首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biotic stress has a major impact on the process of natural selection in plants. As plants have evolved under variable environmental conditions, they have acquired a diverse spectrum of defensive strategies against pathogens and herbivores. Genetic variation in the expression of plant defence offers valuable insights into the evolution of these strategies. The 'zigzag' model, which describes an ongoing arms race between inducible plant defences and their suppression by pathogens, is now a commonly accepted model of plant defence evolution. This review explores additional strategies by which plants have evolved to cope with biotic stress under different selective circumstances. Apart from interactions with plant-beneficial micro-organisms that can antagonize pathogens directly, plants have the ability to prime their immune system in response to selected environmental signals. This defence priming offers disease protection that is effective against a broad spectrum of virulent pathogens, as long as the augmented defence reaction is expressed before the invading pathogen has the opportunity to suppress host defences. Furthermore, priming has been shown to be a cost-efficient defence strategy under relatively hostile environmental conditions. Accordingly, it is possible that selected plant varieties have evolved a constitutively primed immune system to adapt to levels of disease pressure. Here, we examine this hypothesis further by evaluating the evidence for natural variation in the responsiveness of basal defence mechanisms, and discuss how this genetic variation can be exploited in breeding programmes to provide sustainable crop protection against pests and diseases.  相似文献   

2.
This study evaluated how natural selection act upon two proposed alternatives of defence (growth and resistance) against natural enemies in a common garden experiment using genetic material (full-sibs) from three populations of the annual plant Datura stramonium. Genetic and phenotypic correlations were used to search for a negative association between both alternatives of defence. Finally, the presence/absence of natural enemies was manipulated to evaluate the selective value of growth as a response against herbivory. Results indicated the presence of genetic variation for growth and resistance (1--relative damage), whereas only population differentiation for resistance was detected. No correlation between growth and resistance was detected either at the phenotypic or the genetic level. Selection analysis revealed the presence of equal fitness benefits of growth and resistance among populations. The presence/absence of natural herbivores revealed that herbivory did not alter the pattern of selection on growth. The results indicate that both strategies of defence can evolve simultaneously within populations of D. stramonium.  相似文献   

3.
Information of the patterns of genetic variation in plant resistance and tolerance against herbivores and genetic trade‐offs between these two defence strategies is central for our understanding of the evolution of plant defence. We found genetic variation in resistance to two specialist herbivores and in tolerance to artificial damage but not to a specialist leaf herbivore in a long‐lived perennial herb. Seedlings tended to have genetic variation in tolerance to artificial damage. Genetic variation in tolerance of adult plants to artificial damage was not consistent in time. Our results suggest that the level of genetic variation in tolerance and resistance depends on plant life‐history stage, type of damage and timing of estimating the tolerance relative to the occurrence of the damage, which might reflect the pattern of selection imposed by herbivory. Furthermore, we found no trade‐offs between resistance and tolerance, which suggests that the two defence strategies can evolve independently.  相似文献   

4.
The successful spread of invasive plants may result from an evolutionary shift in resource allocation from defence to growth due to release from enemies, as proposed by the ‘evolution of increased competitive ability’ hypothesis (EICA). The crucifer Lepidium draba was used to test this hypothesis, measuring growth and levels of glucosinolates and myrosinase of leaves as constitutive defence parameters. Individuals from 21 populations of the native (Europe) and the invasive range (North-America) were grown under common greenhouse conditions. According to the EICA hypothesis it was predicted that plants from the invasive range might show stronger growth and have lower levels of defence as a result of selection favouring such genotypes. There was significant variation between populations in shoot, root, total biomass, and number of ramets of 3-month-old plants but no difference due to origin from both continents. The main glucosinolate p-hydroxybenzyl glucosinolate was significantly higher in seedlings of the invasive range while myrosinase activity was higher in old plants of the invasive range. Therefore, the EICA hypothesis does not hold, however, alternatively there is evidence for selection favouring stronger defence in the invasive range. The binary defence system of this crucifer is discussed with respect to the degree of specialisation of potential herbivores.  相似文献   

