首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L M Abell  M H O'Leary 《Biochemistry》1988,27(16):5927-5933
The pyridoxal 5'-phosphate dependent histidine decarboxylase from Morganella morganii shows a nitrogen isotope effect k14/k15 = 0.9770 +/- 0.0021, a carbon isotope effect k12/k13 = 1.0308 +/- 0.0006, and a carbon isotope effect for L-[alpha-2H]histidine of 1.0333 +/- 0.0001 at pH 6.3, 37 degrees C. These results indicate that the overall decarboxylation rate is limited jointly by the rate of Schiff base interchange and by the rate of decarboxylation. Although the observed isotope effects are quite different from those for the analogous glutamate decarboxylase from Escherichia coli [Abell, L. M., & O'Leary, M. H. (1988) Biochemistry 27, 3325], the intrinsic isotope effects for the two enzymes are essentially the same. The difference in observed isotope effects occurs because of a roughly twofold difference in the partitioning of the pyridoxal 5'-phosphate-substrate Schiff base between decarboxylation and Schiff base interchange. The observed nitrogen isotope effect requires that the imine nitrogen in this Schiff base is protonated. Comparison of carbon isotope effects for deuteriated and undeuteriated substrates reveals that the deuterium isotope effect on the decarboxylation step is about 1.20; thus, in the transition state for the decarboxylation step, the carbon-carbon bond is about two-thirds broken.  相似文献   

2.
The crystal structure of histidine decarboxylase from Lactobacillus 30a has been determined by X-ray diffraction methods to a resolution of 3.0 A. This protein is a pyruvoyl-dependent enzyme that is formed by an unusual self-activation process. The structure was determined from an electron density map calculated using multiple isomorphous replacement phases from two heavy-atom derivatives and included contributions from anomalous scattering measurements. The final mean figure of merit was 0.79, based on 28,805 independent reflections. The molecule has an (alpha beta)6 subunit composition and crystallizes in the space group 14122 with a = b = 221.7 A and c = 107.1 A. There is one (alpha beta)3 half molecule per asymmetric unit. The (alpha beta)6 particle is dumbbell-shaped, with each (alpha beta)3 unit being approximately spherical, with a diameter of about 65 A. There is a large central cavity approximately 30 A deep around the molecular 3-fold axis of the (alpha beta)3 unit. The 3-fold related active site pockets are located around the bottom of this cavity and are separated from each other by a distance of approximately 23 A. The inner portion of each (alpha beta) unit, which lies near the interface between the two (alpha beta)3 particles, consists mainly of random coil with several small helical and sheet regions. The outer region of each (alpha beta) unit has an unusual structure consisting of two overlapping, predominantly antiparallel beta-pleated sheets, lined on each side by an alpha-helix. The walls of the central cavity are formed by the 3-fold repeat of two strands from this beta-sandwich structure and one of the helices.  相似文献   

3.
Histidine decarboxylase (HDC) from Lactobacillus 30a converts histidine to histamine, a process that enables the bacteria to maintain the optimum pH range for cell growth. HDC is regulated by pH; it is active at low pH and inactive at neutral to alkaline pH. The X-ray structure of HDC at pH 8 revealed that a helix was disordered, resulting in the disruption of the substrate-binding site. The HDC trimer has also been shown to exhibit cooperative kinetics at neutral pH, that is, histidine can trigger a T-state to R-state transition. The D53,54N mutant of HDC has an elevated Km, even at low pH, indicating that the enzyme assumes the low activity T-state. We have solved the structures of the D53,54N mutant at low pH, with and without the substrate analog histidine methyl ester (HME) bound. Structural analysis shows that the apo-D53,54N mutant is in the inactive or T-state and that binding of the substrate analog induces the enzyme to adopt the active or R-state. A mechanism for the cooperative transition is proposed.  相似文献   

4.
Histidine decarboxylase (HDC) from Lactobacillus 30a produces histamine that is essential to counter waste acids, and to optimize cell growth. The HDC trimer is active at low pH and inactive at neutral to alkaline pH. We have solved the X-ray structure of HDC at pH 8 and revealed the novel mechanism of pH regulation. At high pH helix B is unwound, destroying the substrate binding pocket. At acid pH the helix is stabilized, partly through protonation of Asp198 and Asp53 on either side of the molecular interface, acting as a proton trap. In contrast to hemoglobin regulation, pH has a large effect on the tertiary structure of HDC monomers and relatively little or no effect on quaternary structure.  相似文献   

