首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary  This paper is focused on the facies associations of an Early-Middle Norian stratigraphic succession cropping outin the Northern Calabria (Buonvicino, Cosenza). These carbonate deposits, pertaining to the Verbicaro Unit, represent a dolomitized platform characterized by a clear dominance of automicrites over skeletal metazoans. On the basis of the chronostatigraphic data and sedimentary evolution, two stratigraphic units have been distinguished: the Lower Unit (object of the present paper) and the Upper Unit. The Lower Unit consists of an Early-Middle Norian high-relief prograding carbonate platform. The Upper Unit is represented by Middle p.p.-Upper Norian basinal deposits. Three main facies associations, indicative of different depositional settings, have been identified. The inner platform facies association is characterized by automicrite (cauliflower-columnar subordinate planar stromatolites) associated with detrital carbonates (intraclastic breccia, bioclastic grainstone and packstone). Apeculiar facies is represented by megalodontid-bearing beds. Mud-cracked horizons and low-developed teepees occur quite frequently. The margin facies association is dominated by automicrite (planar to low relief stromatolites associated with thrombolitic fenestral boundstone) and detrital carbonates with subaerial exposure features. The slope facies association includes detrital carbonates (breccia/megabreccia) associated with serpulid/sphinctozoan bioconstructions and automicrite (planar stromatolites/thrombolitic boundstone). The whole carbonate body is completely dolomitized; nevertheless the morphology and microarchitecture of carbonate components (cements, grains and automicrite) is still clearly recognizable. The dolomite Mg content ranges from 40 to 48 mole%, sometimes reaching the stoichiometric value. Cements, primary and late, represent a minor component of the rock volume; they occur more frequently on the margin and upper slope setting. Quantitative tacies analyses lead to the following conclusions:
–  ⊙ the entire platform is largely led by automicrite (50% in the inner platform, 70% in the margin, and 30% in the slope), with planar to columnar stromatolitic or thrombolitic fabrics;
–  ⊙ primary skeletal framework is usually missing, although small bioconstructions of sphinctozoans and, subordinately, serpulids, occur on the slope;
–  ⊙ automicrite has been affected by early cementation, as witnessed by non-gravitative microfabric, early fracturing and boring.
The sedimentary facies and the low-diversity fossil associations seem to indicate a stressed marine environment; the platform margin probably flanked an intra-platform basin, not an open marine basin.  相似文献   

2.
Late Jurassic–Early Cretaceous ?tramberk-type reef limestones are known from some parts of the Southern Carpathians in Romania. The Upper Jurassic deposits mainly consist of massif reef limestones including a variety of microbialites associated with micro-encrusters. They played an important role in the formation and evolution of the reef frameworks and thus are of significant importance for deciphering the depositional environments. For our study, the most important encrusting organisms are Crescentiella morronensis, Koskinobullina socialis, Lithocodium aggregatum, Bacinella-type structures, Radiomura cautica, Perturbatacrusta leini, Coscinophragma sp., and crust-forming coralline sponges such as Calcistella. Based on microscopic observations, microbial contribution to reef construction is documented by the abundance of dense micrite, laminate structures, clotted, thrombolithic or peloidal microfabrics, constructive micritic cortices, biogenic encrustations and cement crusts, as well as by other types of microbial structures and crusts. Most of the investigated carbonate deposits can be classified as “coral-microbial-microencruster boundstones” which are characteristic for the Intra-Tethyan domain. Their paleogeographical significance is indicated by the presence of many features comparable with carbonate deposits of rimmed platform systems from the Northern Calcareous Alps or Central Apennines. Based on the distribution of the facies and facies associations within the carbonate sequences under study we can distinguish slope and external shelf margin environments. The microbial crusts, the encrusting micro-organisms, and in some cases the syndepositional cements have stabilized and bound the carbonates of the slope facies types. Subsequently, the stable substrate favored the installation of coral-microbial bioconstruction levels.  相似文献   