5.
Pollinators and herbivores can both affect the evolutionary diversification of plant reproductive traits. However, plant defences frequently alter antagonistic and mutualistic interactions, and therefore, variation in plant defences may alter patterns of herbivore‐ and pollinator‐mediated selection on plant traits. We tested this hypothesis by conducting a common garden field experiment using 50 clonal genotypes of white clover (Trifolium repens) that varied in a Mendelian‐inherited chemical antiherbivore defence—the production of hydrogen cyanide (HCN). To evaluate whether plant defences alter herbivore‐ and/or pollinator‐mediated selection, we factorially crossed chemical defence (25 cyanogenic and 25 acyanogenic genotypes), herbivore damage (herbivore suppression) and pollination (hand pollination). We found that herbivores weakened selection for increased inflorescence production, suggesting that large displays are costly in the presence of herbivores. In addition, herbivores weakened selection on flower size but only among acyanogenic plants, suggesting that plant defences reduce the strength of herbivore‐mediated selection. Pollinators did not independently affect selection on any trait, although pollinators weakened selection for later flowering among cyanogenic plants. Overall, cyanogenic plant defences consistently increased the strength of positive directional selection on reproductive traits. Herbivores and pollinators both strengthened and weakened the strength of selection on reproductive traits, although herbivores imposed ~2.7× stronger selection than pollinators across all traits. Contrary to the view that pollinators are the most important agents of selection on reproductive traits, our data show that selection on reproductive traits is driven primarily by variation in herbivory and plant defences in this system.  相似文献   

6.
The evolution of plant defence in response to herbivory will depend on the fitness effects of damage, availability of genetic variation and potential ecological and genetic constraints on defence. Here, we examine the potential for evolution of tolerance to deer herbivory in Oenothera biennis while simultaneously considering resistance to natural insect herbivores. We examined (i) the effects of deer damage on fitness, (ii) the presence of genetic variation in tolerance and resistance, (iii) selection on tolerance, (iv) genetic correlations with resistance that could constrain evolution of tolerance and (v) plant traits that might predict defence. In a field experiment, we simulated deer damage occurring early and late in the season, recorded arthropod abundances, flowering phenology and measured growth rate and lifetime reproduction. Our study showed that deer herbivory has a negative effect on fitness, with effects being more pronounced for late‐season damage. Selection acted to increase tolerance to deer damage, yet there was low and nonsignificant genetic variation in this trait. In contrast, there was substantial genetic variation in resistance to insect herbivores. Resistance was genetically uncorrelated with tolerance, whereas positive genetic correlations in resistance to insect herbivores suggest there exists diffuse selection on resistance traits. In addition, growth rate and flowering time did not predict variation in tolerance, but flowering phenology was genetically correlated with resistance. Our results suggest that deer damage has the potential to exert selection because browsing reduces plant fitness, but limited standing genetic variation in tolerance is expected to constrain adaptive evolution in O. biennis.  相似文献   

7.
The Resource Availability Hypothesis (RAH) states that plants with a low Relative Growth Rate (RGR) and high levels of defence against herbivores or pathogens are favoured in habitats with low resource availability, whereas plants with a high potential RGR and low levels of defence are favoured in environments with high resource availability. High levels of defence are expected to result in lower reproduction and/or growth of the herbivores or pathogens. To test this hypothesis, four accessions of each of nine natural Hordeum spontaneum (wild barley) populations were grown in a climate chamber under two levels of nutrient supply. Susceptibility to Schizaphis graminum (greenbug) was quantified by placing a single adult greenbug on each plant and measuring its realised fecundity after 8 days. Data on potential RGR were available from a previous experiment. No support for the RAH was found. The correlation between potential RGR and greenbug reproduction was not significant, neither at the high nor at the low level of nutrient supply. Furthermore, on average plants grown under high and low nutrients did not differ in susceptibility. However, accessions-within-populations differed in the way susceptibility was affected by nutrient supply, and most accessions had a higher susceptibility under nutrient-poor conditions. It could be that these accessions differed in the spectrum of secondary metabolites they produced. Whatever the cause, the genetic variation for the reaction in susceptibility to nutrient supply suggests that selection could act in favour of more or less plasticity in plants without any apparent change in potential RGR.Due to an error in the citation line, this revised PDF (published in December 2003) deviates from the printed version, and is the correct and authoritative version of the paper.  相似文献   

