首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the involvement of Tol proteins in the surface expression of lipopolysaccharide (LPS). tolQ, -R, -A and -B mutants of Escherichia coli K-12, which do not form a complete LPS-containing O antigen, were transformed with the O7+ cosmid pJHCV32. The tolA and tolQ mutants showed reduced O7 LPS expression compared with the respective isogenic parent strains. No changes in O7 LPS expression were found in the other tol mutants. The O7-deficient phenotype in the tolQ and tolA mutants was complemented with a plasmid encoding the tolQRA operon, but not with a similar plasmid containing a frameshift mutation inactivating tolA. Therefore, the reduction in O7 LPS was attributed to the lack of a functional tolA gene, caused either by a direct mutation of this gene or by a polar effect on tolA gene expression exerted by the tolQ mutation. Reduced surface expression of O7 LPS was not caused by changes in lipid A-core structure or downregulation of the O7 LPS promoter. However, an abnormal accumulation of radiolabelled mannose was detected in the plasma membrane. As mannose is a sugar unique to the O7 subunit, this result suggested the presence of accumulated O7 LPS biosynthesis intermediates. Attempts to construct a tolA mutant in the E. coli O7 wild-type strain VW187 were unsuccessful, suggesting that this mutation is lethal. In contrast, a polar tolQ mutation affecting tolA expression in VW187 caused slow growth rate and serum sensitivity in addition to reduced O7 LPS production. VW187 tolQ cells showed an elongated morphology and became permeable to the membrane-impermeable dye propidium iodide. All these phenotypes were corrected upon complementation with cloned tol genes but were not restored by complementation with the tolQRA operon containing the frameshift mutation in tolA. Our results demonstrate that the TolA protein plays a critical role in the surface expression of O antigen subunits by an as yet uncharacterized involvement in the processing of O antigen.  相似文献   

2.
Growth of the Escherichia coli cell envelope   总被引:1,自引:0,他引:1  
A Jaffé  R D'ari 《Biochimie》1985,67(1):141-144
The growth pattern of the Escherichia coli envelope was studied by immunoelectron microscopy, using the outer membrane protein LamB specifically labelled by a double antibody gold particle technique. An operon fusion placing the lamB gene under lac promoter control permitted rapid turn-off of LamB synthesis. In the generation following turn-off no lamB-free regions appeared, strongly suggesting that bulk outer membrane material is not inserted in restricted growth zones.  相似文献   

3.
Protein complexes are an intrinsic aspect of life in the membrane. Knowing which proteins are assembled in these complexes is therefore essential to understanding protein function(s). Unfortunately, recent high throughput protein interaction studies have failed to deliver any significant information on proteins embedded in the membrane, and many membrane protein complexes remain ill defined. In this study, we have optimized the blue native-PAGE technique for the study of membrane protein complexes in the inner and outer membranes of Escherichia coli. In combination with second dimension SDS-PAGE and mass spectrometry, we have been able to identify 43 distinct protein complexes. In addition to a number of well characterized complexes, we have identified known and orphan proteins in novel oligomeric states. For two orphan proteins, YhcB and YjdB, our findings enable a tentative functional assignment. We propose that YhcB is a hitherto unidentified additional subunit of the cytochrome bd oxidase and that YjdB, which co-localizes with the ZipA protein, is involved in cell division. Our reference two-dimensional blue native-SDS-polyacrylamide gels will facilitate future studies of the assembly and composition of E. coli membrane protein complexes during different growth conditions and in different mutant backgrounds.  相似文献   

4.
Various macromolecules such as bacteriotoxins and phage DNA parasitize some envelope proteins of Escherichia coli to infect the bacteria. A two-step import mechanism involves the primary interaction with an outer membrane receptor or with a pilus followed by the translocation across the outer membrane. However, this second step is poorly understood. It was shown that the TolA, TolQ, and TolR proteins play a critical role in the translocation of group A colicins and filamentous bacteriophage minor coat proteins (g3p). Translocation of these proteins requires the interaction of their N-terminal domain with the C-terminal domain of TolA (TolAIII). In this work, short soluble TolAIII domains were overproduced in the cytoplasm and in the periplasm of E. coli. In TolAIII, the two cysteine residues were found to be reduced in the cytoplasmic form and oxidized in the periplasmic form. The interaction of TolAIII with the N-terminal domain of colicin A (ATh) is observed in the presence and in the absence of the disulfide bridge. The complex formation of TolAIII and ATh was found to be independent of the ionic strength. An NMR study of TolAIII, both free and bound, shows a significant structural change when interacting with ATh, in the presence or absence of the disulfide bridge. In contrast, such a structural modification was not observed when TolAIII interacts with g3p N1. These results suggest that bacteriotoxins and Ff bacteriophages parasitize E. coli using different interactions between TolA and the translocation domain of the colicin and g3p protein, respectively.  相似文献   

