首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The explosion in gene sequence data and technological breakthroughs in protein structure determination inspired the launch of structural genomics (SG) initiatives. An often stated goal of structural genomics is the high-throughput structural characterisation of all protein sequence families, with the long-term hope of significantly impacting on the life sciences, biotechnology and drug discovery. Here, we present a comprehensive analysis of solved SG targets to assess progress of these initiatives. Eleven consortia have contributed 316 non-redundant entries and 323 protein chains to the Protein Data Bank (PDB), and 459 and 393 domains to the CATH and SCOP structure classifications, respectively. The quality and size of these proteins are comparable to those solved in traditional structural biology and, despite huge scope for duplicated efforts, only 14% of targets have a close homologue (>/=30% sequence identity) solved by another consortium. Analysis of CATH and SCOP revealed the significant contribution that structural genomics is making to the coverage of superfamilies and folds. A total of 67% of SG domains in CATH are unique, lacking an already characterised close homologue in the PDB, whereas only 21% of non-SG domains are unique. For 29% of domains, structure determination revealed a remote evolutionary relationship not apparent from sequence, and 19% and 11% contributed new superfamilies and folds. The secondary structure class, fold and superfamily distributions of this dataset reflect those of the genomes. The domains fall into 172 different folds and 259 superfamilies in CATH but the distribution is highly skewed. The most populous of these are those that recur most frequently in the genomes. Whilst 11% of superfamilies are bacteria-specific, most are common to all three superkingdoms of life and together the 316 PDB entries have provided new and reliable homology models for 9287 non-redundant gene sequences in 206 completely sequenced genomes. From the perspective of this analysis, it appears that structural genomics is on track to be a success, and it is hoped that this work will inform future directions of the field.  相似文献   

2.
Protein homology detection by HMM-HMM comparison   总被引:22,自引:4,他引:18  
MOTIVATION: Protein homology detection and sequence alignment are at the basis of protein structure prediction, function prediction and evolution. RESULTS: We have generalized the alignment of protein sequences with a profile hidden Markov model (HMM) to the case of pairwise alignment of profile HMMs. We present a method for detecting distant homologous relationships between proteins based on this approach. The method (HHsearch) is benchmarked together with BLAST, PSI-BLAST, HMMER and the profile-profile comparison tools PROF_SIM and COMPASS, in an all-against-all comparison of a database of 3691 protein domains from SCOP 1.63 with pairwise sequence identities below 20%.Sensitivity: When the predicted secondary structure is included in the HMMs, HHsearch is able to detect between 2.7 and 4.2 times more homologs than PSI-BLAST or HMMER and between 1.44 and 1.9 times more than COMPASS or PROF_SIM for a rate of false positives of 10%. Approximately half of the improvement over the profile-profile comparison methods is attributable to the use of profile HMMs in place of simple profiles. Alignment quality: Higher sensitivity is mirrored by an increased alignment quality. HHsearch produced 1.2, 1.7 and 3.3 times more good alignments ('balanced' score >0.3) than the next best method (COMPASS), and 1.6, 2.9 and 9.4 times more than PSI-BLAST, at the family, superfamily and fold level, respectively.Speed: HHsearch scans a query of 200 residues against 3691 domains in 33 s on an AMD64 2GHz PC. This is 10 times faster than PROF_SIM and 17 times faster than COMPASS.  相似文献   

3.
In this study, I explain the observation that a rather limited number of residues (about 10) establishes the immunoglobulin fold for the sequences of about 100 residues. Immunoglobulin fold proteins (IgF) comprise SCOP protein superfamilies with rather different functions and with less than 10% sequence identity; their alignment can be accomplished only taking into account the 3D structure. Therefore, I believe that discovering the additional common features of the sequences is necessary to explain the existence of a common fold for these SCOP superfamilies. We propose a method for analysis of pair-wise interconnections between residues of the multiple sequence alignment which helps us to reveal the set of mutually correlated positions, inherent to almost every superfamily of this protein fold. Hence, the set of constant positions (comprising the hydrophobic common core) and the set of variable but mutually correlated ones can serve as a basis of having the common 3D structure for rather distinct protein sequences.  相似文献   