5.
The genes coding for histidine decarboxylase from a wild-type strain and an autoactivation mutant strain of Lactobacillus 30a have been cloned and expressed in Escherichia coli. The mutant protein, G58D, has a single Asp for Gly substitution at position 58. The cloned genes were placed under control of the beta-galactosidase promoter and the products are natural length, not fusion proteins. The enzyme kinetics of the proteins isolated from E. coli are comparable to those isolated from Lactobacillus 30a. At pH 4.8 the Km of wild-type enzyme is 0.4 mM and the kcat = 2800 min-1; the corresponding values for G58D are 0.5 mM and 2750 min-1. The wild-type and G58D have autoactivation half-times of 21 and 9 h respectively under pseudophysiological conditions of 150 mM K+ and pH 7.0. At pH 7.6 and 0.8 M K+ the half-times are 4.9 and 2.9 h. The relatively slow rate of autoactivation for purified protein and the differences in cellular and non-cellular activation rates, coupled with the fact that wild-type protein is readily activated in wild-type Lactobacillus 30a but poorly activated in E. coli, suggest that wild-type Lactobacillus 30a contains a factor, possibly an enzyme, that enhances the activation rate.  相似文献   

6.
7.
In rats fasted for 24–30 hours, albumin mRNA sequences are released from membrane-bound polysomes to enter the free cytosol fraction. A significant portion of these sequences are present in albumin mRNPs, distinguished from free albumin mRNA and 40S subunit complexes by Cs2SO4 equilibrium density centrifugation. Refeeding a mixture of 20 amino acids restores albumin mRNA to membrane-bound polysomes, demonstrating the importance of amino acid supply in the mRNP-polysome equilibrium and in regulation of albumin synthesis.  相似文献   

8.
9.
10.
Ornithine decarboxylase from Lactobacillus 30a is representative of the large subunit (80 kDa), oligomeric, pyridoxal phosphate-dependent amino-acid decarboxylases. Yellow crystals of ornithine decarboxylase are obtained from polyethylene glycol solutions and belong to space group P6 with unit cell constants a = b = 194.9 and c = 97.44 A, alpha = beta = 90 degrees and gamma = 120 degrees, V = 3.21 x 10(6) A3. Still photographs show reflections at better than 2.4-A resolution. Electron micrographs reported by Guirard and Snell (Guirard, B.M., and Snell, E.E. (1980) J. Biol. Chem. 255, 5960-5964) reveal that the ornithine decarboxylase dodecamer is a hexagonally shaped particle with a point-to-point distance of approximately 210 A and a thickness of approximately 70 A. The crystallographic unit cell can thus accommodate one 10(6)-Da dodecamer (Vm = 3.2 A3/Da), implying that a dimer occupies an asymmetric unit. Tanaka rotation function analysis, using native data (5-7 A) collected from three crystals, reveals that the particle has the expected 622 molecular symmetry with molecular 2-fold axes lying at 20 degrees and 50 degrees from a in the a-b plane. A search for suitable heavy atom derivatives is underway.  相似文献   

11.
12.
The pyruvoyl-dependent histidine decarboxylase from Lactobacillus 30a is rapidly inactivated by incubation with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and glycine ethyl ester. On 90% of inactivation, 1.3 residues of [14C]glycine ethyl ester are incorporated per alpha subunit; nearly 60% of this is linked to the beta-carboxyl group of Asp-191. Histamine, a competitive inhibitor, protects against this inactivation. The KM value of the modified enzyme for histidine (6.2 mM) is much higher than that of the unmodified enzyme (KM = 0.4 mM); catalytic activity is reduced but not eliminated. Thus, Asp-191 is the most reactive accessible carboxyl group under these conditions and is close to the substrate-binding site, but apparently is not essential for catalysis. At pH 8.0, fluorodinitrobenzene inactivates histidine decarboxylase completely with the incorporation of two dinitrophenyl residues/alpha subunit; the modified residues are Lys-155 and Cys-228. Urocanic acid, a competitive inhibitor, protects against inactivation. Treatment with mercaptoethanol restores the free -SH of Cys-228 but does not restore activity. Conversion of Cys-228 to its cyano derivative slows but does not prevent dinitrophenylation of Lys-155; the resulting derivative is catalytically inactive. Thus, Lys-155 is located within the active site and may play an essential role in catalysis. Finally, histidine methyl ester was shown to inhibit this decarboxylase by forming a Schiff's base with the essential pyruvoyl group.  相似文献   