8.
Belliure B  Janssen A  Sabelis MW 《Oecologia》2008,156(4):797-806
Herbivores can profit from vectoring plant pathogens because the induced defence of plants against pathogens sometimes interferes with the induced defence of plants against herbivores. Plants can also defend themselves indirectly by the action of the natural enemies of the herbivores. It is unknown whether the defence against pathogens induced in the plant also interferes with the indirect defence against herbivores mediated via the third trophic level. We previously showed that infection of plants with Tomato spotted wilt virus (TSWV) increased the developmental rate of and juvenile survival of its vector, the thrips Frankliniella occidentalis. Here, we present the results of a study on the effects of TSWV infections of plants on the effectiveness of three species of natural enemies of F. occidentalis: the predatory mites Neoseiulus cucumeris and Iphiseius degenerans, and the predatory bug Orius laevigatus. The growth rate of thrips larvae was positively affected by the presence of virus in the host plant. Because large larvae are invulnerable to predation by the two species of predatory mites, this resulted in a shorter period of vulnerability to predation for thrips that developed on plants with virus than thrips developing on uninfected plants (4.4 vs. 7.9 days, respectively). Because large thrips larvae are not invulnerable to predation by the predatory bug Orius laevigatus, infection of the plant did not affect the predation risk of thrips larvae from this predator. This is the first demonstration of a negative effect of a plant pathogen on the predation risk of its vector.  相似文献   

9.
Although recent evidence indicates that coevolutionary interactions between species often vary on a biogeographical scale, little consideration has been given to the processes responsible for producing this pattern. One potential explanation is that changes in the community composition alter the coevolutionary interactions between species, but little evidence exists regarding the occurrence of such changes. Here we present evidence that the pattern of natural selection on plant defence traits, and the probable response to that selection, are critically dependent on the composition of the biotic community. The evolutionary trajectory of defence traits against mammalian herbivory in the Ivyleaf morning glory (Ipomoea hederacea), and which defence traits are likely to respond to selection, are both dependent on the presence or absence of insect herbivores. These results indicate that variation in community composition may be a driving force in generating geographical mosaics.  相似文献   

10.
Although patterns of seedling selection by herbivores are strongly influenced by plant age and the expression of anti-herbivore defence, it is unclear how these characteristics interact to influence seedling susceptibility to herbivory. We tracked ontogenetic changes in a range of secondary metabolites (total phenolics, alkaloids and cyanogenic glycosides) commonly associated with seedling defence for nine sympatric British grassland species. Although there was marked variation in concentrations of secondary metabolites between different species, we found a consistent increase in the deployment of phenolics, alkaloids and cyanogenics with seedling age for six of the seven dicotyledonous species examined. The two grass species by contrast exhibited low levels of secondary metabolites across all developmental stages, possibly due to an investment in structural (silica phytoliths) defence. Our results corroborate species-specific patterns of seedling herbivory observed in field studies, and offer some explanation for the relatively high sensitivity to herbivore attack frequently observed for relatively young seedlings compared with their older conspecifics. Our results also support predictions made by the growth–differentiation balance hypothesis regarding ontogenetic changes in resource allocation to anti-herbivore defence for a range of potential chemical defences and across a range of sympatric plant species presumably subject to broadly similar selective pressures at the regeneration stage.  相似文献   

