首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Hu L  Sun H  Li R  Zhang L  Wang S  Sui X  Zhang Z 《Plant, cell & environment》2011,34(11):1835-1848
The phloem unloading pathway remains unclear in fruits of Cucurbitaceae, a classical stachyose-transporting species with bicollateral phloem. Using a combination of electron microscopy, transport of phloem-mobile symplasmic tracer carboxyfluorescein, assays of acid invertase and sucrose transporter, and [(14)C]sugar uptake, the phloem unloading pathway was studied in cucumber (Cucumis sativus) fruit from anthesis to the marketable maturing stage. Structural investigations showed that the sieve element-companion cell (SE-CC) complex of the vascular bundles feeding fruit flesh is apparently symplasmically restricted. Imaging of carboxyfluorescein unloading showed that the dye remained confined to the phloem strands of the vascular bundles in the whole fruit throughout the stages examined. A 37 kDa acid invertase was located predominantly in the cell walls of SE-CC complexes and parenchyma cells. Studies of [(14)C]sugar uptake suggested that energy-driven transporters may be functional in sugar trans-membrane transport within symplasmically restricted SE-CC complex, which was further confirmed by the existence of a functional plasma membrane sucrose transporter (CsSUT4) in cucumber fruit. These data provide a clear evidence for an apoplasmic phloem unloading pathway in cucumber fruit. A presumption that putative raffinose or stachyose transporters may be involved in soluble sugars unloading was discussed.  相似文献   

5.
Rae AL  Perroux JM  Grof CP 《Planta》2005,220(6):817-825
A transporter with homology to the SUT/SUC family of plant sucrose transporters was isolated from a sugarcane (Saccharum hybrid) stem cDNA library. The gene, designated ShSUT1, encodes a protein of 517 amino acids, including 12 predicted membrane-spanning domains and a large central cytoplasmic loop. ShSUT1 was demonstrated to be a functional sucrose transporter by expression in yeast. The estimated Km for sucrose of the ShSUT1 transporter was 2 mM at pH 5.5. ShSUT1 was expressed predominantly in mature leaves of sugarcane that were exporting sucrose and in stem internodes that were actively accumulating sucrose. Immunolocalization with a ShSUT1-specific antiserum identified the protein in cells at the periphery of the vascular bundles in the stem. These cells became lignified and suberized as stem development proceeded, forming a barrier to apoplasmic solute movement. However, the movement of the tracer dye, carboxyfluorescein from phloem to storage parenchyma cells suggested that symplasmic connections are present. ShSUT1 may have a role in partitioning of sucrose between the vascular tissue and sites of storage in the parenchyma cells of sugarcane stem internodes.  相似文献   

6.
7.
8.
To gain a better understanding of differentially expressed sequence tags (ESTs) for aluminum (Al) tolerance and to investigate the molecular mechanisms of Al toxicity, cDNA subtraction libraries were generated from Al-stressed roots of alfalfa (Medicago sativa L.) compared with no Al-stressed ones, employing suppression subtractive hybridization. Using differential screening technique in which the probes were labeled with DIG, we identified 45 non-redundant ESTs in Al-stressed alfalfa root tips with significantly altered expression. Among the up-regulated ESTs, we have found genes encoding identified proteins, including malate dehydrogenase, 6-phosphogluconate dehydrogenase, peroxidase, and an ABC transporter, while the down-regulate genes included ATPase, secretory carrier membrane protein 2, pectinesterase inhibitor. In addition, two novel ESTs, EW678752 and EY976957, up- and down-regulated by Al stress were sequenced. Analyzed by real-time PCR, the expressions of EST EW678718, EW678739, EY976969 and EW678728, which encode for ABC transporter, malate dehydrogenase, peroxidase and 6-phosphogluconate dehydrogenase correspondingly, increased 1.64-, 2.75-, 3.27- and 6.54-folds, respectively, and the expression of EY976957 encoding for ATPase decreased 3.27 folds. The expression of EST EW678752 increased 34.54-fold, while that of EY976957 decreased 16.68 folds. It suggested that the two novel ESTs maybe play a significant role in the aluminum tolerance of alfalfa.  相似文献   

9.
Genes expressed in sugarcane maturing internodal tissue   总被引:4,自引:0,他引:4  
D. Carson  F. Botha 《Plant cell reports》2002,20(11):1075-1081
To explore gene expression during sugarcane culm maturation, we performed a partial sequence analysis of random clones from maturing culm total and subtracted cDNA libraries. Database comparisons revealed that of the 337 cDNA sequences analysed, 167 showed sequence homology to gene products in the protein databases, while 111 matched uncharacterised plant expressed sequence tags (ESTs) only. The remaining cDNAs showed no database match and could represent novel genes. The majority of ESTs corresponded to a variety of genes associated with general cellular metabolism. ESTs homologous to various stress response genes were also well represented. Analysis of ESTs from the subtracted library identified genes that may be preferentially expressed during culm maturation. This research has provided a framework for functional gene analysis in sugarcane sucrose-accumulating tissues.  相似文献   

