首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GpppG was modified to m7GpppGm by a cytoplasmic extract, prepared from embryonic lens cells, in a reaction mixture which contained S-adenosyl-methionine as methyl group donor. The appearance of m7GpppGm was a function of time and lens extract concentration. S-adenosyl-homocysteine inhibited both the m7G and Gm modification reactions. Analogues of GpppG, pG, ppG and pppG were relatively ineffective as substrates.  相似文献   

2.
N7-methylguanine at position 46 (m7G46) in tRNA is produced by tRNA (m7G46) methyltransferase (TrmB). To clarify the role of this modification, we made a trmB gene disruptant (ΔtrmB) of Thermus thermophilus, an extreme thermophilic eubacterium. The absence of TrmB activity in cell extract from the ΔtrmB strain and the lack of the m7G46 modification in tRNAPhe were confirmed by enzyme assay, nucleoside analysis and RNA sequencing. When the ΔtrmB strain was cultured at high temperatures, several modified nucleotides in tRNA were hypo-modified in addition to the lack of the m7G46 modification. Assays with tRNA modification enzymes revealed hypo-modifications of Gm18 and m1G37, suggesting that the m7G46 positively affects their formations. Although the lack of the m7G46 modification and the hypo-modifications do not affect the Phe charging activity of tRNAPhe, they cause a decrease in melting temperature of class I tRNA and degradation of tRNAPhe and tRNAIle. 35S-Met incorporation into proteins revealed that protein synthesis in ΔtrmB cells is depressed above 70°C. At 80°C, the ΔtrmB strain exhibits a severe growth defect. Thus, the m7G46 modification is required for cell viability at high temperatures via a tRNA modification network, in which the m7G46 modification supports introduction of other modifications.  相似文献   

3.
Eukaryotic translation initiation factor 4E (eIF4E) is overexpressed in many cancers deregulating translational control of the cell cycle. mRNA 5′ cap analogs targeting eIF4E are small molecules with the potential to counteract elevated levels of eIF4E in cancer cells. However, the practical utility of typical cap analogs is limited because of their reduced cell membrane permeability. Transforming the active analogs into their pronucleotide derivatives is a promising approach to overcome this obstacle. 7-Benzylguanosine monophosphate (bn7GMP) is a cap analog that has been successfully transformed into a cell-penetrating pronucleotide by conjugation of the phosphate moiety with tryptamine. In this work, we explored whether a similar strategy is applicable to other cap analogs, particularly phosphate-modified 7-methylguanine nucleotides. We report the synthesis of six new tryptamine conjugates containing N7-methylguanosine mono- and diphosphate and their analogs modified with thiophosphate moiety. These new potential pronucleotides and the expected products of their activation were characterized by biophysical and biochemical methods to determine their affinity towards eIF4E, their ability to inhibit translation in vitro, their susceptibility to enzymatic degradation and their turnover in cell extract. The results suggest that compounds containing the thiophosphate moiety may act as pronucleotides that release low but sustainable concentrations of 7-methylguanosine 5′-phosphorothioate (m7GMPS), which is a translation inhibitor with in vitro potency higher than bn7GMP.  相似文献   

4.
A new member of the FHIT protein family, designated HIT-45, has been identified in the African trypanosome Trypanosoma brucei. Recombinant HIT-45 proteins were purified from trypanosomal and bacterial protein expression systems and analyzed for substrate specificity using various dinucleoside polyphosphates, including those that contain the 5′-mRNA cap, i.e., m7GMP. This enzyme exhibited typical dinucleoside triphosphatase activity (EC 3.6.1.29), having its highest specificity for diadenosine triphosphate (ApppA). However, the trypanosome enzyme contains a unique amino-terminal extension, and hydrolysis of cap dinucleotides with monomethylated guanosine or dimethylated guanosine always yielded m7GMP (or m2,7GMP) as one of the reaction products. Interestingly, m7Gpppm3N6, N6, 2′OA was preferred among the methylated substrates. This hypermethylated dinucleotide is unique to trypanosomes and may be an intermediate in the decay of cap 4, i.e., m7Gpppm3N6, N6, 2′OApm2′OApm2′OCpm2N3, 2′OU, that occurs in these organisms.  相似文献   