5.
Examination of the localization of the dicarboxylate binding protein (DBP) in the cell envelope of Escherichia coli K12 reveals that this protein is present on the cell surface, and also in the inner and outer regions of the periplasmic space. The cell surface DBP is release by treating the cells with EDTA. This protein can be surface labeled by lactoperoxidase radioiodination, and by diazo[125I]iodosulfanilic acid in whole cells. It also binds tightly, but not covalently, to lipopolysaccharide. The DBP located in the outer region of the periplasmic space is released when the outer membrane is dissociated by EDTA-osmotic shock treatment. The DBP located in the inner region of the periplasmic space is released only when the EDTA-osmotic shocked cells are subjected to lysozyme treatment. At the moment, it is not certain whether this protein is bound to or trapped by the peptidoglycan network. This protein cannot be surface labeled in whole cells or in EDTA-osmotic shock treated cells; and it is not associated with lipopolysaccharide. Analysis of transport mutants indicates that these DBP are coded by the same gene.  相似文献   

6.
The Tol proteins are involved in the outer membrane stability of gram-negative bacteria. The C-terminal domain of TolA was mutagenized to identify residues important for its functions. The isolation of suppressor mutants of tolA mutations in the tolB gene confirmed an interaction between TolAIII and the N-terminal domain of TolB.  相似文献   

7.
Penicillin-binding site on the Escherichia coli cell envelope.   总被引:1,自引:0,他引:1       下载免费PDF全文
The binding of 35S-labeled penicillin to distinct penicillin-binding proteins (PBPs) of the "cell envelope" obtained from the sonication of Escherichia coli was studied at different pHs ranging from 4 to 11. At low pH, PBPs 1b, 1c, 2, and 3 demonstrated the greatest amount of binding. At high pH, these PBPs bound the least amount of penicillin. PBPs 1a and 5/6 exhibited the greatest amount of binding at pH 10 and the least amount at pH 4. With the exception of PBP 5/6, the effect of pH on the binding of penicillin was direct. Experiments distinguishing the effect of pH on penicillin binding by PBP 5/6 from its effect on beta-lactamase activity indicated that although substantial binding occurred at the lowest pH, the amount of binding increased with pH, reaching a maximum at pH 10. Based on earlier studies, it is proposed that the binding at high pH involves the formation of a covalent bond between the C-7 of penicillin and free epsilon amino groups of the PBPs. At pHs ranging from 4 to 8, position 1 of penicillin, occupied by sulfur, is considered to be the site that establishes a covalent bond with the sulfhydryl groups of PBP 5. The use of specific blockers of free epsilon amino groups or sulfhydryl groups indicated that wherever the presence of each had little or no effect on the binding of penicillin by PBP 5, the presence of both completely prevented binding. The specific blocker of the hydroxyl group of serine did not affect the binding of penicillin. These observations suggest that a molecule of penicillin forms simultaneous bonds between its S at position 1 and sulfhydryl groups of PBP 5 and between its C-7 and free epsilon amino groups of PBP 5.  相似文献   

8.
The cell envelope in Gram-negative bacteria comprises two distinct membranes with a cell wall between them. There has been a growing interest in understanding the mechanical adaptation of this cell envelope to the osmotic pressure (or turgor pressure), which is generated by the difference in the concentration of solutes between the cytoplasm and the external environment. However, it remains unexplored how the cell wall, the inner membrane (IM), and the outer membrane (OM) effectively protect the cell from this pressure by bearing the resulting surface tension, thus preventing the formation of inner membrane bulges, abnormal cell morphology, spheroplasts and cell lysis. In this study, we have used molecular dynamics (MD) simulations combined with experiments to resolve how and to what extent models of the IM, OM, and cell wall respond to changes in surface tension. We calculated the area compressibility modulus of all three components in simulations from tension-area isotherms. Experiments on monolayers mimicking individual leaflets of the IM and OM were also used to characterize their compressibility. While the membranes become softer as they expand, the cell wall exhibits significant strain stiffening at moderate to high tensions. We integrate these results into a model of the cell envelope in which the OM and cell wall share the tension at low turgor pressure (0.3 atm) but the tension in the cell wall dominates at high values (>1 atm).  相似文献   

9.
Proteomic analysis of the cell envelope fraction of Escherichia coli   总被引:4,自引:0,他引:4  
We applied proteomics technologies to analyze a membrane preparation of Escherichia coli, wild type strain and of transformants expressing human cytochrome P450s. The proteins were analyzed by two-dimensional electrophoresis and identified by matrix-assisted laser desorption ionization mass spectrometry. The membrane proteins were solubilized with both mild detergents such as CHAPS and strong detergents, such as sodium and lithium dodecyl sulfate, sodium cholate and sodium deoxycholate. In the E. colimembrane fraction, 394 different gene products were identified. Approximately 28% of them were predicted to be integral membrane proteins, of which 100 proteins have been predicted to carry one transmembrane region, ten proteins to carry two, and two proteins to include three transmembrane domains. The remaining are probably membrane-associated and cytosolic proteins. Cytochrome P450s did not enter the immobilized pH gradient strips but were efficiently analyzed in a two-dimensional, two-detergent system. Use of strong solubilizing agents resulted in the detection of about 20 membrane proteins, which were not detected following extraction with mild detergents and chaotropes. The present database is one of the largest for membrane proteins.  相似文献   