10.
11.
12.
13.
14.
We report the isolation and characterization of two sucrose transporter cDNAs (CitSUT1 and CitSUT2) from citrus. CitSUT1 and CitSUT2 encode putative proteins (CitSUT1 and CitSUT2) of 528 and 607 amino acids, respectively. CitSUT1 and CitSUT2 share high similarities with sucrose transporters isolated from other plants. The expression of CitSUT1 in mature leaf discs is repressed by exogenous sucrose, glucose, mannose, and the glucose analog 2-deoxyglucose but not by another glucose analog 3-O-methylglucose, indicating a hexokinase (HXK)-mediated signaling pathway. CitSUT2 expression is not affected by exogenous sugars. Whereas CitSUT1 expresses strongly in source, sugar exporting organs, CitSUT2 expresses more strongly in sink, sugar importing organs, suggesting different physiological roles for these sucrose transporters.  相似文献   

15.
16.
The activities of sucrose-phosphate synthase (SPS), sucrose synthase (SUSY), neutral invertase (NI) and soluble acid invertase (SAI) regulates sucrose activity in sugarcane were studied. Micropropagated sugarcane plants were obtained from callus cultures of four Mexican commercially available sugarcane varieties characterized by differences in sugar production, and activities of SPS, SUSY, NI, SAI and concentrations of sucrose were monitored in the sugarcane stem. The results indicated that sucrose accumulation was positively and significantly related to an increase in activity of SPS and SUSY and negatively to a reduction in activity of SAI and NI (P<0.05). SPS explained most of the variations found for sucrose accumulation and least for NI. The relationship between activity of SPS, SUSY, NI and SAI in sugarcane stem was similar in each variety.  相似文献   

17.
18.
19.
BACKGROUND AND AIMS: In crops other than sugarcane there is good evidence that the size and activity of carbon sinks influence source activity via sugar-related regulation of the enzymes of photosynthesis, an effect that is partly mediated through coarse regulation of gene expression. METHODS: In the current study, leaf shading treatments were used to perturb the source-sink balance in 12-month-old Saccharum spp. hybrid 'N19' (N19) by restricting source activity to a single mature leaf. Changes in leaf photosynthetic gas exchange variables and leaf and culm sugar concentrations were subsequently measured over a 14 d period. In addition, the changes in leaf gene response to the source-sink perturbation were measured by reverse northern hybridization analysis of an array of 128 expressed sequence tags (ESTs) related to photosynthetic and carbohydrate metabolism. KEY RESULTS: Sucrose concentrations in immature culm tissue declined significantly over the duration of the shading treatment, while a 57 and 88% increase in the assimilation rate (A) and electron transport rate (ETR), respectively, was observed in the source leaf. Several genes (27) in the leaf displayed a >2-fold change in expression level, including the upregulation of several genes associated with C(4) photosynthesis, mitochondrial metabolism and sugar transport. Changes in gene expression levels of several genes, including Rubisco (EC 4.1.1.39) and hexokinase (HXK; EC 2.7.1.1), correlated with changes in photosynthesis and tissue sugar concentrations that occurred subsequent to the source-sink perturbation. CONCLUSIONS: These results are consistent with the notion that sink demand may limit source activity through a kinase-mediated sugar signalling mechanism that correlates to a decrease in source hexose concentrations, which, in turn, correlate with increased expression of genes involved in photosynthesis and metabolite transport. The signal feedback system reporting sink sufficiency and regulating source activity may be a potentially valuable target for future genetic manipulation to increase sugarcane sucrose yield.  相似文献   

20.
Hexoses as phloem transport sugars: the end of a dogma?   总被引:1,自引:0,他引:1  
According to most textbooks, only non-reducing carbohydrate species such as sucrose, sugar alcohols, and raffinose-family sugars function as phloem translocates. Occasional abundance of reducing sugar species (such as hexoses) in sieve-tube sap has been discarded as an experimental artefact. This study, however, discloses a widespread occurrence of hexoses in the sieve-tube sap. Phloem exudation facilitated by EDTA provided evidence that many of the members of two plant families (Ranunculaceae and Papaveraceae) investigated translocate >80% of carbohydrates in the form of hexoses. Representatives of other families also appear to translocate appreciable amounts of hexoses in the sieve tubes. Promoting effects of EDTA, activities of sucrose-degrading enzymes, and sugar uptake by micro-organisms on hexose contents of phloem exudates were checked. The rate of sucrose degradation is far too low to explain the large proportions of hexoses measured in phloem exudates; nor did other factors tested seem to stimulate the occurrence of hexoses. The validity of the approach is further supported by the virtual absence of hexoses in exudates from species that were known as exclusive sucrose transporters. This study urges a rethink of the existing views on carbohydrate transport species in the phloem stream. Hexose translocation is to be regarded as a normal mode of carbohydrate transfer by the phloem equivalent to that of sucrose, raffinose-family sugars, or sugar alcohols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号