首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a rapid autoradiographic screening assay for detecting diglyceride kinase in colonies of Escherichia coli and have isolated four strains lacking this enzyme. The gene (designated dgk) which is altered in these mutants is cotransduceable with the malB locus, near minute 90 on the chromosome. The membranes of strain RZ60 (which carries the dgk-6 lesion) contain substantial amounts of 1,2-diglyceride, representing approximately 8% of the total lipid. In contrast, wild type cells of E. coli (dgk+) only contain about 0.5% 1,2-diglyceride. The phospholipid composition of these mutants is not dramatically altered, and they are not temperature sensitive for growth. However, strains bearing the dgk-6 mutation do not grow well on nutrient media of low osmolarity. This can be corrected by the inclusion of 1% NaCl or 0.5 M sucrose. These results suggest that 1,2-diglyceride is the true substrate for the kinase in vivo and that the kinase functions as a minor route for phosphatidic acid synthesis. Genetic modification of the diglyceride content of the E. coli membrane has not been reported previously.  相似文献   

2.
The membrane-derived oligosaccharides (MDO) of Escherichia coli are periplasmic constituents composed of glucose residues linked by beta-1,2 and beta-1,6 glycosidic bonds. MDO are substituted with phosphoglycerol, phosphoethanolamine, and succinic acid moieties. The phosphoglycerol residues present on MDO are derived from phosphatidylglycerol (B. J. Jackson and E. P. Kennedy, J. Biol. Chem. 258:2394-2398, 1983), but evidence as to the source of the phosphoethanolamine residues has been lacking. We now report that phosphatidylethanolamine, exogenously added to intact cells of E. coli, provides a source of phosphoethanolamine residues that are transferred to MDO. The biosynthesis of phosphoethanolamine-labeled MDO is osmotically regulated, with maximum synthesis occurring during growth in medium of low osmolarity.  相似文献   

3.
Gram-negative bacteria grown under conditions of low osmolarity accumulate significant amounts of periplasmic glucans, membrane-derived oligosaccharides (MDO) in Escherichia coli and cyclic glucans in members of the family Rhizobiaceae. It was reported previously (W. Fiedlder and H. Rotering, J. Biol. Chem. 263:14684-14689, 1988) that mdoA mutants unable to synthesize MDO show a number of altered phenotypes, among them a decreased expression of OmpF and an increased expression of OmpC, when grown in a Bacto Peptone medium of low osmolarity and low ionic strength. Although we confirm the findings of Fiedler and Rotering, we find that the regulation of OmpF and OmpC expression in mdoA mutants is normal in cells grown on other low-osmolarity media, eliminating the possibility that MDO itself might control porin expression. Our data suggest that a certain minimal ionic strength in the periplasm is needed for normal porin regulation. In media containing very low levels of salt, this may be contributed by anionic MDO.  相似文献   

4.
Mutants of Escherichia coli defective in diglyceride kinase contain 10 to 20 times more sn-1,2-diglyceride than normal cells. This material constitutes about 8% of the total lipid in such strains. We now report that this excess diglyceride is recovered in the particulate fraction, primarily in association with the inner, cytoplasmic membrane. The diglyceride kinase of wild-type cells was recovered in the same inner membrane fractions. The conditions employed for the preparation of the membranes did not appear to cause significant redistribution of lipids and proteins. The biochemical reactions leading to the formation of diglyceride in E. coli are not known. To determine whether diglyceride formation requires concurrent synthesis of the membrane-derived oligosaccharides (H. Schulman and E. P. Kennedy, J. Biol. Chem. 252:4250-4255, 1977), we have constructed a double mutant defective in both the kinase (dgk) and phosphoglucose isomerase (pgi). When oligosaccharide synthesis was inhibited in this organism by growing the cells on amino acids as the sole carbon source, the diglyceride was no longer present in large amounts. When glucose was also added to the medium, the pgi mutation was bypassed, oligosaccharide synthesis resumed, and diglyceride again accumulated. These findings suggest that diglyceride may arise during the transfer of the sn-glycero-1-P moiety from phosphatidylglycerol (and possibly cardiolipin) to the oligosaccharides. In wild-type cells the kinase permits the cyclical reutilization of diglyceride molecules for phospholipid biosynthesis.  相似文献   