5.
The eukaryotic translation initiation factor eIF4E recognizes the mRNA cap, a key step in translation initiation. Here we have characterized eIF4E from the human parasite Schistosoma mansoni. Schistosome mRNAs have either the typical monomethylguanosine (m7G) or a trimethylguanosine (m2,2,7G) cap derived from spliced leader trans-splicing. Quantitative fluorescence titration analyses demonstrated that schistosome eIF4E has similar binding specificity for both caps. We present the first crystal structure of an eIF4E with similar binding specificity for m7G and m2,2,7G caps. The eIF4E·m7GpppG structure demonstrates that the schistosome protein binds monomethyl cap in a manner similar to that of single specificity eIF4Es and exhibits a structure similar to other known eIF4Es. The structure suggests an alternate orientation of a conserved, key Glu-90 in the cap-binding pocket that may contribute to dual binding specificity and a position for mRNA bound to eIF4E consistent with biochemical data. Comparison of NMR chemical shift perturbations in schistosome eIF4E on binding m7GpppG and m2,2,7GpppG identified key differences between the two complexes. Isothermal titration calorimetry demonstrated significant thermodynamics differences for the binding process with the two caps (m7G versus m2,2,7G). Overall the NMR and isothermal titration calorimetry data suggest the importance of intrinsic conformational flexibility in the schistosome eIF4E that enables binding to m2,2,7G cap.  相似文献   

6.
Virus-Specific mRNA Capping Enzyme Encoded by Hepatitis E Virus   总被引:4,自引:2,他引:2       下载免费PDF全文
Hepatitis E virus (HEV), a positive-strand RNA virus, is an important causative agent of waterborne hepatitis. Expression of cDNA (encoding amino acids 1 to 979 of HEV nonstructural open reading frame 1) in insect cells resulted in synthesis of a 110-kDa protein (P110), a fraction of which was proteolytically processed to an 80-kDa protein. P110 was tightly bound to cytoplasmic membranes, from which it could be released by detergents. Immunopurified P110 catalyzed transfer of a methyl group from S-adenosylmethionine (AdoMet) to GTP and GDP to yield m7GTP or m7GDP. GMP, GpppG, and GpppA were poor substrates for the P110 methyltransferase. There was no evidence for further methylation of m7GTP when it was used as a substrate for the methyltransferase. P110 was also a guanylyltransferase, which formed a covalent complex, P110-m7GMP, in the presence of AdoMet and GTP, because radioactivity from both [α-32P]GTP and [3H-methyl]AdoMet was found in the covalent guanylate complex. Since both methyltransferase and guanylyltransferase reactions are strictly virus specific, they should offer optimal targets for development of antiviral drugs. Cap analogs such as m7GTP, m7GDP, et2m7GMP, and m2et7GMP inhibited the methyltransferase reaction. HEV P110 capping enzyme has similar properties to the methyltransferase and guanylyltransferase of alphavirus nsP1, tobacco mosaic virus P126, brome mosaic virus replicase protein 1a, and bamboo mosaic virus (a potexvirus) nonstructural protein, indicating there is a common evolutionary origin of these distantly related plant and animal virus families.  相似文献   

7.
We report synthesis and properties of a pair of new potent inhibitors of translation, namely two diastereomers of 7-methylguanosine 5′-(1-thiotriphosphate). These new analogs of mRNA 5′cap (referred to as m7GTPαS (D1) and (D2)) are recognized by translational factor eIF4E with high affinity and are not susceptible to hydrolysis by Decapping Scavenger pyrophosphatase (DcpS). The more potent of diastereomers, m7GTPαS (D1), inhibited cap-dependent translation in rabbit reticulocyte lysate ~8-fold and ~15-fold more efficiently than m7GTP and m7GpppG, respectively. Both analogs were also significantly more stable in RRL than unmodified ones.  相似文献   