3.
In the Upper Jurassic reef successions of the Crimean Peninsula (Sudak and Jalta areas), the microencruster Crescentiella morronensis (Crescenti), microbialites, and multiple generations of cements, form microframeworks. They were observed in two stages of the carbonate platform evolution, in the Middle–Upper Oxfordian, and in the Upper Kimmeridgian–Tithonian. Generally, in both stages, the features of the microframeworks are similar and consist of densely packed Crescentiella associated with microbialites and branched colonies of the sclerosponge Neuropora lusitanica Termier. The difference between the occurrences of the two stages is the variable amount of nubecularid foraminifera and enigmatic tube-shaped structures forming the central cavities of Crescentiella. The Crescentiella-microbial-cement microframeworks formed under phreatic conditions in the upper slope and seaward marginal depositional settings where intensive synsedimentary cementation took place. They formed in the initial stages of long cycles of restoration and blooming of the reefs. The late Jurassic examples resemble the Permian algae-microbial-cement reefs as well as the Triassic Tubiphytes and cement crust-dominated reefs. Concurrently, all these examples formed a transitional facies zone between typical slope facies to shallow subtidal platform margin facies characterized by high taxonomic diversity of calcified sponges, corals, and microencrusters forming the principal part of the reefs.  相似文献   

4.
5.
Summary The Carboniferous, particularly during the Serpukhovian and Bashkirian time, was a period of scarce shallow-water calcimicrobial-microbialite reef growth. Organic frameworks developed on high-rising platforms are, however, recorded in the Precaspian Basin subsurface, Kazakhstan, Russia, Japan and Spain and represent uncommon occurrences within the general trend of low accumulation rates and scarcity of shallow-water reefs. Sierra del Cuera (Cantabrian Mountains, N Spain) is a well-exposed high-rising carbonate platform of Late Carboniferous (Bashkirian-Moscovian) age with a microbial boundstone-dominated slope dipping from 20° up to 45°. Kilometer-scale continuous exposures allow the detailed documentation of slope geometry and lithofacies spatial distribution. This study aims to develop a depositional model of steep-margined Late Paleozoic platforms built by microbial carbonates and to contribute to the understanding of the controlling factors on lithofacies characteristics, stacking patterns, accumulation rates and evolution of the depositional architecture of systems, which differ from light-dependent coralgal platform margins. From the platform break to depths of nearly 300 m, the slope is dominated by massive cement-rich boundstone, which accumulated through the biologically induced precipitation of micrite. Boundstone facies (type A) with peloidal carbonate mud, fenestellid and fistuliporid bryozoans, sponge-like molds and primary cavities filled by radiaxial fibrous cement occurs all over the slope but dominates the deeper settings. Type B boundstone consists of globose centimeter-scale laminated accretionary structures, which commonly host botryoidal cement in growth cavities. The laminae nucleate around fenestellid bryozoans, sponges, Renalcis and Girvanella-like filaments. Type B boundstone typically occurs at depths between 20–150 m to locally more than 300 m and forms the bulk of the Bashkirian prograding slope. The uppermost slope boundstone (type C; between 0 and 20–100 m depth) includes peloidal micrite, radiaxial fibrous cement, bryozoans, sponge molds, Donezella, Renalcis, Girvanella, Ortonella, calcareous algae and calcitornellid foraminifers. From depths of 80–200 m to 450 m, 1–30 m thick lenses of crinoidal packstone, spiculitic wackestone, and bryozoan biocementstone with red-stained micrite matrix are episodically intercalated with boundstone and breccias. These layers increase in number from the uppermost Bashkirian to the Moscovian in parallel with the change from a rapidly prograding to an aggrading architecture. The red-stained strata share comparable features with Lower Carboniferous deeper-water mud-mound facies and were deposited during relative rises of sea level and pauses in boundstone production. Rapid relative sea-level rises might have been associated with changes in oceanographic conditions not favourable for thecalcimicrobial boundstone growth, such as upwelling of colder, nutrient-rich waters lifting the thermocline to depths of 80–200 m. Downslope of 150–300 m, boundstones interfinger with layers of matrix-free breccias, lenses of matrix-rich breccias, platform- and slope-derived grainstone and crinoidal packstone. Clast-supported breccias bound by radiaxial cement are produced by rock falls and avalanches coeval to boundstone growth. Matrix-rich breccias are debris flow deposits triggered by the accumulation of red-stained layers. Debris flows develop following the relative sea-level rises, which favour the deposition of micrite-rich lithofacies on the slope rather than being related to relative sea-level falls and subaerial exposures. The steep slope angles are the result of in situ growth and rapid stabilization by marine cement in the uppermost part, passing into a detrital talus, which rests at the angle of repose of noncohesive material. In the Moscovian, the aggradational architecture and steeper clinoforms are the result of increased accommodation space due to tectonic subsidence and due to a reduction of slope accumulation rates (from 240±45−605±35 m/My to 130±5 m/My). The increasing number of red-stained layers and the decrease of boundstone productivity are attributed to environmental changes in the adjacent basin, in particular during relative rises of sea level and to possible cooling due to icehouse conditions. The geometry of the depositional system appears to be controlled by boundstone growth rates. During the Bashkirian, the boundstone growth potential is at least 10 times greater than average values for ancient carbonate systems. The slope progradation rates (nearly 400–1000 m/My) are similar to the highest values deduced for the Holocene Bahamian prograding platform margin. The fundamental differences with modern systems are that progradation of the microbial-boundstone dominated steep slope is primarily controlled by boundstone growth rates rather than by highstand shedding from the platform top and that boundstone growth is largely independent from light and controlled by the physicochemical characteristics of seawater.  相似文献   