5.
A mutant of Escherichia coli (mdoR) has been isolated which is defective in synthesis of the membrane-derived oligosaccharides (MDO) normally found in the periplasmic space. In media of high osmotic pressure this defect is suppressed and MDO levels approaching those of the wild type are produced. The mdoR mutant also fails to accumulate glycogen; however, genetic analysis showed that mdoR was not cotransducible with the known glg (glycogen) locus. A further relationship between MDO and glycogen metabolism was suggested by two observations that (i) certain glg mutants affect MDO accumulation and (ii) elevated osmotic pressure inhibits glycogen accumulation, in both wild-type and mdoR cells.  相似文献   

6.
Abstract We compared the phenotype of two thermosensitive Escherichia coli mutants defective in lipid A biosynthesis i.e. SM101 ( lpxA ) and CDH23-213 ( lpxD ). More than 40% of the periplasmic 27-kDa marker enzyme β-lactamase was released from SM101 at 28°C. At this temperature, the mutant still grew with a generation time (67 min), not much longer than that of the parent control strain (57 min). CDH23-213 released β-lactamase only at higher temperatures. SM101 and CDH23-213 were both unable to grow in hypo-osmotic conditions. Derivatives of SM101 and CDH23-213 with mdoA ::Tn 10 had identical phenotypes (including thermosensitivity and defective outer membrane permeability barrier to hydrophobic probes) to those of SM101 and CDH23-213, indicating that the potential loss of membrane-derived oligosaccharides (MDO) did not explain these phenotypic properties. A method for the estimation of lipid A synthesis rate was developed.  相似文献   

7.
Membrane-derived oligosaccharides are periplasmic constituents of Escherchia coli and other Gram-negative bacteria. Oligosaccharides in this family may be variously substituted with O-succinyl ester residues, and with sn-1-phosphoglycerol and phosphoethanolamine residues derived from membrane phospholipids. Membrane-derived oligosaccharides appear to be important in osmoregulation, because their synthesis is under strict control (Kennedy, E.P. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 1092-1095). Maximum rate of synthesis is at very low osmolarity of the medium. Phosphoglycerol residues are transferred from phosphatidylglycerol to membrane-derived oligosaccharides, or to certain beta-glucoside acceptors, in a reaction catalyzed by phosphoglycerol transferase I, an enzyme of the inner membrane (Jackson, B. J., and Kennedy, E.P. (1983) J. Biol. Chem. 258, 2394-2398). We now report that this enzyme catalyzes the transfer of phosphoglycerol residues to arbutin (p-hydroxyphenyl-beta-D-glucoside) added to the medium with Km similar to that observed with the cell-free enzyme. The active site of the enzyme must therefore be on the periplasmic face of the inner membrane. We assayed phosphoglycerol transferase I in vivo and found that it is present and completely active even in cells growing in medium of very high osmolarity, in which the synthesis of membrane-derived oligosaccharides is severely reduced. We conclude that osmotic regulation must occur at the stage of the synthesis of oligosaccharide chains. A study of the kinetics of transfer of phosphoglycerol residues to membrane-derived oligosaccharides in vivo revealed that synthesis of the polyglucose chains must stop abruptly upon transfer of cells from medium of low to high osmolarity, inconsistent with a model postulating simple dilution of some rate-limiting enzyme during growth at the higher osmolarity.  相似文献   

8.
The osmotic regulation of the biosynthesis of membrane-derived oligosaccharides (MDO) in strains UB1005 and DC2 of Escherichia coli K-12 was examined; this regulation was previously reported by Clark (J. Bacteriol. 161:1049-1053, 1985) to be different from that observed by Kennedy for other strains of E. coli (Proc. Natl. Acad. Sci. USA 79:1092-1095, 1982). Osmotic regulation of the synthesis of MDO in UB1005 and DC2 is in fact indistinguishable from that previously reported for other strains of E. coli, with maximum production of MDO occurring in the medium of lowest osmolarity. The report of Clark to the contrary was apparently based on the inadequate methods for the measurement of MDO employed in that study. MDO are localized in the periplasm of wild-type E. coli cells. However, strain DC2, selected for hypersensitivity to a range of antibiotics, released most of its MDO into the medium, apparently as a result of greater outer membrane permeability.  相似文献   

