首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribosomes from Escherichia coli possess, in addition to A and P sites, a third tRNA binding site, which according to its presumed function in tRNA release during translocation has been termed the exit site. The exit site exhibits a remarkable specificity for deacylated tRNA; charged tRNA, e.g. N-AcPhe-tRNAPhe, is not bound significantly. To determine the molecular basis of this discrimination, we have measured the exit site binding affinities of a number of derivatives of tRNAPhe from E. coli, modified at the 3' end. Binding to the exit site of the tRNAPhe derivatives was measured fluorimetrically by competition with a fluorescent tRNAPhe derivative. We show here that removal of the 2' and 3' hydroxyl groups of the 3'-terminal adenosine decreases the affinity of tRNAPhe for the exit site 15 and 40-fold, respectively. Substitutions at the 3' hydroxyl group (aminoacylation, phosphorylation, cytidylation) as well as removal of the 3'-terminal adenosine (or adenylate) of tRNAPhe lower the affinity below the detection limit of 2 x 10(5) M-1, i.e. more than 100-fold. Modification of the adenine moiety (1,N6-etheno adenine) or replacement of it with other bases (cytosine, guanine) has the same dramatic effect. In contrast, the binding to both P and A sites is virtually unaffected by all of the modifications tested. These results suggest that a major fraction (at least -12 kJ/mol, probably about -17 kJ/mol) of the free energy of exit site binding of tRNAPhe (-42 kJ/mol at 20 mM-Mg2+) is contributed by the binding of the 3'-terminal adenine to the ribosome. The binding most likely entails the formation of hydrogen bonds.  相似文献   

2.
BACKGROUND: Aminoglycoside antibiotics interfere with translation in both gram-positive and gram-negative bacteria by binding to the tRNA decoding A site of the 16S ribosomal RNA. RESULTS: Crystals of complexes between oligoribonucleotides incorporating the sequence of the ribosomal A site of Escherichia coli and the aminoglycoside paromomycin have been solved at 2.5 A resolution. Each RNA fragment contains two A sites inserted between Watson-Crick pairs. The paromomycin molecules interact in an enlarged deep groove created by two bulging and one unpaired adenines. In both sites, hydroxyl and ammonium side chains of the antibiotic form 13 direct hydrogen bonds to bases and backbone atoms of the A site. In the best-defined site, 8 water molecules mediate 12 other hydrogen bonds between the RNA and the antibiotics. Ring I of paromomycin stacks over base G1491 and forms pseudo-Watson-Crick contacts with A1408. Both the hydroxyl group and one ammonium group of ring II form direct and water-mediated hydrogen bonds to the U1495oU1406 pair. The bulging conformation of the two adenines A1492 and A1493 is stabilized by hydrogen bonds between phosphate oxygens and atoms of rings I and II. The hydrophilic sites of the bulging A1492 and A1493 contact the shallow groove of G=C pairs in a symmetrical complex. CONCLUSIONS: Water molecules participate in the binding specificity by exploiting the antibiotic hydration shell and the typical RNA water hydration patterns. The observed contacts rationalize the protection, mutation, and resistance data. The crystal packing mimics the intermolecular contacts induced by aminoglycoside binding in the ribosome.  相似文献   