6.
Summary During the Middle and early Late Triassic carbonate ramps and rimmed platforms developed at the northwestern margin of the Tethys ocean. In the Northern Calcareous Alps, Anisian stacked homoclinal ramps evolved through a transitional stage with distally steepened ramps to huge rimmed platforms of Late Ladinian to Early Carnian age. Middle Triassic to early Late Triassic facies and biota of basin, slope and platform depositional systems are described. Special emphasis is given to foraminifers, sponges, microproblematic organisms and algae. The Ladinian to early Carnian reef associations are characterized by the abundance of segmented sponges, microproblematica, biogenic crusts and synsedimentary cements. Among the foraminifers, recifal forms likeHydrania dulloi andCucurbita infundibuliformis (Carnian in age) are reported from the Northern Calcareous Alps for the first time. Some sphinctozoid sponges likeParavesicocaulis concentricus were known until now only from the Hungarian and Russian Triassic.  相似文献   

7.
Summary The high-plateau of the Jbel Bou Dahar, situated in the Central and Eastern High Atlas of Morocco, represents a Lower Jurassic carbonate platform that drowned at the beginning of the Toarcian. Three phases of platform evolution can be distinguished: During thepre-drowning phase (upper Sinemurian— upper Pliensbachian) the platform interior facies reflects a restricted-marine lagoonal environment, protected by scattered buildups and cemented debris at the platform margin. Upper and mid-slope are dominated by coarse-grained, poorly sorted limestones, deposited through debris flows during sea-level lowstands. Sea-level highstand deposits occur at the toe of slope and are formed by an alternation of fine-grained litho- and bioclastic pack- to grainstones (turbidites), marls and mud- to wackestones (hemipelagic oozes). A condensed section, reflecting an abrupt and fundamental environmental change along the entire platform, characterises thedrowning phase (upper Pliensbachian— lower Toarcian). Within the platform interior densely packed biosparites represent the switch to high-energy environments, causing erosion of the former pre-drowning lagoonal sediments. These erosional products were redeposited on the platform slope, leading to the formation of coarse-grained non-skeletal sparites and micrites. Both platform interior and slope successions show a series of cyclic variations in sediment composition that could have been triggered by small-scale sea-level fluctuations. In contrast to the abrupt facies change at the pre-drowning —drowning boundary, the transition to thepost-drowning phase (lower Toarcian—Aalenian) is gradual. During this phase, biopelmicrites and pure micrites were deposited in all platform sections, followed by the deposition of calcistiltites. The facies point to quiet-water conditions below storm-wave base and display a uniform deep-marine sedimentation. This analysis shows that the drowning of the Jbel Bou Dahar carbonate platform was caused by abrupt and fundamental changes in the shallow-water realm. After exposure of the platform, these changes prevented the carbonate factory from re-establishing itself and made it impossible for the platform to keep up with the subsequent rise in sea level. These local changes were probably triggered by high-frequency sealevel variations in combination with regional or even worldwide changes in ocean circulation patterns.  相似文献   