9.
Phosphoglycerol transferase I, an enzyme of the inner, cytoplasmic membrane of Escherichia coli, catalyzes the in vitro transfer of phosphoglycerol residues from phosphatidylglycerol to membrane-derived oligosaccharides or to the model substrate arbutin (p-hydroxyphenyl-beta-D-glucoside). The products are a phosphoglycerol diester derivative of membrane-derived oligosaccharides or arbutin, respectively, and sn-1,2-diglyceride (B. J. Jackson and E. P. Kennedy, J. Biol. Chem. 258:2394-2398, 1983). Because this enzyme has its active site on the outer aspect of the inner membrane, it also catalyzes the transfer of phosphoglycerol residues to arbutin added to the medium (J.-P. Bohin and E. P. Kennedy, J. Biol. Chem. 259:8388-8393, 1984). When strains bearing the dgk mutation, which are defective in the enzyme diglyceride kinase, are grown in medium containing arbutin, they accumulate large amounts of sn-1,2-diglyceride, a product of the phosphoglycerol transferase I reaction. Growth is inhibited under these conditions. A further mutation in such a dgk strain, leading to the loss of phosphoglycerol transferase I activity, should result in the phenotype of arbutin resistance. We have exploited this fact to obtain strains with such mutations, designated mdoB, that map near min 99. Such mutants lack detectable phosphoglycerol transferase I activity, cannot transfer phosphoglycerol residues to arbutin in vivo, and synthesize membrane-derived oligosaccharides devoid of phosphoglycerol residues. These findings offer strong genetic support for the function of phosphoglycerol transferase I in membrane-derived oligosaccharide biosynthesis.  相似文献   

10.
A procedure for the isolation of mutants affected in components containing glycerol derived from phospholipids yielded two mutant strains that contain membrane-derived oligosaccharides (MDO) devoid of glycerol (Rotering, H., Fiedler, W., Rollinger, W., and Braun, V. (1984) FEMS Microbiol. Lett. 22, 61-68). MDO are found in the periplasmic space of Escherichia coli and other Gram-negative bacteria, and they may comprise up to 7% of the cells dry weight. The biosynthesis of MDO is osmoregulated (Kennedy, E. P. (1982) Proc. Natl. Acad. Sci. U. S. A. 79, 1092-1095) and linked to the metabolism of phospholipids (van Golde, L. M. G., Schulman, H., and Kennedy, E. P. (1973) Proc. Natl. Acad. Sci. U. S. A. 70, 1368-1372). This leads to substitution of MDO with sn-1-phosphoglycerol and phosphoethanolamine (Kennedy, E. P., Rumley, M. K., Schulman, P., and van Golde, L. M. G. (1976) J. Biol. Chem. 251, 4208-4213). MDO also contain succinate in O-ester linkage. We now report that one mutant strain lacks phosphoglycerol transferase I activity and thus is unable to transfer sn-1-phosphoglycerol residues from phosphatidylglycerol to MDO. The mdoB gene affected in this mutant has been located at 99.2 min on the E. coli chromosome. The ethanolamine content of MDO isolated from the mutant strain is elevated, whereas the number of succinate residues is not affected. The only phenotype of mdoB mutants we found is a dramatic reduction of the diglyceride content observed in dgk mdoB double mutants when the beta-glucoside arbutin is present in the growth medium.  相似文献   

11.
Mutants of Escherichia coli defective in the mdoA locus are blocked at an early stage in the biosynthesis of membrane-derived oligosaccharides. The mdoA locus has now been cloned into multicopy plasmids. A 5 kb DNA fragment is necessary to complement mdoA mutations. Cells harbouring the mdoA+ plasmid produced three to four times more MDO than wild-type cells. MDO overproduction did not affect the degree of MDO substitution with sn-1-phosphoglycerol residues. The biosynthesis of MDO remained under osmotic control in overproducing strains.  相似文献   

12.
Membrane-derived oligosaccharides (MDO) consist of branched substituted beta-glucan chains and are present in the periplasmic space of Escherichia coli and other gram-negative bacteria. A procedure for the isolation of mutants defective in MDO synthesis is described. Their phenotype was compared with a mdoA mutant previously identified, and they are mapped in the mdoA region. Mutants lacking MDO showed imparied chemotaxis on tryptone swarm plates, a reduced number of flagella, and an enhanced expression of the OmpC porin. Revertants able to form swarm rings again had regained the ability to synthesize MDO and showed the wild-type porin pattern. A second group of chemotactic revertants were mutated in the ompB gene region involved in osmoregulation, and they were still devoid of MDO. These findings provide evidence for a link between MDO biosynthesis and other functions of E. coli related to its adaptation to the environment.  相似文献   