3.
Ribonuclease MC1 (RNase MC1), isolated from bitter gourd seeds, is a uridine specific RNase belonging to the RNase T2 family. Mutations of Asn71 in RNase MC1 to the amino acids Thr (N71T) and Ser (N71S) in guanosine preferential RNases altered the substrate specificity from uridine specific to guanosine specific, as shown by the transphosphorylation of diribonucleoside monophosphates [Numata, T., et al. (2001) Biochemistry 40, 524-530]. To elucidate the structural basis for the alteration of substrate specificity, crystal structures of the RNase MC1 mutants N71T and N71S, free or complexed with 5'-GMP, were determined at resolutions higher than 2 A. In the N71T-5'-GMP and N71S-5'-GMP complexes, the guanine moiety was, as in the case of the uracil moiety bound to wild-type RNase MC1, firmly stabilized in the B2 site by an extensive network of hydrogen bonds and hydrophobic interactions. Structure comparisons showed that mutations of Asn71 to Thr or Ser cause an enlargement of the B2 site, which then make it feasible to insert a guanine base into the B2 site of mutants N71T and N71S. This binding further allows for hydrogen bonding interaction of the side chain hydroxyl groups of Thr71 or Ser71 with the N7 atom of the guanine base. The mode of guanine binding of mutants N71T and N71S was found to be essentially identical to that of a guanosine preferential RNase NW from Nicotiana glutinosa. In particular, hydrogen bonds between the N7 atom of the guanine base and the hydroxyl groups of the amino acids at position 71 (RNase MC1 numbering) were completely conserved in three guanosine preferential enzymes, thereby indicating that the hydrogen bond may play an essential role in guanine binding in guanosine preferential RNases in the RNase T2 family. Consequently, it can be concluded that amino acids at position 71 (RNase MC1 numbering) serve as one of the determinants for substrate specificity (or preference) in the RNase T2 fimily by changing the size and shape of the B2 site.  相似文献   

4.
Cyclomaltoheptaose (cycloheptaamylose) has been crystallized with 1-adamantanemethanol as the guest molecule. The complex crystallized in space group C222(1), with unit-cell dimensions a = 19.162 (13), b = 23.965 (17), and c = 32.597 (27) A. The structure was solved by rotation-translation search-methods. The cyclomaltoheptaose exists as a dimer in the crystal by means of extensive hydrogen-bonding across the secondary hydroxyl ends of two cyclomaltoheptaose molecules. The two halves of the dimer are related by a crystallographic two-fold axis. The primary hydroxyl ends of two adjacent cyclomaltoheptaose molecules are also related by a crystallographic two-fold axis, but do not directly hydrogen bond to one another. Instead, they are held in place by a strong hydrogen bond from the hydroxyl group of the 1-adamantanemethanol to a primary hydroxyl group on an adjacent cyclomaltoheptaose molecule. Other stabilizing hydrogen bonds are formed via three water molecules which are situated at the primary hydroxyl interface, and others that form parallel columns stabilizing the crystal structure. A unique feature of this complex is the presence of trapped water in the cavity at the secondary hydroxyl interface. This water is distributed over 3 disordered sites. Its presence blocks one possible site for the 1-adamantanemethanol, which, instead, binds near the primary hydroxyl end, with its hydroxyl group and part of the adamantane moiety protruding from the cyclomaltoheptaose.  相似文献   

5.
Yang R  Scavetta R  Chang XB 《Biochemistry》2008,47(32):8456-8464
Structural analysis of human MRP1-NBD1 revealed that the Walker A S685 forms a hydrogen bond with the Walker B D792 and interacts with the Mg (2+) cofactor and the beta-phosphate of the bound Mg.ATP. We have found that substitution of the S685 with an amino acid that potentially prevents the formation of the hydrogen bond resulted in misfolding of the protein and significantly affect the ATP-dependent leukotriene C4 (LTC4) transport. In this report we tested whether the corresponding substitution in NBD2 would also result in misfolding of the protein. In contrast to the NBD1 mutations, none of the mutations in NBD2, including S1334A, S1334C, S1334D, S1334H, S1334N, and S1334T, caused misfolding of the protein. However, elimination of the hydroxyl group at S1334 in mutations including S1334A, S1334C, S1334D, S1334H, and S1334N drastically reduced the ATP binding and the ATP-enhanced ADP trapping at the mutated NBD2. Due to this low efficient ATP binding at the mutated NBD2, the inhibitory effect of ATP on the LTC4 binding is significantly decreased. Furthermore, ATP bound to the mutated NBD2 cannot be efficiently hydrolyzed, leading to almost completely abolishing the ATP-dependent LTC4 transport. In contrast, S1334T mutation, which retained the hydroxyl group at this position, exerts higher LTC4 transport activity than the wild-type MRP1, indicating that the hydroxyl group at this position plays a crucial role for ATP binding/hydrolysis and ATP-dependent solute transport.  相似文献   