8.
Dr. Adam El-Shahat 《Facies》1995,33(1):265-275
Summary The Quaternary carbonates of the Mediterranean coast of Egypt between Alexandria and Salum appear as parallel limestone ridges rising up to 100 m above sea level. These ridges are dominated by dunal carbonates which differ not only in their primary composition but also by distinct grades of meteoric water diagenesis. Oolitic facies dominates the younger aeolianites of the first and second ridges. Bioclastic facies with abundant coralline algae, benthonic foraminifers, molluscs, echinoderms and intraclasts represents the major rock type in the older aeolianites. Features of meteoric water diagenesis include precipitation of increasing amounts of avoid-filling low Mg-calcite spar, dissolution of aragonite and stabilization of aragonite and high Mg-calcite to low Mg-calcite. Aeolianites below paleosol horizons contain abundant calcrete cements, micritized fossils and detrital grains which are commonly corroded and replaced by calcite. Three stages of progressive meteoric diagenesis are recognised in the Egyptian Quaternary aeolianites. In stage 1 minor precipitation of low Mg-calcite occurs at the grain boundaries. Stage 2 is marked by partial dissolution of aragonite, partial loss of high Mg-calcite and precipitation of low Mg-calcite in some pore spaces. In stage 3, most of the remaining pores are occluded by cementation. At the end of stage 3, Mg is removed from high Mg-calcite but some aragonite still persists. The early vadose cements are represented by miniscus, bridge and pendant cements. The phreatic cements were precipitated as bladed spar in the isopachous rims and equant spar in the intergranular and mouldic porosity. The late vadose cements are represented by micritic cements that were related to calcrete formation. Elemental behaviour during meteoric water diagenesis indicates that it leads to a gradual decrease in bulk Sr along with Na in progressively altered aeolianites. Mn distribution is controlled by the carbonate mineralogy (aragonite versus calcite) as well as the proximity of the aeolianites to the overlying paleosol horizons.  相似文献   

9.
This paper presents a detailed facies analysis and paleo-depth reconstruction of a latest Early Carnian platform drowning-sequence from the Anatolian terrane (Turkey, Taurus Mountains). A total of eight sedimentary microfacies zones were recorded. An open platform margin passes through a deeper shelf margin setting into a basinal environment influenced by more open-marine conditions. The analysis demonstrates an unexpected, pure carbonate depositional system through the so-called Carnian Pluvial Episode (CPE), which has previously been associated with dramatic climate changes throughout the Tethys region. One main finding, based on sedimentological and paleontological analyses, is a much later drowning of the carbonate platforms in Turkey than in other places. The termination of the Kartoz platform postdates the onset of the CPE in the western Tethys by one ammonite zone, corresponding to about 2 million years. The distinctly earlier demise of (north)western Tethyan carbonate platforms and reefs points to a diachrony of this event throughout the Tethys. The decline of carbonate productivity clearly occurs earlier at higher paleolatitudes and later in equatorial areas. Interpreting the CPE as the result of a global or at least Tethys-wide climatic event is therefore highly ambiguous. The described facies changes at Aşağiyaylabel probably mirror different coupling effects and, only minimally, the Tethyan-wide climate changes during the Carnian Pluvial Episode.  相似文献   

10.
In the Central Lombardy Basin (Southern Alps) Anisian carbonate platform marginal facies yielding the first documented occurrence of coral colonies in this area of the Western Tethys has been recognized. These marginal facies identify the east-west transition between two sectors with a different Anisian evolution. West of the recognized marginal facies the Anisian succession is characterised by subtidal bioturbated limestones passing upward to peritidal dolostones, whereas toward the east a thicker succession of subtidal facies persist until the end of the Anisian. The margin belt develops at the passage between a more subsiding eastern portion and a less subsiding one toward the west. The different facies and thickness of the Anisian succession east and west of the marginal facies is indicative of syndepositional tectonics. The transition from subtidal to peritidal facies in the western sector is ascribed to a sea-level fall that favoured the onsetting of peritidal facies on the less subsiding block and of marginal facies on its border. The occurrence of a N-S trending syndepositional Anisian fault system could also explain the scarce progradational evolution of the margin facies, prevented both by the paleobathymetric setting and by the scarce productivity of the Anisian marginal communities. The presence, in the Anisian marginal facies, of crinoids and corals (together with the occurrence of one of the oldest specimen of coralline red algae) outlines the return to normal marine conditions and documents the recovery of the carbonate platform marginal faunal association after the Permo-Triassic crisis in the Western Southern Alps.  相似文献   