8.
In nine consecutive experiments with Ficoll-Hypaque-purified human mononuclear leukocytes containing 2.8 (range 1.1–4.3) platelets per leukocyte, 2–5 mM sodium ascorbate produced a 14-fold (range, 7- to 18-fold) rise in guanosine 3′: 5′-cyclic monophosphate (cyclic GMP) from baseline levels of 0.103 ± 0.056 pmol/107 mononuclear leukocytes. In five experiments with mononuclear leukocytes prepared by the Ficoll-Hypaque method from human blood depleted of platelets by defibrination, 2–5 mM sodium ascorbate produced a twofold (range, one- to fourfold) rise in cyclic GMP from baseline levels of 0.030 ± 0.012 pmol/107 mononuclear leukocytes. Thus, platelets contribute substantially to baseline and ascorbate-stimulated levels of cyclic GMP in standard Ficoll-Hypaque preparations of mononuclear leukocytes. The rise in cyclic GMP concentration in mononuclear leukocyte preparations elicited by ascorbate was independent of a calcium requirement, persisted for up to 3 hr in the presence of ascorbate, and was prevented by the introduction of nonsteroidal anti-inflammatory agents such as aspirin and indomethacin (ID50 = 105 and 23.5 μM, respectively).  相似文献   

9.
10.
11.
Guanine nucleotides (GN) have been implicated in many intracellular mechanisms. Extracellular actions, probably as glutamate receptor antagonists, have also been recently attributed to these compounds. GN may have a neuroprotective role by inhibiting excitotoxic events evoked by glutamate. Effects of extracellular GN on adenosine-evoked cellular responses have also been reported. However, the exact mechanism of such interaction is not known. In the present study, we showed that GN potentiated adenosine-induced cAMP accumulation in slices of hippocampus from young rats. However, neither GMP nor the metabotropic glutamate receptor agonist, 1S,3R-ACPD, inhibited the binding of the adenosine receptor agonist [3H]NECA (when binding to adenosine A2 receptors), or the binding of the adenosine A2a receptor agonist [3H]CGS 21680 in hippocampal membrane preparations. GppNHp, probably by interacting with G-proteins, decreased [3H]CGS 21680 binding. [3H]GMP binding was assayed in order to evaluate the GN sites which are not G-proteins. [3H]GMP binding was inhibited by GMP and GppNHp, but not by 1S,3R-ACPD. The interaction of endogenous adenosine with the GMP-binding sites was determined by incubating membranes in the presence or absence of adenosine deaminase (ADA). NECA, CADO, CGS 21680 and CPA (only at the highest concentration used) increased GMP binding in the presence of ADA. However, in the absence of ADA, the control levels of GMP binding were as high as in the presence of added ADA plus adenosine agonists, indicating that endogenous adenosine modulates the binding of GMP. If this site has a neuroprotective role, adenosine may be increasing its neuromodulator and proposed protective action.  相似文献   

12.
The binding of cyclic AMP, IMP and GMP by the central nervous system of Galleria mellonella was studied. The Km for cyclic AMP was 1 · 10?7 and that for cyclic GMP 1 · 10?8. The results suggest a different binding protein and cyclic nucleotide-stimulated protein kinase for each of these nucleotides. In addition a cyclic IMP-dependent protein kinase may also be present.  相似文献   

13.
Poly(A)-specific ribonuclease (PARN) is a processive 3′-exoribonuclease involved in the decay of eukaryotic mRNAs. Interestingly, PARN interacts not only with the 3′ end of the mRNA but also with its 5′ end as PARN contains an RRM domain that specifically binds both the poly(A) tail and the 7-methylguanosine (m7G) cap. The interaction of PARN with the 5′ cap of mRNAs stimulates the deadenylation activity and enhances the processivity of this reaction. We have determined the crystal structure of the PARN-RRM domain with a bound m7G triphosphate nucleotide, revealing a novel binding mode for the m7G cap. The structure of the m7G binding pocket is located outside of the canonical RNA-binding surface of the RRM domain and differs significantly from that of other m7G-cap-binding proteins. The crystal structure also shows a remarkable conformational flexibility of the RRM domain, leading to a perfect exchange of two α-helices with an adjacent protein molecule in the crystal lattice.  相似文献   