6.
The X-ray structure of previously studied dipeptidomimetic inhibitors bound in the active site of neuronal nitric oxide synthase (nNOS) presented a possibility for optimizing the strength of enzyme-inhibitor interactions as well as for enhancing bioavailability. These desirable properties may be attainable by replacement of the terminal amino group of the parent compounds (1-6) with a hydroxyl group (11-13, and 18-20). The hypothesized effect would be twofold: first, a change from a positively charged amino group to a neutral hydroxyl group might afford more drug-like character and blood-brain barrier permeability to the inhibitors; second, as suggested by docking studies, the incorporated hydroxyl group might displace an active site water molecule with which the terminal amino group of the original compounds indirectly hydrogen bonds. In vitro activity assays of the hydroxyl-terminated analogs (11-13 and 18-20) showed greater than an order of magnitude increase in K(i) values (decreased potency) relative to the amino-terminated compounds. These experimental data support the importance to enzyme binding of a potential electrostatic interaction relative to a hydrogen bonding interaction.  相似文献   

7.
Twenty flavonoid compounds of five different subclasses were selected, and the relationship of their structure to the inhibition of low-density lipoprotein (LDL) oxidation in vitro was investigated. The most effective inhibitors, by either copper ion or 2,2'-azobis (2-amidino-propane) dihydrochloride (AAPH) induction, were flavonols and/or flavonoids with two adjacent hydroxyl groups at ring B. In the presence of the later catechol group, the contribution of the double bond and the carbonyl group at ring C was negligible. Isoflavonoids were more effective inhibitors than other flavonoid subclasses with similar structure. Substituting ring B with hydroxyl group(s) at 2' position resulted in a significantly higher inhibitory effect than by substituting ring A or ring B at other positions. The type of LDL inducer had no effect in flavonoids with catechol structure. Calculated heat of formation data (deltadeltaH(f)) revealed that the donation of a hydrogen atom from position 3 was the most likely result, followed by that of a hydroxyl from ring B. Position 3 was favored only in the presence of conjugated double bonds between ring A to ring B. This study makes it possible to assign the contribution of different functional groups among the flavonoid subclasses to in vitro inhibition of LDL oxidation.  相似文献   

8.
The sequence of non-contacted bases at the center of the 434 repressor binding site affects the strength of the repressor-DNA complex by influencing the structure and flexibility of DNA (Koudelka, G. B., and Carlson, P. (1992) Nature 355, 89-91). We synthesized 434 repressor binding sites that differ in their central sequence base composition to test the importance of minor groove substituents and/or the number of base pair hydrogen bonds between these base pairs on DNA structure and strength of the repressor-DNA complex. We show here that the number of base pair H-bonds between the central bases apparently has no role in determining the relative affinity of a DNA site for repressor. Instead we find that the affinity of DNA for repressor depends on the absence or presence the N2-NH(2) group on the purine bases at the binding site center. The N2-NH(2) group on bases at the center of the 434 binding site appears to destabilize 434 repressor-DNA complexes by decreasing the intimacy of the specific repressor-DNA contacts, while increasing the reliance on protein contacts to the DNA phosphate backbone. Thus, the presence of an N2-NH(2) group on the purines at the center of a binding site globally alters the precise conformation of the protein-DNA interface.  相似文献   