13.
Mutants of Escherichia coli defective in the newly discovered mdoA locus are blocked at an early stage in the biosynthesis of membrane-derived oligosaccharides. The mutation has now been mapped and found to be located near 23 min on the E. coli chromosome between putA and pyrC. The mdoA mutants are defective in the membrane-localized component of the glucosyl transferase system described by Weissborn and Kennedy (A. C. Weissborn and E. P. Kennedy, Fed. Proc. 42:2122, 1983).  相似文献   

14.
Abstract A mutant screening procedure is described which allows the identification of mutants carrying lesions in lipoprotein, membrane-derived oligosac-charides (MDO), and other compounds of the E. coli cell envelope containing glycerol derived from phospholipid metabolism. Two mutants lacking glycerol in MDO and one mutant devoid of lipoprotein demonstrate the usefulness of the procedure.  相似文献   

15.
The membrane-derived oligosaccharides of Escherichia coli constitute a closely related family of oligosaccharides containing approximately 9 glucose units variously substituted with sn-glycero-1-phosphate and phosphoethanolamine residues derived from the head groups of membrane phospholipids, and also with succinate in O-ester linkage (Kennedy, E.P., Rumley, M.K., Schulman, H., and van Golder, L.M.G. (1976) J. Biol. Chem. 251, 4208-4213). Studies with mutant strains defective in the synthesis of various nucleoside diphosphate sugars have now revealed that UDP-glucose is an essential intermediate in the biosynthesis of these oligosaccharides. Mutants unable to synthesize UDP-glucose do not contain significant amounts of the membrane-derived oligosaccharides. In contrast, a strain unable to synthesize ADP-glucose, the glucosyl donor for glycogen synthesis in E. coli, contained normal amounts of the membrane-derived oligosaccharides, although with a somewhat different pattern of distribution of the various subspecies. In confirmation of these genetic studies, pulse-label isotope tracer studies have been carried out with glucose of high specific activity, under conditions in which UDP-glucose comprises a large fraction of the total radioactivity in the low molecular weight pool. Subsequent "chase" experiments clearly revealed the conversion of UDP-glucose to the higher molecular weight membrane-derived oligosaccharides.  相似文献   

16.
1. Combined guinea-pig cortex and cerebellum was shown to contain triglyceride lipase, diglyceride lipase and monoglyceride lipase, which were assayed by the release of [1-(14)C]palmitate from [1-(14)C]palmitoylglycerol esters. Triglyceride lipase and diglyceride lipase were found in all particulate fractions. 2. With osmotically ruptured synaptosomes the rates of release of palmitate from glyceryl tripalmitate and glyceryl dipalmitate were 7-25mumol/h per g of protein and 0.18-0.69mmol/h per g of protein respectively. The logarithm of the rate of hydrolysis of glyceryl monopalmitate increased linearly with the logarithm of protein concentration. The pH optima of triglyceride lipase and diglyceride lipase were between 7 and 8. The pH optimum for monoglyceride lipase was approx. 8. 3. Triglyceride lipase and diglyceride lipase of osmotically ruptured synaptosomes were stimulated by noradrenaline, 5-hydroxytryptamine and adrenaline. Triglyceride lipase of isolated synaptic membranes was stimulated by 0.01-1mm-noradrenaline. Aging of membranes at 0 degrees C decreased activity, which could still be stimulated by noradrenaline. Diglyceride lipase of isolated membranes was stimulated by 1mum-1mm-noradrenaline. The activity of triglyceride lipase in isolated synaptic vesicles was diminished by 1mm-5-hydroxytryptamine.  相似文献   

17.
The haemolymph lipid of the southern armyworm moth, Prodenia eridania, is chiefly diglyceride with smaller amounts of triglyceride, monoglyceride, and free fatty acid also present. The stored lipid of moth fat body is almost all triglyceride. Although flight muscle contains a very active monoglyceride lipase, its ability to hydrolyse tri- and diglycerides is very low. The fat body contains enzymes able to hydrolyse tri-, di-, and monoglycerides. These data do not support the suggestion that fat body triglyceride is converted to diglyceride, which is carried in the haemolymph to the flight muscle and then hydrolysed to free fatty acid for oxidation during flight; rather, they indicate that triglyceride can be completely hydrolysed in the fat body, and the resulting free fatty acid is carried to the flight muscle to provide energy for flight.  相似文献   