14.
Influenza pandemics with human-to-human transmission of the virus are of great public concern. It is now recognized that a number of factors are necessary for human transmission and virulence, including several key mutations within the PB2 subunit of RNA-dependent RNA polymerase. The structure of the middle domain in PB2 has been revealed with or without m7GTP, thus the middle domain is considered to be novel target for structure-based drug design. Here we report the crystal structure of the middle domain of H1N1 PB2 with or without m7GTP at 1.9Å and 2.0Å resolution, respectively, which has two mutations (P453H, I471T) to increase electrostatic potential and solubility. Here we report the m7GTP has unique conformation differ from the reported structure. 7-methyl-guanine is fixed in the pocket, but particularly significant change is seen in ribose and triphosphate region: the buried 7-methyl-guanine indeed binds in the pocket forming by H357, F404, E361 and K376 but the triphosphate continues directly to the outer domain. The presented conformation of m7GTP may be a clue for the anti-influenza drug-design.  相似文献   

15.
A Ca2+-dependent cyclic nucleotide phosphodiesterase has been partially purified from extracts of porcine brain by column chromatography on Sepharose 6 B containing covalently linked protamine residues, ammonium sulfate salt fractionation, and ECTEOLA-cellulose column chromatography. The resultant preparation contained a single form of cyclic nucleotide phosphodiesterase activity by the criteria of isoelectric focusing, gel filtration chromatography on Sephadex G-200, and electrophoretic migration on polyacrylamide gels. When fully activated by the addition of Ca2+ and microgram quantities of a purified Ca2+-binding protein (CDR), the phosphodiesterase hydrolyzed both adenosine 3′,5′-monophosphate (cyclic AMP) and guanosine 3′,5′-monophosphate (cyclic GMP), with apparent Km values of 180 and 8 μm, respectively. Approximately 15% of the total enzymic activity was present in the absence of added CDR and Ca2+. This activity exhibited apparent Km values for the two nucleotides identical to those observed for the maximally activated enzyme. Competitive substrate kinetics and heat destabilization studies demonstrated that both cyclic nucleotides were hydrolyzed by the same phosphodiesterase. The purified enzyme was identical to a Ca2+-dependent phosphodiesterase present in crude extract by the criteria of gel filtration chromatography, polyacrylamide-gel electrophoresis, and kinetic behavior.Apparent Km values of the Ca2+-dependent phosphodiesterase for cyclic AMP and cyclic GMP were lowered more than 20-fold as CDR quantities in the assay were increased to microgram amounts, whereas the respective maximal velocities remained constant. The apparent Km for Mg2+ was lowered more than 50-fold as CDR was increased to microgram amounts. Half-maximal activation of the phosphodiesterase occurred with lower amounts of CDR as a function of either increasing degrees of substrate saturation or increasing concentrations of Mg2+. At low cyclic nucleotide substrate concentrations i.e., 2.5 μm, cyclic GMP was hydrolyzed at a fourfold greater velocity than cyclic AMP. At high substrate concentrations (millimolar range) cyclic AMP was hydrolyzed at a threefold greater rate than cyclic GMP.  相似文献   

16.
Three separable forms of diadenosine 5′,5-P1,P3-triphosphate (Ap3A)-degrading activity were revealed when proteins obtained from the meal of yellow lupin seeds by ammonium sulfate precipitation were chromatographed on a DEAE-Sephacel column. The major form, which eluted first at the lowest salt concentration (0.15MKCl), was free of any activity converting the reaction products, ADP and AMP. Its further purification by gel filtration on Sephadex G-200 and by affinity elution from an AMP-agarose column yielded homogeneous protein as demonstrated on SDS–polyacrylamide gel electrophorograms. The enzyme is a single polypeptide chain ofMr41 kDa. Eleven guanosine-containing dinucleoside triphosphates, including analogs of the mRNA 5′-cap structure, have been tested as potential substrates of the lupin “Ap3A hydrolase.” All have been hydrolyzed yielding mixtures of corresponding nucleoside mono- and diphosphates. Asymmetrical compounds gave four products; m7Gp3G, et7Gp3G, and bz7Gp3G were hydrolyzed randomly, whereas m7Gp3A, m7Gp3C, and m7Gp3U yielded at least 80% m7GMP plus corresponding NDP and 20% or less NMP plus m7GDP. Hydrolysis of the guanosine-containing hybrids, Ap3G, Cp3G, and Up3G, yielded at least 85% GMP plus corresponding NDP. All dinucleotides containing the m7G- moiety were hydrolyzed 2- to 4.5-fold faster than Ap3A. Thus a general name, “dinucleoside triphosphate hydrolase,” is more appropriate for the enzymatic activity described.  相似文献   