9.
The crystal structure of a mutant ribonuclease T1 (Y45W) complexed with a non-cognizable ribonucleotide, 2'AMP, has been determined and refined to an R-factor of 0.159 using X-ray diffraction data at 1.7 A resolution. A specific complex of the enzyme with 2'GMP was also determined and refined to an R-factor of 0.173 at 1.9 A resolution. The adenine base of 2'AMP was found at a base-binding site that is far apart from the guanine recognition site, where the guanine base of 2'GMP binds. The binding of the adenine base is mediated by a single hydrogen bond and stacking interaction of the base with the imidazole ring of His92. The mode of stacking of the adenine base with His92 is similar to the stacking of the guanine base observed in complexes of ribonuclease T1 with guanylyl-2',5'-guanosine, reported by Koepke et al., and two guanosine bases, reported by Lenz et al., and in the complex of barnase with d(GpC), reported by Baudet & Janin. These observations suggest that the site is non-specific for base binding. The phosphate group of 2'AMP is tightly locked at the catalytic site with seven hydrogen bonds to the enzyme in a similar manner to that of 2'GMP. In addition, two hydrogen bonds are formed between the sugar moiety of 2'AMP and the enzyme. The 2'AMP molecule adopts the anti conformation of the glycosidic bond and C-3'-exo sugar pucker, whereas 2'GMP is in the syn conformation with C-3'-endo-C'-2'-exo pucker. The mutation enhances the binding of 2'GMP with conformational changes of the sugar ring and displacement of the phosphate group towards the interior of the catalytic site from the corresponding position in the wild-type enzyme complex. Comparison of two crystal structures obtained provides a solution to the problem that non-cognizable nucleotides exhibit unexpectedly strong binding to the enzyme, compared with high specificity in nucleolytic activity. The results indicate that the discrimination of the guanine base from the other nucleotide bases at the guanine recognition site is more effective than that estimated from nucleotide-binding experiments so far.  相似文献   

10.
The crystallographic study of chimeric B72.3 antibody illustrated that there are three FR side-chain interactions with either CDR residue's side chain or main chain. For example, hydrogen bonds are formed between the hydroxyl group of threonine at L5 in FR1 and the guanidinal nitrogen group of arginine at L24 in CDR1, between the hydroxyl group of tyrosine at L36 in FR2 and the amide nitrogen group of glutamine at L89 in CDR3 and between the hydroxyl group of tyrosine at L71 in FR3 and the carbonyl group of isoleucine at L29 as well as the amide nitrogen group of serine at L31 in CDR1. Elimination of these hydrogen bonds at these FR positions may affect CDR loop conformations. To confirm these assumptions, we altered these FR residues by site-directed mutagenesis and determined binding affinities of these mutant chimeric antibodies for the TAG72 antigen. We found that the substitution of tyrosine by phenylalanine at L71, altering main-chain hydrogen bonds, significantly reduced the binding affinity for the TAG72 antigen by 23-fold, whereas the substitution of threonine and tyrosine by alanine and phenylalanine at L5 and L36, eliminating hydrogen bonds to side-chain atoms, did not affect the binding affinity for the TAG72 antigen. Our results indicate that the light-chain FR residue tyrosine at L71 of chimeric B72.3 antibody plays an important role in influencing the TAG72 antigen binding. Our results will thus be of importance when the humanized B72.3 antibody is constructed, since this important mouse FR residue tyrosine at L71 must be maintained.  相似文献   

11.
The crystal structure of the complex between human immunodeficiency virus type 1 (HIV-1) protease and a peptidomimetic inhibitor of ethyleneamine type has been refined to R factor of 0.178 with diffraction limit 2.5 A. The peptidomimetic inhibitor Boc-Phe-Psi[CH2CH2NH]-Phe-Glu-Phe-NH2 (denoted here as OE) contains the ethyleneamine replacement of the scissile peptide bond. The inhibitor lacks the hydroxyl group which is believed to mimic tetrahedral transition state of proteolytic reaction and thus is suspected to be necessary for good properties of peptidomimetic HIV-1 protease inhibitors. Despite the missing hydroxyl group the inhibition constant of OE is 1.53 nm and it remains in the nanomolar range also towards several available mutants of HIV-1 protease. The inhibitor was found in the active site of protease in an extended conformation with a unique hydrogen bond pattern different from hydroxyethylene and hydroxyethylamine inhibitors. The isostere nitrogen forms a hydrogen bond to one catalytic aspartate only. The other aspartate forms two weak hydrogen bridges to the ethylene group of the isostere. A comparison with other inhibitors of this series containing isostere hydroxyl group in R or S configuration shows different ways of accommodation of inhibitor in the active site. Special attention is devoted to intermolecular contacts between neighbouring dimers responsible for mutual protein adhesion and for a special conformation of Met46 and Phe53 side chains not expected for free protein in water solution.  相似文献   