11.
Plants encounter a broad range of natural enemies and defend themselves in diverse ways. The cost of defense can be reduced if a plant secondary metabolite confers resistance to multiple herbivores. However, there are few examples of positively correlated defenses in plants against herbivores of different types. We present evidence that a genetically variable chemical trait that acts as a strong antifeedant to mammalian herbivores of Eucalyptus also deters insect herbivores, suggesting a possible mechanism for cross-resistance. We provide field confirmation that sideroxylonal, an important antifeedant for mammalian herbivores, also determines patterns of damage by Christmas beetles, a specialist insect herbivore of Eucalyptus. In a genetic progeny trial of Eucalyptus tricarpa, we found significant heritabilities of sideroxylonal concentration (0.60), overall insect damage (0.34), and growth traits (0.30–0.53). Population of origin also had a strong effect on each trait. Negative phenotypic correlations were observed between sideroxylonal and damage, and between damage and growth. No relationship was observed between sideroxylonal concentration and any growth trait. Our results suggest that potential for evolution by natural selection of sideroxylonal concentrations is not strongly constrained by growth costs and that both growth and defense traits can be successfully incorporated into breeding programs for plantation trees.  相似文献   

12.
Fitness interactions where benefits are shared only between individuals with similar traits are often referred to as synergistic. Examples include defence characters, like insect warning colouration and plant unpalatability, and joint activities needing the active participation of all group members, such as cooperative hunting. Previous analyses, assuming discrete variation in the trait, have shown that synergistic selection can be a sufficient explanation for the evolutionary stability of such traits. Here, we investigate the consequences of graded variation in the trait responsible for synergistic effects. Classifying the synergism as unbiased when an individual receives maximum associational benefit by having the same trait value as its neighbours, and letting a positive (negative) bias represent the maximum above (below) this value, we show that only positively biased synergistic selection can enhance a graded trait. Thus for graded traits, a synergistic benefit is not in itself sufficient for evolutionary stability. We study possible reasons for synergistic bias in a simple model of plant defences against herbivores, and suggest that the processes of herbivore avoidance learning and diet selection are probable causes of positive bias. We propose that mammalian herbivores exposed to a given level of toxicity will show stronger feeding aversion to higher toxicity, resulting in positively biased synergistic selection of plant defence traits. Positive bias produced by avoidance learning may, in a similar way, also select for defence signals.  相似文献   

13.
Phenolics have been considered classic defence compounds for protecting plants from herbivores, ever since plant secondary metabolites were suggested to have evolved for that reason. The resource availability and carbon-nutrient balance hypotheses proposed that variation in phenolic levels between and within plant species reflects environmental availability of nutrients and light, and represents a trade-off in allocation by plants to growth and defence against herbivores. In contrast to these concepts, we suggest that (1) the main role of many plant phenolics may be to protect leaves from photodamage, not herbivores; (2) they can achieve this by acting as antioxidants; and (3) their levels may vary with environmental conditions in order to counteract this potential photodamage. We therefore suggest that patterns in phenolic levels, often used to support the concept of trade-off between growth and herbivore defence in relation to resource availability, may actually reflect different risks of photodamage. We suggest that the level of many phenolics is low under some environmental conditions, not because resources to produce them are limited, but simply because the risk of photodamage is low and they are not required. If our photodamage hypothesis is correct, a reassessment of the ecological and evolutionary role of many phenolics in plant defence theory is required.  相似文献   

14.
Direct and indirect plant defences are well studied, particularly in the Brassicaceae. Glucosinolates (GS) are secondary plant compounds characteristic in this plant family. They play an important role in defence against herbivores and pathogens. Insect herbivores that are specialists on brassicaceous plant species have evolved adaptations to excrete or detoxify GS. Other insect herbivores may even sequester GS and employ them as defence against their own antagonists, such as predators. Moreover, high levels of GS in the food plants of non-sequestering herbivores can negatively affect the growth and survival of their parasitoids. In addition to allelochemicals, plants produce volatile chemicals when damaged by herbivores. These herbivore induced plant volatiles (HIPV) have been demonstrated to play an important role in foraging behaviour of insect parasitoids. In addition, biosynthetic pathways involved in the production of HIPV are being unraveled using the model plant Arabidopsis thialiana. However, the majority of studies investigating the attractiveness of HIPV to parasitoids are based on experiments mainly using crop plant species in which defence traits may have changed through artificial selection. Field studies with both cultivated and wild crucifers, the latter in which defence traits are intact, are necessary to reveal the relative importance of direct and indirect plant defence strategies on parasitoid and plant fitness. Future research should also consider the potential conflict between direct and indirect plant defences when studying the evolution of plant defences against insect herbivory.  相似文献   