4.
Many protein classification systems capture homologous relationships by grouping domains into families and superfamilies on the basis of sequence similarity. Superfamilies with similar 3D structures are further grouped into folds. In the absence of discernable sequence similarity, these structural similarities were long thought to have originated independently, by convergent evolution. However, the growth of databases and advances in sequence comparison methods have led to the discovery of many distant evolutionary relationships that transcend the boundaries of superfamilies and folds. To investigate the contributions of convergent versus divergent evolution in the origin of protein folds, we clustered representative domains of known structure by their sequence similarity, treating them as point masses in a virtual 2D space which attract or repel each other depending on their pairwise sequence similarities. As expected, families in the same superfamily form tight clusters. But often, superfamilies of the same fold are linked with each other, suggesting that the entire fold evolved from an ancient prototype. Strikingly, some links connect superfamilies with different folds. They arise from modular peptide fragments of between 20 and 40 residues that co‐occur in the connected folds in disparate structural contexts. These may be descendants of an ancestral pool of peptide modules that evolved as cofactors in the RNA world and from which the first folded proteins arose by amplification and recombination. Our galaxy of folds summarizes, in a single image, most known and many yet undescribed homologous relationships between protein superfamilies, providing new insights into the evolution of protein domains.  相似文献   

5.
PASS2 is a nearly automated version of CAMPASS and contains sequence alignments of proteins grouped at the level of superfamilies. This database has been created to fall in correspondence with SCOP database (1.53 release) and currently consists of 110 multi-member superfamilies and 613 superfamilies corresponding to single members. In multi-member superfamilies, protein chains with no more than 25% sequence identity have been considered for the alignment and hence the database aims to address sequence alignments which represent 26 219 protein domains under the SCOP 1.53 release. Structure-based sequence alignments have been obtained by COMPARER and the initial equivalences are provided automatically from a MALIGN alignment and subsequently augmented using STAMP4.0. The final sequence alignments have been annotated for the structural features using JOY4.0. Several interesting links are provided to other related databases and genome sequence relatives. Availability of reliable sequence alignments of distantly related proteins, despite poor sequence identity and single-member superfamilies, permit better sampling of structures in libraries for fold recognition of new sequences and for the understanding of protein structure–function relationships of individual superfamilies. The database can be queried by keywords and also by sequence search, interfaced by PSI-BLAST methods. Structure-annotated sequence alignments and several structural accessory files can be retrieved for all the superfamilies including the user-input sequence. The database can be accessed from http://www.ncbs.res.in/%7Efaculty/mini/campass/pass.html.  相似文献   

6.
A natural way to study protein sequence, structure, and function is to put them in the context of evolution. Homologs inherit similarities from their common ancestor, while analogs converge to similar structures due to a limited number of energetically favorable ways to pack secondary structural elements. Using novel strategies, we previously assembled two reliable databases of homologs and analogs. In this study, we compare these two data sets and develop a support vector machine (SVM)-based classifier to discriminate between homologs and analogs. The classifier uses a number of well-known similarity scores. We observe that although both structure scores and sequence scores contribute to SVM performance, profile sequence scores computed based on structural alignments are the best discriminators between remote homologs and structural analogs. We apply our classifier to a representative set from the expert-constructed database, Structural Classification of Proteins (SCOP). The SVM classifier recovers 76% of the remote homologs defined as domains in the same SCOP superfamily but from different families. More importantly, we also detect and discuss interesting homologous relationships between SCOP domains from different superfamilies, folds, and even classes.  相似文献   

7.
One of the major research directions in bioinformatics is that of predicting the protein superfamily in large databases and classifying a given set of protein domains into superfamilies. The classification reflects the structural, evolutionary and functional relatedness. These relationships are embodied in hierarchical classification such as Structural Classification of Protein (SCOP), which is manually curated. Such classification is essential for the structural and functional analysis of proteins. Yet, a large number of proteins remain unclassified. We have proposed an unsupervised machine-learning FuzzyART neural network algorithm to classify a given set of proteins into SCOP superfamilies. The proposed method is fast learning and uses an atypical non-linear pattern recognition technique. In this approach, we have constructed a similarity matrix from p-values of BLAST all-against-all, trained the network with FuzzyART unsupervised learning algorithm using the similarity matrix as input vectors and finally the trained network offers SCOP superfamily level classification. In this experiment, we have evaluated the performance of our method with existing techniques on six different datasets. We have shown that the trained network is able to classify a given similarity matrix of a set of sequences into SCOP superfamilies at high classification accuracy.  相似文献   