13.
14.
T A Alston  R H Abeles 《Biochemistry》1987,26(13):4082-4085
L-Histidine methyl ester inactivates histidine decarboxylase in a time-dependent manner. The possibility was considered that an irreversible reaction between enzyme and inhibitor occurs [Recsei, P. A., & Snell, E. E. (1970) Biochemistry 9, 1492-1497]. We have confirmed time-dependent inactivation by histidine methyl ester and have investigated the structure of the enzyme-inhibitor complex. Upon exposure to either 8 M guanidinium chloride or 6% trichloroacetic acid, unchanged histidine methyl ester is recovered. Formation of the complex involves Schiff base formation, most likely with the active site pyruvyl residue [Huynh, Q. K., & Snell, E. E. (1986) J. Biol. Chem. 261, 4389-4394], but does not involve additional irreversible covalent interaction between inhibitor and enzyme. Complex formation is a two-step process involving rapidly reversible formation of a loose complex and essentially irreversible formation of a tight complex. For the formation of the tight complex, Ki = 80 nM and koff = 2.5 X 10(-4) min-1. Time-dependent inhibition was also observed with L-histidine ethyl ester, L-histidinamide, and DL-3-amino-4-(4-imidazolyl)-2-butanone. No inactivation was observed with glycine methyl ester or histamine. We propose that in the catalytic reaction the carboxyl group of the substrate is in a hydrophobic region. The unfavorable interaction between the carboxylate group and the hydrophobic region facilitates decarboxylation [Crosby, J., Stone, R., & Liehard, G. E. (1970) J. Am. Chem. Soc. 92, 2891-2900]. With histidine methyl ester this unfavorable interaction is no longer present; hence, there is tight binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
The alpha chain of histidine decarboxylase contains eight internal methionine residues. After reductive amination to convert the NH2-terminal pyruvoyl residue to an alanyl residue and cyanogen bromide treatment, 13 pure peptides were isolated. Four of these are incomplete cleavage products. The sequence of each of the remaining nine peptides was established by automated and manual degradation of the intact peptides and of smaller peptides obtained from tryptic, chymotryptic, and staphylococcal protease digests of the cyanogen bromide peptides. These results, together with the data on overlapping peptides reported in the accompanying paper (Huynh, Q. K., Recsei, P. A., Vaaler, G. L., and Snell, E. E. (1984) J. Biol. Chem. 259, 2833-2839), establish the complete amino acid sequence of the alpha chain.  相似文献   

17.
Histidine decarboxylase (HisDCase) from Lactobacillus buchneri was purified to homogeneity. Its subunit structure, (alpha beta)6, and enzymatic properties resemble closely those of the immunologically cross-reactive HisDCase of Lactobacillus 30a (Recsei, P. A., and Snell, E. E. (1984) Annu. Rev. Biochem. 53, 357-387). The complete amino acid sequences of the beta chains of the HisDCase from L. buchneri (81 residues) and Clostridium perfringens (86 residues) were then determined to be a and b, respectively. (a) SEFDKKLNTLGVDRISVSPYKKWSRGYMEPGNIGNGYVSGLKVDAG VVDKTDDMVLDGIGSYDRAETKNAYIGQINMTTAS. (b) TLSEGIHKNIKNIKVRAP KIDKTAISPYDRYCDGYGMPGAYGDGYVSVLKVSVGTVKK TDDILLDGIVSYDRAEINDAYVGQINMLTAS. SEFDKKLNTLGVDRISVSPYKKWSRGYMEPGNIGNGYVSGLKVDAGVV. Although these sequences differ substantially near the NH2-terminal ends, there is striking homology near the COOH termini and also near the NH2 terminus of the two alpha chains (pyruvoyl-Phe-X-Gly-Val-, where X is Ser or Cys). If the four known pyruvoyl-dependent HisDCases arise from inactive proenzymes by the mechanism previously demonstrated for the HisDCase of Lactobacillus 30a (Recsei, P. A., Huynh, Q. K. and Snell, E. E. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 973-977), then each of these proenzymes has the sequence -Thr-Ala-Ser-Ser-Phe- at the activation site (where -Ser- becomes the COOH terminus of the beta chain and -Ser- becomes the pyruvoyl group blocking the NH2 terminus of the alpha chain), and the sequences around this activation site are highly conserved in all four enzymes. These facts support the assumptions that the four enzymes have evolved from a common ancestral protein, are formed from inactive pyruvate-free proenzymes by similar mechanisms, and have similar catalytic mechanisms.  相似文献   