15.
The ability of plants to respond to natural enemies might depend on the availability of genetic variation for the optimal phenotypic expression of defence. Selfing can affect the distribution of genetic variability of plant fitness, resistance and tolerance to herbivores and pathogens. The hypothesis of inbreeding depression influencing plant defence predicts that inbreeding would reduce resistance and tolerance to damage by natural enemies relative to outcrossing. In a field experiment entailing experimentally produced inbred and outcrossed progenies, we assessed the effects of one generation of selfing on Datura stramonium resistance and tolerance to three types of natural enemies, herbivores, weevils and a virus. We also examined the effect of damage on relative growth rate (RGR), flower, fruit, and seed production in inbred and outcrossed plants. Inbreeding significantly reduced plant defence to natural enemies with an increase of 4% in herbivore damage and 8% in viral infection. These results indicate inbreeding depression in total resistance. Herbivory increased 10% inbreeding depression in seed number, but viral damage caused inbred and outcrossed plants to have similar seed production. Inbreeding and outcrossing effects on fitness components were highly variable among families, implying that different types or numbers of recessive deleterious alleles segregate following inbreeding in D. stramonium. Although inbreeding did not equally alter all the interactions, our findings indicate that inbreeding reduced plant defence to herbivores and pathogens in D. stramonium.  相似文献   

16.
Background Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence.Scope The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to exploitative competition and facilitation within ecological communities “inhabiting” a plant.Conclusions Herbivores have evolved diverse strategies, which are not mutually exclusive, to decrease the negative effects of plant defences in order to maximize the conversion of plant material into offspring. Numerous adaptations have been found in herbivores, enabling them to dismantle or bypass defensive barriers, to avoid tissues with relatively high levels of defensive chemicals or to metabolize these chemicals once ingested. In addition, some herbivores interfere with the onset or completion of induced plant defences, resulting in the plant’s resistance being partly or fully suppressed. The ability to suppress induced plant defences appears to occur across plant parasites from different kingdoms, including herbivorous arthropods, and there is remarkable diversity in suppression mechanisms. Suppression may strongly affect the structure of the food web, because the ability to suppress the activation of defences of a communal host may facilitate competitors, whereas the ability of a herbivore to cope with activated plant defences will not. Further characterization of the mechanisms and traits that give rise to suppression of plant defences will enable us to determine their role in shaping direct and indirect interactions in food webs and the extent to which these determine the coexistence and persistence of species.  相似文献   

17.
Toth GB  Karlsson M  Pavia H 《Oecologia》2007,152(2):245-255
Herbivory on marine macroalgae (seaweeds) in temperate areas is often dominated by relatively small gastropods and crustaceans (mesoherbivores). The effects of these herbivores on the performance of adult seaweeds have so far been almost exclusively investigated under artificial laboratory conditions. Furthermore, several recent laboratory studies with mesoherbivores indicate that inducible chemical resistance may be as common in seaweeds as in vascular plants. However, in order to further explore and test the possible ecological significance of induced chemical resistance in temperate seaweeds, data are needed that address this issue in natural populations. We investigated the effect of grazing by littorinid herbivorous snails (Littorina spp.) on the individual net growth of the brown seaweed Ascophyllum nodosum in natural field populations. Furthermore, the capacity for induced resistance in the seaweeds was assessed by removing herbivores and assaying for relaxation of defences. We found that ambient densities of gastropod herbivores significantly reduced net growth by 45% in natural field populations of A. nodosum. Seaweeds previously exposed to grazing in the field were less consumed by gastropod herbivores in feeding bioassays. Furthermore, the concentration of phlorotannins (polyphenolics), which have been shown to deter gastropod herbivores, was higher in the seaweeds that were exposed to gastropod herbivores in the field. This field study corroborates earlier laboratory experiments and demonstrates that it is important to make sure that the lack of experimental field data on marine mesoherbivory does not lead to rash conclusions about the lack of significant effects of these herbivores on seaweed performance. The results strongly suggest that gastropods exert a significant selection pressure on the evolution of defensive traits in the seaweeds, and that brown seaweeds can respond to attacks by natural densities of these herbivores through increased chemical resistance to further grazing.  相似文献   