8.
9.
Saccharomyces cerevisiae is one of the best-studied model organisms, yet the three-dimensional structure and molecular function of many yeast proteins remain unknown. Yeast proteins were parsed into 14,934 domains, and those lacking sequence similarity to proteins of known structure were folded using the Rosetta de novo structure prediction method on the World Community Grid. This structural data was integrated with process, component, and function annotations from the Saccharomyces Genome Database to assign yeast protein domains to SCOP superfamilies using a simple Bayesian approach. We have predicted the structure of 3,338 putative domains and assigned SCOP superfamily annotations to 581 of them. We have also assigned structural annotations to 7,094 predicted domains based on fold recognition and homology modeling methods. The domain predictions and structural information are available in an online database at http://rd.plos.org/10.1371_journal.pbio.0050076_01.  相似文献   

10.
Comparative modeling methods can consistently produce reliable structural models for protein sequences with more than 25% sequence identity to proteins with known structure. However, there is a good chance that also sequences with lower sequence identity have their structural components represented in structural databases. To this end, we present a novel fragment-based method using sets of structurally similar local fragments of proteins. The approach differs from other fragment-based methods that use only single backbone fragments. Instead, we use a library of groups containing sets of sequence fragments with geometrically similar local structures and extract sequence related properties to assign these specific geometrical conformations to target sequences. We test the ability of the approach to recognize correct SCOP folds for 273 sequences from the 49 most popular folds. 49% of these sequences have the correct fold as their top prediction, while 82% have the correct fold in one of the top five predictions. Moreover, the approach shows no performance reduction on a subset of sequence targets with less than 10% sequence identity to any protein used to build the library.  相似文献   

11.
ASTRAL compendium enhancements   总被引:7,自引:1,他引:6       下载免费PDF全文
The ASTRAL compendium provides several databases and tools to aid in the analysis of protein structures, particularly through the use of their sequences. It is partially derived from the SCOP database of protein domains, and it includes sequences for each domain as well as other resources useful for studying these sequences and domain structures. Several major improvements have been made to the ASTRAL compendium since its initial release 2 years ago. The number of protein domain sequences included has doubled from 15 190 to 30 867, and additional databases have been added. The Rapid Access Format (RAF) database contains manually curated mappings linking the biological amino acid sequences described in the SEQRES records of PDB entries to the amino acid sequences structurally observed (provided in the ATOM records) in a format designed for rapid access by automated tools. This information is used to derive sequences for protein domains in the SCOP database. In cases where a SCOP domain spans several protein chains, all of which can be traced back to a single genetic source, a ‘genetic domain’ sequence is created by concatenating the sequences of each chain in the order found in the original gene sequence. Both the original-style library of SCOP sequences and a new library including genetic domain sequences are available. Selected representative subsets of each of these libraries, based on multiple criteria and degrees of similarity, are also included. ASTRAL may be accessed at http://astral.stanford.edu/.  相似文献   

12.
MOTIVATION: Recognizing proteins that have similar tertiary structure is the key step of template-based protein structure prediction methods. Traditionally, a variety of alignment methods are used to identify similar folds, based on sequence similarity and sequence-structure compatibility. Although these methods are complementary, their integration has not been thoroughly exploited. Statistical machine learning methods provide tools for integrating multiple features, but so far these methods have been used primarily for protein and fold classification, rather than addressing the retrieval problem of fold recognition-finding a proper template for a given query protein. RESULTS: Here we present a two-stage machine learning, information retrieval, approach to fold recognition. First, we use alignment methods to derive pairwise similarity features for query-template protein pairs. We also use global profile-profile alignments in combination with predicted secondary structure, relative solvent accessibility, contact map and beta-strand pairing to extract pairwise structural compatibility features. Second, we apply support vector machines to these features to predict the structural relevance (i.e. in the same fold or not) of the query-template pairs. For each query, the continuous relevance scores are used to rank the templates. The FOLDpro approach is modular, scalable and effective. Compared with 11 other fold recognition methods, FOLDpro yields the best results in almost all standard categories on a comprehensive benchmark dataset. Using predictions of the top-ranked template, the sensitivity is approximately 85, 56, and 27% at the family, superfamily and fold levels respectively. Using the 5 top-ranked templates, the sensitivity increases to 90, 70, and 48%.  相似文献   