12.
In a crystal structure of the amino-terminal laminin G-like domain of human sex hormone-binding globulin (SHBG), the biologically active estrogen metabolite, 2-methoxyestradiol (2-MeOE2), binds in the same orientation as estradiol. The high affinity of SHBG for 2-MeOE2 relies primarily on hydrogen bonding between the hydroxyl at C-3 of 2-MeOE2 and Asp(65) and an interaction between the methoxy group at C-2 and the amido group of Asn(82). Accommodation of the 2-MeOE2 methoxy group causes an outward displacement of residues Ser(128)-Pro(130), which appears to disorder and displace the loop region (Leu(131)-His(136)) that covers the steroid-binding site. This could influence the binding kinetics of 2-MeOE2 and/or facilitate ligand-dependent interactions between SHBG and other proteins. Occupancy of a zinc-binding site reduces the affinity of SHBG for 2-MeOE2 and estradiol in the same way. The higher affinity of SHBG for estradiol derivatives with a halogen atom at C-2 is due to either enhanced hydrogen bonding between the hydroxyl at C-3 and Asp(65) (2-fluoroestradiol) or accommodation of the functional group at C-2 (2-bromoestradiol), rather than an interaction with Asn(82). By contrast, the low affinity of SHBG for 2-hydroxyestradiol can be attributed to intra-molecular hydrogen bonding between the hydroxyls in the aromatic steroid ring A, which generates a steric clash with the amido group of Asn(82). Understanding how C-2 derivatives of estradiol interact with SHBG could facilitate the design of biologically active synthetic estrogens.  相似文献   

13.
Mulakala C  Reilly PJ 《Proteins》2005,61(3):590-596
AutoDock is a small-molecule docking program that uses an energy function to score docked ligands. Here AutoDock's grid-based method for energy evaluation was exploited to evaluate the force exerted by Fusarium oxysporum Cel7B on the atoms of docked cellooligosaccharides and a thiooligosaccharide substrate analog. Coupled with the interaction energies evaluated for each docked ligand, these forces give insight into the dynamics of the ligand in the active site, and help to elucidate the relative importance of specific enzyme-substrate interactions in stabilizing the substrate transition-state conformation. The processive force on the docked substrate in the F. oxysporum Cel7B active site is less than half of that on the docked substrate in the Hypocrea jecorina Cel7A active site. Hydrogen bonding interactions of the enzyme with the C2 hydroxyl group of the glucosyl residue in subsite -2 and with the C3 hydroxyl group of the glucosyl residue in subsite +1 are the most significant in stabilizing the distorted14B transition-state conformation of the glucosyl residue in subsite -1. The force calculations also help to elucidate the mechanism that prevents the active site from fouling.  相似文献   

14.
15.
A strongly conserved threonine residue in the I-helix of cytochrome P450 enzymes participates in a proton delivery system for binding and cleavage of dioxygen molecules. 6-Deoxyerythronolide B hydroxylase (P450eryF) is unusual in that the conserved threonine residue is replaced by alanine in this enzyme. On the basis of the crystal structures of substrate-bound P450eryF, it has been proposed that the C-5 hydroxyl group of the substrate and serine-246 of the enzyme form hydrogen bonds with water molecules 519 and 564, respectively. This hydrogen bonding network constitutes the proton delivery system whereby P450eryF maintains its catalytic activity in the absence of a threonine hydroxyl group in the conserved position. To further assess the role in the proton delivery system of hydroxyl groups around the active site, three mutant forms of P450eryF (A245S, S246A, and A245S/S246A) were constructed and characterized. In each case, decreased catalytic activity and increased uncoupling could be correlated with changes in the hydrogen bonding environment. These results suggest that Ser-246 does indeed indirectly participate in the proton shuttling pathway, and also strongly support our previous hypothesis that the C-5 hydroxyl group of the substrate participates in the acid-catalyzed dioxygen bond cleavage reaction.  相似文献   