18.
To understand herbivore selection in natural plant populations, it is important to understand the landscape of plant chemical phenotypes that herbivores face and the sources of variation that will define this landscape. We studied the spatial patterns of variation in leaf secondary chemistry of the tropical tree Quararibea asterolepis , Pitt. (Bombacaceae) in a natural population on Barro Colorado Island, Panama, and used this background to discuss hypotheses of natural selection by herbivores. Quararibea plants collected from different sites had consistent differences in their chemical phenotypes. Some of these differences were explained by developmental and environmental sources of variation. Canopy trees had 13% lower yield of leaf extracts than gap seedlings, explained by 41% lower concentrations of the more abundant metabolites in the secondary compound profile. Also, plants growing in gaps had 25% higher yield than those in the understory, explained by two-fold increases in the concentration of some of the less polar secondary compounds in the profile. Differences in soil type did not affect the secondary chemistry of leaves, but sites with different topography had differences in the secondary compound profile that were not explained by any of the measured environmental sources of variation. Neighboring parent-offspring pairs and sibling/half sibling clusters displayed equal or higher variance among themselves than unrelated individuals at farther distances. Assuming that related plants should be more similar in their phenotypes, this pattern is consistent with local selection by herbivores overriding the similarity of related plants in a frequency- or distance-dependent manner.  相似文献   

19.
1. Plants perceive herbivore damage or increased risk and respond. These changes may increase plant fitness, although effects on fitness have often been assumed without supporting evidence. 2. Three models have been proposed to explain induced rather than constitutive defence. The optimal defence model posits that induction allow plants to reduce allocation costs; it predicts demonstrably lower costs when defences are not needed. The moving target model posits that induction increases spatial and temporal variability; it predicts that variability will be difficult for herbivores and will provide defence. The information transfer model posits that induced responses provide cues to other tissues on that individual plant and to other organisms in the community; it predicts that induced cues will provide systemic resistance, deter herbivores, and/or attract enemies of herbivores, thereby benefiting the induced plant. 3. All three models predict that cues must be reliable to be useful. In some cases, cues provide specific information about the damaged plant tissue and the herbivore and this specific information may allow plants to fine-tune responses. Recent theory posits that selection should favour plants that minimise recognition errors and reduce fitness costs associated with errors. 4. Future research should focus on exploring different modalities used by plants to perceive herbivore risk, the benefits and costs of perceiving cues and inducing resistance, and the basic natural history of these phenomena. Induced responses have great unrealised potential in agriculture, and research should focus on host plant resistance rather than attempting to involve other trophic levels.  相似文献   

20.
Induction of plant allelochemicals is of particular ecological importance for interactions with herbivores that can make use of induced metabolites by incorporating them for their own defence. Induction patterns in white mustard, Sinapis alba, were investigated following herbivory of the turnip sawfly, Athalia rosae, which sequesters plant glucosinolates. Larvae of different age were allowed to feed for 24 h on young leaves of premature, non-flowering plants. Changes in primary and secondary metabolites were recorded in the damaged leaves (local) and in the adjacent leaves and stems (systemic) for several days. Organ- and time-specific patterns were evident. Local responses included increases in glucosinolate concentrations, soluble and insoluble myrosinase activity and glucose levels, while systemic responses in leaves were restricted to increases in myrosinase activities and glucose. All effects were strongest immediately after feeding and declined mostly within a day. Stems had overall lower constitutive levels of glucosinolates and myrosinase activities than leaves. Feeding by one large larva had a greater impact on the plant's physiology than feeding by three small ones, even though both treatments resulted in quantitatively similar leaf destruction. Local increase in glucosinolate concentration could be beneficial for larvae, while conspecifics feeding on induced adjacent leaves might be negatively affected due to higher myrosinase activity levels. The results are discussed in the context of the ‘optimal defence theory’ and the ‘lethal plant defence paradox’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号