, however, the functional involvement of an electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO), has been demonstrated. Recent studies have revealed that the enzymes isovaleryl-coenzyme A (CoA) dehydrogenase and 2-hydroxyglutarate dehydrogenase act as important electron donors to this complex. In addition both enzymes play a role in the breakdown of cellular carbon storage reserves with isovaleryl-CoA dehydrogenase being involved in degradation of the branched-chain amino acids, phytol, and lysine while 2-hydroxyglutarate dehydrogenase is exclusively involved in lysine degradation. Given that the chlorophyll breakdown intermediate phytanoyl-CoA accumulates dramatically both in knockout mutants of the ETF/ETFQO complex and of isovaleryl-CoA dehydrogenase following growth in extended dark periods we have investigated the direct importance of chlorophyll breakdown for the supply of carbon and electrons during this process. For this purpose we isolated three independent Arabidopsis (Arabidopsis thaliana) knockout mutants of phytanoyl-CoA 2-hydroxylase and grew them under the same extended darkness regime as previously used. Despite the fact that these mutants accumulated phytanoyl-CoA and also 2-hydroxyglutarate they exhibited no morphological changes in comparison to the other mutants previously characterized. These results are consistent with a single entry point of phytol breakdown into the ETF/ETFQO system and furthermore suggest that phytol is not primarily metabolized by this pathway. Furthermore analysis of isovaleryl-CoA dehydrogenase/2-hydroxyglutarate dehydrogenase double mutants generated here suggest that these two enzymes essentially account for the entire electron input via the ETF complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号