11.
Summary The development of peculiar margin facies and abundant talus breccias within the Dolomia Principale inner platform is commonly observed in the Lombardy Basin during the Norian. The organisms building these margins are mainly serpulids, benthic microbes, subordinate porostomata and other encrusting forms; typical margin organisms, as sponges or corals, are extremely rare or absent. The build-ups form narrow rims along the borders of tectonic-controlled intraplatform basins. Regional back-stepping and progradation of the margin facies on the talus breccias produced by the erosion of the reef is commonly observed in the uppermost Dolomia Principale depositional system. Widespread occurrence of serpulids and microbial margins in middle-late Norian times is indicative of stressed environmental conditions—fluctuation of salinity and temperature on the inner platform and in the intraplatform basins—controlled by palaeogeographic setting. Physical characteristics allowed the bloom of forms able to develop in a wide range of environmental conditions, such as serpulids. In the Late Norian, major input of fine-grained clastics is recorded; close to the Norian-Rhaetian boundary, carbonate ramps were regionally restored. Locally, small serpulid and microbial bioconstructions still persist in the lowermost part of the shaly succession, even if they are less abundant with respect to the Dolomia Principale. Patch-reefs generally do not build a platform margin, but represent isolated mounds within shaly deposits. These build-ups occur on the edge of former structural highs; the communities survived the environmental change responsible for the siliciclastic input and locally managed to produce mounds during the deposition of the lower part of the upper depositional system (Riva di Solto Shale).  相似文献   

12.
Andrea Cozzi 《Facies》2002,47(1):151-178
Summary Upper Triassic (Middle-Upper Norian) shallow-water carbonates of the Dolomia Principale and its deep-water counterparts (Forni Dolomite) have been studied in the Carnian Prealps (northeastern Italy). The Dolomia Principale was a storm-dominated carbonate platform; in the Mt. Pramaggiore area, along a well-preserved 3.5 km-long platform-to-basin transition, the inner platform facies of the Dolomia Principale, characterized by m-scale shallowing upward cycles, give way seaward to open marine storm-dominated shallow subtidal lagoon deposits with frequent hardgrounds and evidence of microbial stabilization of the bottom sediment. The margin of the Dolomia Principale platform was colonized by meter-scale stromatolites and serpulid-microbial mounds that thrived due to the local highly stressed environment, characterized by drastic salinity fluctuations and turbid waters, that excluded the Upper Triassic coral-sponge communities. The Forni Dolomite slope-basin complex was characterized by an upper slope facies with debris flows, megabreccias, turbidites and serpulid-microbial mounds. The lower slope and basinal facies show thinning and fining trends. After restoring the original geometry of the slope, the depositional angles of the clinoforms range between 11 and 36 degrees, reflecting closely the coarse-grained character of the Forni Dolomite slope complex, which can be interpreted as a slope apron that, as a model, can be extended to steeply inclined carbonate slopes. The onset of synsedimentary extensional tectonics at the Middle-Late Norian boundary affected the platform-slope depositional system via: 1) localized inner platform collapses and the formation of an intraplatform anoxic depression at Mt. Valmenone, 2) a switch from platform lateral progradation during the Middle Norian to vertical aggradation in the Late Norian, reflected in an increase in platform relief, steeper foreslope angles and coarser-grained slope facies, and 3) controlling the spatial orientation of the margin of the Dolomia Principale.  相似文献   

13.
This study focuses on the microfacies and diagenetic development of the mid-Cretaceous Mfamosing Limestone, a carbonate body which was deposited during marine incursions into the Calabar Flank in the eastern Niger delta hinge zone of the Lower Benue Trough. Microfacies and diagenetic criteria indicate that the carbonates are products of one Albian transgressive cycle only with two periods of relatively rapid crustal deepening. The data strongly supports the conclusion that the carbonates were deposited in a shallow shelf characterized by strong lateral facies variations. High energy submarine bar carbonate sands, patch reefs and algal boundstones are well represented. During the deposition of the shelf carbonates an increasing detrital terrestrial input is documented by an increasing amount of quartz, feldspar and clay minerals. Isopachous rim cements indicate a marine phreatic environment. Locally short-time supratidal conditions are documented by granular meniscus cements.  相似文献   