13.
Members of a superfamily of proteins could result from divergent evolution of homologues with insignificant similarity in the amino acid sequences. A superfamily relationship is detected commonly after the three-dimensional structures of the proteins are determined using X-ray analysis or NMR. The SUPFAM database described here relates two homologous protein families in a multiple sequence alignment database of either known or unknown structure. The present release (1.1), which is the first version of the SUPFAM database, has been derived by analysing Pfam, which is one of the commonly used databases of multiple sequence alignments of homologous proteins. The first step in establishing SUPFAM is to relate Pfam families with the families in PALI, which is an alignment database of homologous proteins of known structure that is derived largely from SCOP. The second step involves relating Pfam families which could not be associated reliably with a protein superfamily of known structure. The profile matching procedure, IMPALA, has been used in these steps. The first step resulted in identification of 1280 Pfam families (out of 2697, i.e. 47%) which are related, either by close homologous connection to a SCOP family or by distant relationship to a SCOP family, potentially forming new superfamily connections. Using the profiles of 1417 Pfam families with apparently no structural information, an all-against-all comparison involving a sequence-profile match using IMPALA resulted in clustering of 67 homologous protein families of Pfam into 28 potential new superfamilies. Expansion of groups of related proteins of yet unknown structural information, as proposed in SUPFAM, should help in identifying ‘priority proteins’ for structure determination in structural genomics initiatives to expand the coverage of structural information in the protein sequence space. For example, we could assign 858 distinct Pfam domains in 2203 of the gene products in the genome of Mycobacterium tubercolosis. Fifty-one of these Pfam families of unknown structure could be clustered into 17 potentially new superfamilies forming good targets for structural genomics. SUPFAM database can be accessed at http://pauling.mbu.iisc.ernet.in/~supfam.  相似文献   

14.

Background  

Understanding protein function from its structure is a challenging problem. Sequence based approaches for finding homology have broad use for annotation of both structure and function. 3D structural information of protein domains and their interactions provide a complementary view to structure function relationships to sequence information. We have developed a web site and an API of web services that enables users to submit protein structures and identify statistically significant neighbors and the underlying structural environments that make that match using a suite of sequence and structure analysis tools. To do this, we have integrated S-BLEST, PSI-BLAST and HMMer based superfamily predictions to give a unique integrated view to prediction of SCOP superfamilies, EC number, and GO term, as well as identification of the protein structural environments that are associated with that prediction. Additionally, we have extended UCSF Chimera and PyMOL to support our web services, so that users can characterize their own proteins of interest.  相似文献   

15.
MOTIVATION: The global alignment of protein sequence pairs is often used in the classification and analysis of full-length sequences. The calculation of a Z-score for the comparison gives a length and composition corrected measure of the similarity between the sequences. However, the Z-score alone, does not indicate the likely biological significance of the similarity. In this paper, all pairs of domains from 250 sequences belonging to different SCOP folds were aligned and Z-scores calculated. The distribution of Z-scores was fitted with a peak distribution from which the probability of obtaining a given Z-score from the global alignment of two protein sequences of unrelated fold was calculated. A similar analysis was applied to subsequence pairs found by the Smith-Waterman algorithm. These analyses allow the probability that two protein sequences share the same fold to be estimated by global sequence alignment. RESULTS: The relationship between Z-score and probability varied little over the matrix/gap penalty combinations examined. However, an average shift of +4.7 was observed for Z-scores derived from global alignment of locally-aligned subsequences compared to global alignment of the full-length sequences. This shift was shown to be the result of pre-selection by local alignment, rather than any structural similarity in the subsequences. The search ability of both methods was benchmarked against the SCOP superfamily classification and showed that global alignment Z-scores generated from the entire sequence are as effective as SSEARCH at low error rates and more effective at higher error rates. However, global alignment Z-scores generated from the best locally-aligned subsequence were significantly less effective than SSEARCH. The method of estimating statistical significance described here was shown to give similar values to SSEARCH and BLAST, providing confidence in the significance estimation. AVAILABILITY: Software to apply the statistics to global alignments is available from http://barton.ebi.ac.uk. CONTACT: geoff@ebi.ac.uk  相似文献   

16.
SUMMARY: We present a web server that computes alignments of protein secondary structures. The server supports both performing pairwise alignments and searching a secondary structure against a library of domain folds. It can calculate global and local secondary structure element alignments. A combination of local and global alignment steps can be used to search for domains inside the query sequence or help in the discrimination of novel folds. Both the SCOP and PDB fold libraries, clustered at 95 and 40% sequence identity, are available for alignment. AVAILABILITY: The web server interface is freely accessible to academic users at http://protein.cribi.unipd.it/ssea/. The executable version and benchmarking data are available from the same web page.  相似文献   