18.
19.
The two cysteinyl residues present in histidine decarboxylase from Lactobacillus 30a differ greatly in reactivity. One (class 1) reacts readily in the native state with dithiobis-(2-nitrobenzoate) with complete loss of enzyme activity; the other (class 2) reacts only after denaturation of the enzyme (Lane, R. S., and Snell, E. E. (1976) Biochemistry 15, 4175-4179). These differences in reactivity permitted use of covalent (disulfide) chromatography to isolate separate peptides that contain these two residues. Sequence analysis showed that the class 1 cysteinyl residue is at position 147 in a hydrophilic portion of the alpha chain (Huynh, Q. K., Recsei, P. A., Vaaler, G. L., and Snell, E. E. (1984) J. Biol. Chem. 259, 2833-2839), while the class 2 cysteinyl residue is present at position 71, adjacent to a hydrophobic portion of the same chain. Cysteinyl peptides identical with or homologous to the class 2 cysteinyl peptide of the Lactobacillus 30a enzyme were isolated from the alpha subunits of histidine decarboxylases from Lactobacillus buchneri and Clostridium perfringens, respectively. The L. buchneri enzyme also contained a peptide homologous to the class 1 cysteinyl peptide from Lactobacillus 30a. However, no corresponding peptide was present in the enzyme from C. perfringens, in which the second cysteinyl residue of the alpha chain occupies position 3, very near the essential pyruvoyl residue. This enzyme, unlike those from Lactobacillus 30a or L. buchneri, also contains one cysteinyl residue in its beta chain. Although Cys 147 is an active site residue in histidine decarboxylase from Lactobacillus 30a, the absence of a corresponding residue in the C. perfringens enzyme confirms previous indications (Recsei, P. A., and Snell, E. E. (1982) J. Biol. Chem. 257, 7196-7202) that this SH group is not essential for decarboxylase action.  相似文献   

20.
Conversion of the pi subunit of prohistidine decarboxylase to the alpha beta subunits of the active enzyme proceeds by a nonhydrolytic, monovalent cation-dependent, serinolysis reaction in which the hydroxyl oxygen of serine 82 of the pi chain is incorporated into the carboxyl group at the COOH terminus (serine 81) of the beta chain. Serine-82 becomes the pyruvate residue at the NH2 terminus of the alpha chain (Recsei, P.A., Huynh, Q. K., and Snell, E.E. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 973-977). The unusual reactivity of this particular -Ser-Ser- bond is demonstrated by its sensitivity to 1 M hydroxylamine, which cleaves the native proenzyme under mild conditions (pH 8.0, 37 degrees C) to yield a modified beta chain with serine hydroxamate at the COOH terminus (Ser-81) and a modified alpha chain containing serine (Ser-82 of the proenzyme) rather than pyruvate at the NH2 terminus. Neither an -Asn-Gly- bond nor other -Ser-Ser- bonds in the proenzyme were cleaved under these conditions. The reaction also did not occur with the denatured enzyme or with model peptides, indicating that the enhanced reactivity is a result of the particular conformation at this position in the native protein. The reaction with the native proenzyme proceeded optimally at pH 7.5-8.0 with a half-time (30 min) substantially less than that (3.5-4.5 h) required for the activation reaction and was not increased in rate by addition of K+. Correspondingly, preincubation of the proenzyme at pH 8.0 in the absence of both hydroxylamine and K+ modestly increased the rate of activation when K+ was subsequently added. Although these findings do not exclude other mechanisms, they are all consistent with and most easily explained by rearrangement of the pi chain to form an internal ester intermediate prior to the beta-elimination that occurs during activation to yield the alpha and beta chains of the mature enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号