14.
Summary Several Waulsortian-type mud mounds nearly 500 m thick and about 5 km long occur in the Middle Paleozoic carbonate section of the Aktur nappe in the mountains on the right bank of Isfara river. These buildups form a well developed barrier system that stretches along the South Ferganian carbonate platform margin and divides the carbonate complex into a fore-reef and a back-reef part. The time of the mounds' most active growth was from the Late Silurian (Ludlow) to the Middle Devonian (Eifel). Three main facies types can be recognized in the mud mounds: 1. micritic core facies, 2. sparitic flank facies and 3. loferitic capping facies. The central massive or crudely bedded part of the mounds consists of white or light grey clotted micrite. Macrofossils are rare. The sparitic flank facies in contrast consists of coarse and densely packed crinoidal wackestone-floatstones with some brachiopod shell debris. Solitary rugose corals, tabulate corals, stromato-poroids and fragments of mollusks are also abundant. The tops of the mounds are usually covered with loferitic pelmicrites or oolitic grainstone caps. Stromatactis-like structures are very rare and poorly developed in the South Ferganian mud mounds. However, almostin all such mounds horizons of calcitic breccias can be found. In order to explain all the features found in the Fergana mounds an ‘atoll-like’ model has been proposed which starts the evolution of the mud mounds with a small nucleus bioherm. The main stage of the evolution corresponds to an atoll-like structure developing on the surface of shallow water platforms. White clotted micrite of the mound core facies is interpreted as a accumulation of fine-grained sediment in an inner lagoon flanked by crinoidal bar deposits. The mound flank facies represents the atoll rim deposits from where the carbonate mud is derived. The capping loferitic facies is considered as tidal flat deposit that developed on top of the buildups during the last stage of its evolution. The knoll shape of the mounds is explained by the retreat of the atoll flanking crinoidal bars back into the inner lagoon during the rise in sea level. Stromatactis-like structures of small cavities filled with sparry calcite owe their existence to burrowing organisms. Calcitic breccias are interpreted as paleokarst collapse breccias. They indicate that the tops of the mud mound became subaerially exposed. Other evidence for a subaerial exposure can be seen in the occurrence of Variscian ‘black and white’ limestone gravel on the tops of some mud mounds. According toWard et al. (1970) these sediments were produced above the sea level at the edge of hypersaline lakes situated on islands.  相似文献   

15.
Summary Compositional variations and grain-size properties of both carbonate constituents and conodonts as an alternative component group were used for interpreting the processes governing the deposition of upper Famennian and middle Tournaisian calciturbidites in Moravia, Czech Republic. Both the composition and grain-size properties of conodont element associations showed to be markedly dependant on facies type of their host sediment. Upper Devonian calciturbidite successions deposited on flanks of wide, Moravian-Silesian carbonate platform are composed mainly of echinoderm-and peloid-rich wacke/packstones and intraclastic float/rudstones (fine-grained calciturbidites, “normal” calciturbidites with Tab Bouma sequences, debris-flow breccias) with abundance of shelf-and shelf margin conodont taxa and epipelagic and “mesopelagic” conodonts. Upper Devonian calciturbidites deposited on slopes of volcanic sea-mounts are composed of echinoderm-and peloid-rich wacke/packstones and float/rudstones with increased proportion of intraclasts and volcanigenic lithoclasts (fine-grained calciturbidites, normal calciturbidites), yeilding abundant conodont associations with higher proportion of “mesopelagic” taxa compared to the platform-flank examples. Middle Tournaisian calciturbidite succession composed of crinoid-, peloid-, intraclast-and lithoclast-rich lime mudstones, wacke/packstones and float/rudstones (normal calciturbidites and debris-flow breccias) yielded conodont element associations rich in shelt-and shelf-margin taxa, “mesopelagic” conodonts and reworked Middle-and Upper Devonian conodonts. In general, the ratio of shelf-and shelf margin conodont taxa to “mesopelagic” taxa is distinctly lower in finegrained calciturbidites than it is in normal calciturbidites and debris-flow breccias. Grain-size properties (mean grain size and sorting) and percentage of fragmented conodont elements, too, are markedly dependant on the facies type: in fine-grained calciturbidites the values of mean grain-size and fragmentation are low and the sorting is good to very good whereas in normal calciturbidites and debris-flow breccias the values of mean grain-size and fragmentation are distinctly higher and the sorting is poorer. The interdependence of facies type and composition and grain-size properties of conodont element associations in gravity-flow deposits is explained as resultant from hydrodynamic sorting during turbidity current flow and final deposition of the bed. Compositional variations observed in our sections may thus be attributed to facies variability (coarsening-and thickening-upward trends) rather than to sea-level fluctuations (highstand shedding of carbonate platforms). On the other hand, significant enrichment in reworked conodont taxa in middle Tournaisian normal calciturbidites compared to scarcity and/or absence of such conodonts in essentially identical facies of upper Famennian age indicate sea-level to be the major control governing such compositional variations, with low relative sea-level stand in middle Tournaisian and high relative sea-level stand in upper Famennian. Thorough analysis of conodont evolution, palaeoecology and taphonomy, with emphasis on understanding the processes of deposition of their host rock, are recommended for any biostratigraphic and biofacies study to be done in carbonate sediments deposited under strong hydrodynamic regimes, such as calciturbidites, temperstites, debris-flow deposits, shelf-edge oolitic sands, tidal-channel facies etc.  相似文献   