17.
We present CATHEDRAL, an iterative protocol for determining the location of previously observed protein folds in novel multidomain protein structures. CATHEDRAL builds on the features of a fast secondary-structure-based method (using graph theory) to locate known folds within a multidomain context and a residue-based, double-dynamic programming algorithm, which is used to align members of the target fold groups against the query protein structure to identify the closest relative and assign domain boundaries. To increase the fidelity of the assignments, a support vector machine is used to provide an optimal scoring scheme. Once a domain is verified, it is excised, and the search protocol is repeated in an iterative fashion until all recognisable domains have been identified. We have performed an initial benchmark of CATHEDRAL against other publicly available structure comparison methods using a consensus dataset of domains derived from the CATH and SCOP domain classifications. CATHEDRAL shows superior performance in fold recognition and alignment accuracy when compared with many equivalent methods. If a novel multidomain structure contains a known fold, CATHEDRAL will locate it in 90% of cases, with <1% false positives. For nearly 80% of assigned domains in a manually validated test set, the boundaries were correctly delineated within a tolerance of ten residues. For the remaining cases, previously classified domains were very remotely related to the query chain so that embellishments to the core of the fold caused significant differences in domain sizes and manual refinement of the boundaries was necessary. To put this performance in context, a well-established sequence method based on hidden Markov models was only able to detect 65% of domains, with 33% of the subsequent boundaries assigned within ten residues. Since, on average, 50% of newly determined protein structures contain more than one domain unit, and typically 90% or more of these domains are already classified in CATH, CATHEDRAL will considerably facilitate the automation of protein structure classification.  相似文献   

18.
Qi Y  Grishin NV 《Proteins》2005,58(2):376-388
Protein structure classification is necessary to comprehend the rapidly growing structural data for better understanding of protein evolution and sequence-structure-function relationships. Thioredoxins are important proteins that ubiquitously regulate cellular redox status and various other crucial functions. We define the thioredoxin-like fold using the structure consensus of thioredoxin homologs and consider all circular permutations of the fold. The search for thioredoxin-like fold proteins in the PDB database identified 723 protein domains. These domains are grouped into eleven evolutionary families based on combined sequence, structural, and functional evidence. Analysis of the protein-ligand structure complexes reveals two major active site locations for the thioredoxin-like proteins. Comparison to existing structure classifications reveals that our thioredoxin-like fold group is broader and more inclusive, unifying proteins from five SCOP folds, five CATH topologies and seven DALI domain dictionary globular folding topologies. Considering these structurally similar domains together sheds new light on the relationships between sequence, structure, function and evolution of thioredoxins.  相似文献   

19.
Superfamily classifications are based variably on similarity of sequences, global folds, local structures, or functions. We have examined the possibility of defining superfamilies purely from the viewpoint of the global fold/function relationship. For this purpose, we first classified protein domains according to the beta-sheet topology. We then introduced the concept of kinship relations among the classified beta-sheet topology by assuming that the major elementary event leading to creation of a new beta-sheet topology is either an addition or deletion of one beta-strand at the edge of an existing beta-sheet during the molecular evolution. Based on this kinship relation, a network of protein domains was constructed so that the distance between a pair of domains represents the number of evolutionary events that lead one from the other domain. We then mapped on it all known domains with a specific core chemical function (here taken, as an example, that involving ATP or its analogs). Careful analyses revealed that the domains are found distributed on the network as >20 mutually disjointed clusters. The proteins in each cluster are defined to form a fold-based superfamily. The results indicate that >20 ATP-binding protein superfamilies have been invented independently in the process of molecular evolution, and the conservative evolutionary diffusion of global folds and functions is the origin of the relationship between them.  相似文献   

20.
MOTIVATION: Alignment-free metrics were recently reviewed by the authors, but have not until now been object of a comparative study. This paper compares the classification accuracy of word composition metrics therein reviewed. It also presents a new distance definition between protein sequences, the W-metric, which bridges between alignment metrics, such as scores produced by the Smith-Waterman algorithm, and methods based solely in L-tuple composition, such as Euclidean distance and Information content. RESULTS: The comparative study reported here used the SCOP/ASTRAL protein structure hierarchical database and accessed the discriminant value of alternative sequence dissimilarity measures by calculating areas under the Receiver Operating Characteristic curves. Although alignment methods resulted in very good classification accuracy at family and superfamily levels, alignment-free distances, in particular Standard Euclidean Distance, are as good as alignment algorithms when sequence similarity is smaller, such as for recognition of fold or class relationships. This observation justifies its advantageous use to pre-filter homologous proteins since word statistics techniques are computed much faster than the alignment methods. AVAILABILITY: All MATLAB code used to generate the data is available upon request to the authors. Additional material available at http://bioinformatics.musc.edu/wmetric  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号