16.
Hydroxylation of estrogens at C(2) or C(4) effects differentially their binding affinity to and dissociation rate from the estrogen receptor. The X-ray crystal structure of 4-hydroxyestradiol (4-OH-E2) is reported here and compared with that of 2-hydroxyestradiol (2-OH-E2), the 2- and 4-hydroxylated derivatives of estrone (E1) and with that of the parent estrogens, E1 and E2. The overall molecular shape and hydrogen bonding patterns of each were examined for their possible relevance to their binding to the estrogen receptor and their biological activity. A shift in the B-ring conformation away from the symmetrical 7 alpha,8 beta-half-chair form toward the 8 beta-sofa form is induced by both 2- and 4-hydroxy substitution. This shift appears to be larger in the case of E2 than E1 derivatives and to be correlated with an observed change in the hydrogen bonding potential of the C(3) hydroxyl. In 4-OH-E2, as in E2 and 4-OH-E1, the C(3) hydroxyl functions both as a hydrogen bond donor and acceptor. In contrast in 2-OH-E2 the hydroxyl functions only as a donor. The markedly reduced affinity of 2-hydroxylated estrogens for the estrogen receptor could be due to a combination of steric interactions, competition between O(2) and O(3) for hydrogen bonds for a common site on the receptor, and to general interference with hydrogen bond formation of O(3). The C(4) hydroxyl participates in the formation of a chain of hydrogen bonds in the solid state that is similar to a chain seen in single crystals of E2. The presence of a similar chain of hydrogen bonds involving O(3) in the receptor site could account for the decreased dissociation rate of the 4-OH-E2 receptor complex.  相似文献   

17.
A strongly conserved threonine residue in the I-helix of cytochrome P450 enzymes participates in a proton delivery system for binding and cleavage of dioxygen molecules. 6-Deoxyerythronol ide B hydroxylase (P450eryF) is unusual in that the conserved threonine residue is replaced by alanine in this enzyme. On the basis of crystal structures of substrate-bound P450eryF, it has been proposed that the C-5 hydroxyl group of the substrate and serine-246 of the enzyme form hydrogen bonds with water molecules 519 and 564, respectively. This hydrogen bonding network constitutes the proton delivery system whereby P450eryF maintains its catalytic activity in the absence of a threonine hydroxyl group in the conserved position. To further assess the role in the proton delivery system of hydroxyl groups around the active site, three mutant forms of P450eryF (A245S, S246A, and A245S/S246A) were constructed and characterized. In each case, decreased catalytic activity and increased uncoupling could be correlated with changes in the hydrogen bonding environment. These results suggest that Ser-246 does indeed participate in the proton shuttling pathway, and also support our previous hypothesis that the C-5 hydroxyl group of the substrate participates in the acid-catalyzed dioxygen bond cleavage reaction. Copyright 2000 Academic Press.  相似文献   

18.
The solution structure of the cytoplasmic B domain of the mannitol (Mtl) transporter (II(Mtl)) from the mannitol branch of the Escherichia coli phosphotransferase system has been solved by multidimensional NMR spectroscopy with extensive use of residual dipolar couplings. The ordered IIB(Mtl) domain (residues 375-471 of II(Mtl)) consists of a four-stranded parallel beta-sheet flanked by two helices (alpha(1) and alpha(3)) on one face and helix alpha(2) on the opposite face with a characteristic Rossmann fold comprising two right-handed beta(1)alpha(1)beta(2) and beta(3)alpha(2)beta(4) motifs. The active site loop is structurally very similar to that of the eukaryotic protein tyrosine phosphatases, with the active site cysteine (Cys-384) primed in the thiolate state (pK(a) < 5.6) for nucleophilic attack at the phosphorylated histidine (His-554) of the IIA(Mtl) domain through stabilization by hydrogen bonding interactions with neighboring backbone amide groups at positions i + 2/3/4 from Cys-384 and with the hydroxyl group of Ser-391 at position i + 7. Modeling of the phosphorylated state of IIB(Mtl) suggests that the phosphoryl group can be readily stabilized by hydrogen bonding interactions with backbone amides in the i + 2/4/5/6/7 positions as well as with the hydroxyl group of Ser390 at position i + 6. Despite the absence of any significant sequence identity, the structure of IIB(Mtl) is remarkably similar to the structures of bovine protein tyrosine phosphatase (which contains two long insertions relative to IIB(Mtl)) and the cytoplasmic B component of enzyme II(Chb), which fulfills an analogous role to IIB(Mtl) in the N,N'-diacetylchitobiose branch of the phosphotransferase system. All three proteins utilize a cysteine residue in the nucleophilic attack of a phosphoryl group covalently bound to another protein.  相似文献   