16.
During the Late Miocene, the marginal areas of the Mediterranean Basin were characterized by the development of mixed siliciclastic-carbonate ramps. This paper deals with a temperate siliciclastic-carbonate ramp (late Tortonian–early Messinian in age) which crops out in the Capo Vaticano area, Southern Apennines (Italy). Carbonate components are mainly represented by calcitic skeletal fragments of coralline red algae, bryozoans, bivalves, and larger foraminifera, whereas corals, brachiopods, echinoderms, and planktonic foraminifera are subordinate. In the studied ramp, the depositional geometries of the main unit, the ‘Sabbie gialle ad Heterostegina’, show a gradual steepening from low/middle (dip about 2–5°) to steep slope settings (up to 25°). The microfacies observations, the quantitative analyses of the main biogenic components as well as the rhodolith shapes and growth forms allowed the differentiation between the middle and the outer ramp depositional setting and the refining of the stratigraphic framework. The middle ramp is characterized by coralline red algal debris packstone facies often associated with larger foraminiferal floatstone/packstone facies, while the outer ramp is characterized by rhodolith floatstone/rudstone facies. These facies pass basinward into typical open-marine deposits (planktonic foraminiferal facies). The taxonomic composition of the coralline red algal assemblage points to a temperate paleoclimate and emphasizes the Miocene Mediterranean phytogeographic patterns. The absence of non-skeletal grains (ooids and green algae), the paucity of Porites patch reefs, the rare occurrence of primary marine cementation, all confirm that the studied ramp was poorly lithified within a warm–temperate setting. The flat depositional profile of the ramp can be related to the absence or paucity of primary marine carbonate cements.  相似文献   

17.
In the Late Triassic, an extremely large carbonate platform system (Dachstein-type platforms) developed on the margin of the Neotethys. On the wide inner platform cyclic peritidal, lagoonal successions were deposited. In the Transdanubian Range (Hungary), the lower part of the 1.5–2-km-thick cyclic succession (Upper Tuvalian–mid-Norian) is pervasively dolomitised, the upper part (Upper Norian–Rhaetian) is non-dolomitised; there is a transitional interval between them made up of partially dolomitised cycles. The peritidal–lagoonal cycles are commonly bounded by well-developed disconformity surfaces reflecting subaerial erosion that punctuated the marine carbonate accumulation. Truncation of the cycles was preceded by pervasive cementation of the previously deposited cycle. In the early stage of the platform evolution, tidal flat dolomitisation under semi-arid conditions led to the consolidation of the previously deposited sediments. The truncation surfaces were commonly covered by dolocretes. During the more humid Late Norian–Rhaetian period, the early cementation was followed by karstification, accumulation of wind-blown dust and pedogenesis. Erosion during regularly recurring subaerial exposure that commonly reached the previously deposited subtidal beds suggests eustatic control of the cyclicity and supports the application of an allocyclic model, even if the Milankovitch signal is imperfect.  相似文献   