17.
The activity of cholesterol 7α-hydroxylase in rat liver microsomes was assayed by measuring the mass of 5-cholestene-3β, 7α-diol formed from endogenous cholesterol under standardized incubation conditions. After termination of incubations, a known amount of 5-[24,25,7β-2H3]cholestene-3β,7α-diol was added. A chloroform extract of the incubation mixture was subjected to thin layer chromatography and the fraction containing 5-cholestene-3β,7α-diol was converted into trimethylsilyl ether. The trimethylsilyl ether was subjected to combined gas chromatography-mass spectrometry and the amount of unlabeled 5-cholestene-3β,7α-diol in the mixture was calculated from the ratio between the relative intensitics of the peaks at me 456 (M-90) and me 459 [M-(90 + 3)]. The precision of the method was ±2.2% (SD). The results with this method of assay of cholesterol 7α-hydroxylase were compared with those obtained with a method based on conversion of a trace amount of added [4-14C]cholesterol into 5-cholestene-3β,7α-diol.  相似文献   

18.
The messenger RNA for silk fibroin, labeled with 32PO4 and methyl-3H L-methionine, was purified to near homogeneity from the posterior silk gland of the silkworm Bombyx mori, and the sequence of a methylated, RNAase T2-resistant structure was determined. This sequence is similar structurally to 5′ terminal blocked and methylated sequences found on the total populations of polyadenylated eucaryotic cellular and certain viral mRNAs. The RNAase T2-resistant oligomer from fibroin mRNA was cleaved by nuclease P1 into three components: a blocked and methylated sequence containing three phosphates; a 2′-0-methyl UMP residue (pUm), and an unmethylated CMP (pC). The blocked and methylated sequence comigrated in three chromatographic systems with the blocked and methylated terminus of silkworm cytoplasmic polyhedrosis virus mRNA, which has the structure m7GpppAm. The fibroin mRNA cap was cleaved by nucleotide pyrophosphatase to yield 7-methyl GMP (pm7G) and 2′-0-methyl AMP (pAm). This sequence also appeared to be terminally located, with the m7G joined by a 5′-5′ pyrophosphate linkage to the Am. It was concluded that the 5′ terminal sequence of fibroin mRNA molecules is m7G(5′)ppp(5′)AmpUmpCp. The regulation of expression of the highly specialized gene for fibroin is discussed in light of this finding.  相似文献   

19.
20.
The thyroid uptake at 20 minutes of intravenously administered Technetium-99m (99mTc) was measured in 117 patients with a standard scintillation counter. Patients were divided into three groups on the basis of clinical assessment, four-hour 131I uptake, triiodothyronine (T-3) resin uptake, and protein-bound iodine measurements.In 31 patients with no evidence of thyroid disease the mean 99m Tc uptake was 1·8% ±S.D. 1·1%. In 32 patients with thyroid enlargement who were euthyroid the mean uptake was 2·5% ±S.D. 2·2%. In 54 thyrotoxic patients the mean uptake was 17·7% with a range of 4·1 to 44%, all cases having an uptake above the upper limit of normal (4·0%). These results agree closely with reported uptake studies using scanning techniques. In seven patients the extrathyroidal neck activity was measured by using a scanner, and the mean was 6·3% of the extrathyroidal total body radioactivity comparing favourably with an assumed 6% used in our calculations.We have shown that the measurement of the thyroid uptake of 99mTc with a scintillation counter is of value, and that it is not necessary to use scanning techniques in the diagnosis of thyrotoxicosis. Advantages of 99m Tc are minimal radiation, reduction in patient and laboratory time, and low cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号