19.
The release of unaltered bases from irradiated DNA, hydrated between 2.5 and 32.7 mol of water per mole of nucleotide (gamma), was investigated using HPLC. The objective of this study was to elucidate the yield of the four DNA bases as a function of dose, extent of hydration, and the presence or absence of oxygen. The increase in the yield of radiation-induced free bases was linear with dose up to 90 kGy, except for the DNA with gamma = 2.5, for which the increase was linear only to 10 kGy. The yield of free bases as a function of gamma was not constant in either the absence or the presence of oxygen over the range of hydration examined. For DNA with gamma between 2.5 and 15, the yield of free bases was nearly constant under nitrogen, but decreased under oxygen. However, for DNA with gamma greater than 15, the yield increased rapidly under both nitrogen and oxygen. The yield of free bases was described by a model that depended on two factors: 1) a change in the DNA conformation from a mixture of the A and C conformers in vacuum-dried DNA to predominantly the B conformer in the fully hydrated DNA, and 2) the proximity of the water molecules to the DNA. Irradiation of the inner water molecules (gamma less than 15) was less efficient than irradiation of the outer water molecules (gamma greater than 15), by a factor of approximately 3.3, in forming DNA lesions that resulted in the release of an unaltered base. This factor is similar to the previously published relative efficiency of 2.8 with which hydroxyl radicals and base cations induce DNA strand breaks. Our irradiation results are consistent with the hypothesis that the G value for the first 12-15 water molecules of the DNA hydration layer is the same as the G value for the form of DNA to which it is bound (i.e., the pseudo-C or the B form). Thus we suggest that the release of bases originating from irradiation of the hydration water is obtained predominantly: (1) by charge transfer from the direct ionization of the first 12-15 water molecules of the primary hydration layer and (2) by the attack of hydroxyl radicals generated in the outer, more loosely bound water molecules.  相似文献   

20.
The role of the hydroxyl group of tyrosine 6 in the catalytic mechanism of isoenzyme 3-3 of rat glutathione S-transferase has been examined by x-ray crystallography and site-specific replacement of the residue with phenylalanine and evaluation of the catalytic properties of the mutant enzyme. This particuar tyrosine residue is conserved in the sequences of all of the cytosolic enzymes and is found, in crystal structures of both isoenzyme 3-3 from the mu-gene class and an isoenzyme from the pi-gene class, to be proximal to the sulfur of glutathione (GSH) or glutathione sulfonate bound at the active site. The 2.2-A structure of the binary complex of isoenzyme 3-3 and GSH indicates that the hydroxyl group of Tyr6 is located 3.2-3.5 A from the sulfur of GSH, well within hydrogen bonding distance. Removal of the hydroxyl group of Tyr6 has essentially no effect on the dissociation constant (22 +/- 3 microM) for GSH. Nevertheless the Y6F mutant exhibits a turnover number which is only about 1% that of the native enzyme when assayed at pH 6.5 with either 1-chloro-2,4-dinitrobenzene (CDNB) or 4-phenyl-3-buten-2-one. UV difference spectra of the binary enzyme-GSH complexes suggest that the predominant ionization state of GSH in the active site of the Y6F mutant is the neutral thiol (e.g. EY6F.GSH) which is in contrast to the native enzyme in which the thiol is substantially deprotonated (e.g. E.GS-). Spectrophotometric titration suggests that the pKa of the thiol is 6.9 +/- 0.3 in the E.GSH complex and greater than or equal to 8 in the EY6F.GSH binary complex. In addition, the pH dependence of kcat/KmCDNB reveals that the reactions catalyzed by the native enzyme and the Y6F mutant are dependent on a single ionization in the E.GSH and EY6F.GSH complexes with pKa = 6.2 +/- 0.1 and 7.8 +/- 0.3, respectively. The results suggest that the hydrogen bond between Tyr6 and the enzyme-bound nucleophile helps to lower the pKa of GSH in the binary enzyme-substrate complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号