18.
Summary A local intraplatform basin developed in the Gartnerkofel-Zielkofel area of the Carnic Alps (southern Carinthia, Austria) during the Middle Triassic (Ladinian). This basin was filled with a transgressive basinal sequence composed of the Uggowitz Formation and overlying Buchenstein Formation. At the northwestern slope of the Gartnerkofel, the platform carbonates of the Schlern Dolomite interfinger with the Buchenstein Formation, causing the formation of two depositional sequences. The Uggowitz Formation consists of the Uggowitz Breccia and the Kühweg Member. Sediments of the Uggowitz Breccia were formed by different types of gravity induced processes. The Kühweg Member is a thin sequence of silt-and fine-grained sandstones which were deposited in a slope to basin margin environment by turbidity currents. The overlying Buchenstein Formation consists of hemipelagic to pelagic limestones of Fassanian age with intercalated pyroclastic rocks (Pietra verde). Nodular limestones were deposited under slow rates of accumulation during a relative sea-level highstand. The uppermost Buchenstein Formation is composed of hemipelagic limestone beds with intercalated graded calcarenites and breccias of platform-derived debris, showing characteristics features of a fore-reef slope of the prograding Schlern Dolomite. Uggowitz Formation and basal Buchenstein Formation are interpreted as a transgressive systems tract, nodular limestones from the middle part of the Buchenstein Formation mark an early highstand systems tract, forereef slope sediments of the upper Buchenstein Formation formed during the beginning regression of a late highstand systems tract, the basal part of the overlying Schlern Dolomite probably reflects a lowstand systems tract. The intercalated bedded limestone facies within the Schlern Dolomite is characterized by large, platform derived blocks, slump structures, breccia beds, graded calcarenites and hemipelagic limestones indicating a forereef slope environent. This intercalated facies belongs to the Buchenstein Formation and interfingers with the Schlern Dolomite. Conodonts from this intercalated slope facies point to Late Fassanian age. Therefore, the two Middle Triassic depositional sequences of the Gartnerkofel area can be correlated with the depositional sequences ‘Ladinian 1’ and ‘Ladinian 2’ of the Dolomites, proposed byDe Zanche et al. (1993). A brief comparison with the basinal sequences of similar age of the karawanken Mountains and the Carnia is presented.  相似文献   

19.
Summary Upper Cretaceous and Paleocene reef limestones from the Maiella carbonate platform show how reefs evolved during a time of faunal turn-over. Biostratigraphy and facies analysis of the reef limestones reveal the details of reef growth, composition, and age. Rudists disappeared as reef builders from the Maiella platform shortly before the Cretaceous/Tertiary boundary. Small coral-algal reefs became established in the Danian to Late Thanetian. These scleractinian-red algal dominated boundstones and framestones represent two periods of reef sedimentation and the subsequent interruption of reef growth by emersion and erosion, controlled primarily by fluctuations of relative sea-level. The coral-algal reefs evolved as the taxonomic composition of reef organisms changed. The Paleocene reef sediments are preserved as large slide blocks and as boulders redeposited from the shallow-water platform onto the slope during the course of the Paleocene.  相似文献   

20.
Summary The sedimentological features and the microbiofacies of the Cassian platforms (Late Ladinian-Carnian) of the Dolomites can be studied only on the basis of the socalled “Cipit boulders”, that are platform-derived olistoliths and clasts fed to the basin and escaped to the extensive dolomitization affecting the buildups. Our paper deals with the Cipit boulders occurring in the Punta Grohmann section (Wengen and S. Cassiano formations, Late Ladinian, Archelaus and Regoledanus Zones). The dominant microfacies are represented by boundstone, consisting of nearly 60% of micritic limestone occurring both as peloidal or aphanitic micrite, mostly organized into stromatolitic laminites of thrombolites. The skeletal organism (Tubiphytes, skeletal cyanobacteria, sphinctozoan sponges, etc.) represent only a minor component of the rock (usually less than 10%). Early cements are widespread and consist both of fan-shaped calcite (replacing former aragonite), bladed isopachous magnesian calcite and radial-fibrous calcite (neomorphic after Mg-calcite). The carbonate platforms from which the olistoliths derive were made up mainly of carbonate mud that underwent early lithification, as witnessed by the considerable amount of early cements: therefore they may be regarded to as mudmounds, and more precisely as microbial mud-mounds, due to the clearly accretionary, organic-controlled nature of most micrites. The micrites, subdivided into auto- and allomicrite on the basis of micromorphological and fabric characteristics, have been tested for epifluorescence. The results confirm the organic control on the deposition of automicrite, also in the cases in which a microbial influence is not obvious (i.e. aphanitic micrite without internal organization).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号