18.
In Escherichia coli, the 5 kb mdoA locus is involved in the osmotically controlled biosynthesis of periplasmic membrane-derived oligosaccharides (MDOs). The structure of this locus was analysed by in vitro cassette insertion, transposon mutagenesis, and gene-fusion analysis. A 'neo' cassette, derived from the neomycin phosphotransferase II region of transposon Tn5, was inserted into mdoA, borne by a multicopy plasmid. This plasmid was shown to complement two previously described mdoA mutations, depending on the orientation of the exogenous gene. Thus, the gene altered by these mutations could be expressed under the control of the exogenous promoter. Moreover, the 'neo' cassette inactivated another, uncharacterized, mdo gene, because when this insertion was transferred into the chromosome MDO synthesis was abolished. The existence of a second gene was confirmed by complementation analysis with a collection of Tn1000 insertions into mdoA. Two groups were defined, and the two genes are organized into an operon (mdoGH). This conclusion was reached because Tn1000 insertions in the first gene displayed a polar effect on the expression of the second gene. An active gene fusion was obtained on a multicopy plasmid between the beginning of mdoH and lacZ. The hybrid beta-galactosidase activity followed the same osmotically controlled response as that described for of MDO synthesis. This regulation was unaffected by the presence, or absence, of MDOs in the periplasm. Finally, the amount of mdoA-specific mRNAs, determined by dot blot hybridization, decreased when the osmolarity of the growth medium increased.  相似文献   

19.
Expression of the cloned lysis protein of phage MS2, which is sufficient to lyse wild type Escherichia coli, does not cause lysis of mutants lacking the osmoregulatory membrane-derived oligosaccharides (MDO). The lysis gene product normally found in the membrane fraction was not stably inserted into the membranes of a mdoA mutant; rather degradation and release from the membrane occurred. Gentle plasmolysis of the MDO-lacking mutant clearly showed an increased periplasmic space as compared to wild type cells. It is concluded that the MDOs play an important role in maintaining a proper arrangement of inner and outer membrane, a prerequisite for a functional insertion of the MS2 lysis protein.  相似文献   

20.
Elevations in the mass of ether-linked diglycerides (i.e. 1-O-alk-1'-enyl-2-acyl-sn-glycerol (AAG) and 1-O-alkyl-2-acyl-sn-glycerol (Alkyl AG)) during cellular activation are prolonged in comparison to their 1,2-diacyl-sn-glycerol (DAG) counterparts. Since the metabolic removal of DAG is determined, in large part, by the rate of its phosphorylation by diglyceride kinase, we quantified differences in the activity of diglyceride kinase utilizing individual subclasses of diradyl glycerols as substrate. Rabbit brain microsomal diglyceride kinase activity was over 30-fold greater utilizing DAG as substrate (25.8 nmol.mg-1.min-1) in comparison to AAG (0.8 nmol.mg-1.min-1). No alterations in the affinity of microsomal diglyceride kinase for ATP were present (Km approximately 0.5 mM) utilizing each diradyl glycerol subclass. Similar subclass specificities for diglyceride kinase (i.e. DAG greater than Alkyl AG much greater than AAG) were present in brain and liver cytosol as well as in liver microsomes utilizing multiple assay conditions. In sharp contrast, Escherichia coli diglyceride kinase phosphorylated DAG, Alkyl AG, or AAG diradyl glycerol molecular subclasses at identical rates. Furthermore, although DAG was rapidly hydrolyzed by diglyceride lipase, catabolism of AAG or Alkyl AG by plasmalogenase, alkyl ether hydrolase, or diglyceride/monoglyceride lipase was undetectable. Collectively, these results demonstrate the importance of the differential catabolism of each diradyl glycerol molecular subclass as a primary determinant of their biologic half-lives. Since individual subclasses of diglycerides have distinct physical properties and physiologic functions, these results underscore the importance of lipid subclass specific metabolism in tailoring individual cellular responses during activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号