10.
The Cpx and sigmaE signaling systems monitor the cell envelope in Escherichia coli. When induced, each system triggers a signaling cascade that leads to the upregulation of factors needed to combat envelope damage. Although each system is distinct and can be uniquely induced by certain cues, they also share striking similarities. In this review, we discuss the recent progress in our understanding of the Cpx and sigmaE systems and compare how both function to maintain the integrity of the cell envelope.  相似文献   

11.
12.
Group A colicins need proteins of the Escherichia coli envelope Tol complex (TolA, TolB, TolQ and TolR) to reach their cellular target. The N-terminal domain of colicins is involved in the import process. The N-terminal domains of colicins A and E1 have been shown to interact with TolA, and the N-terminal domain of colicin E3 has been shown to interact with TolB. We found that a pentapeptide conserved in the N-terminal domain of all group A colicins, the 'TolA box', was important for colicin A import but was not involved in the colicin A–TolA interaction. It was, however, involved in the colicin A–TolB interaction. The interactions of colicin A N-terminal domain deletion mutants with TolA and TolB were investigated. Random mutagenesis was performed on a construct allowing the colicin A N-terminal domain to be exported in the bacteria periplasm. This enabled us to select mutant protein domains unable to compete with the wild-type domain of the entire colicin A for import into the cells. Our results demonstrate that different regions of the colicin A N-terminal domain interact with TolA and TolB. The colicin A N-terminal domain was also shown to form a trimeric complex with TolA and TolB.  相似文献   

13.
Differential gene expression in biofilm cells suggests that adding the derepressed conjugative plasmid R1drd19 increases biofilm formation by affecting genes related to envelope stress (rseA and cpxAR), biofilm formation (bssR and cstA), energy production (glpDFK), acid resistance (gadABCEX and hdeABD), and cell motility (csgBEFG, yehCD, yadC, and yfcV); genes encoding outer membrane proteins (ompACF), phage shock proteins (pspABCDE), and cold shock proteins (cspACDEG); and phage-related genes. To investigate the link between the identified genes and biofilm formation upon the addition of R1drd19, 40 isogenic mutants were classified according to their different biofilm formation phenotypes. Cells with class I mutations (those in rseA, bssR, cpxA, and ompA) exhibited no difference from the wild-type strain in biofilm formation and no increase in biofilm formation upon the addition of R1drd19. Cells with class II mutations (those in gatC, yagI, ompC, cspA, pspD, pspB, ymgB, gadC, pspC, ymgA, slp, cpxP, cpxR, cstA, rseC, ompF, and yqjD) displayed increased biofilm formation compared to the wild-type strain but decreased biofilm formation upon the addition of R1drd19. Class III mutants showed increased biofilm formation compared to the wild-type strain and increased biofilm formation upon the addition of R1drd19. Cells with class IV mutations displayed increased biofilm formation compared to the wild-type strain but little difference upon the addition of R1drd19, and class V mutants exhibited no difference from the wild-type strain but increased biofilm formation upon the addition of R1drd19. Therefore, proteins encoded by the genes corresponding to the class I mutant phenotype are involved in R1drd19-promoted biofilm formation, primarily through their impact on cell motility. We hypothesize that the pili formed upon the addition of the conjugative plasmid disrupt the membrane (induce ompA) and activate the two-component system CpxAR as well as the other envelope stress response system, RseA-sigma(E), both of which, along with BssR, play a key role in bacterial biofilm formation.  相似文献   

14.
15.
Logarithmically growing cells of Escherichia coli were fixed with glutaraldehyde and incubated with antimaltose-binding protein Fab coupled to horseradish peroxidase (molecular weight of the complex 80,000). The position of this complex within the cell envelope was determined by reacting with diaminobenzidine-H2O2, staining with osmium tetroxide and processing for thin section electron microscopy. The following observations were made: (i) induction of the maltose-binding protein resulted in swelling and staining of the outer membrane; (ii) the swelling and staining was more prominent in short cells, less prominent or absent in long cells; (iii) rare examples exhibited granular staining in the space between the plasma membrane and the peptidoglycan layer. These stainings were observable mainly in pole caps; (iv) a mutant lacking the receptor for phage showed altered staining pattern. Treatment of glutaraldehyde-fixed cells with EDTA-lysozyme prevented the specific labelling of the maltose-binding protein.Lists of Non Common Abbreviations MBP maltose-binding protein - MBP-Fab)-HRPO Fab fragments against maltose-binding, protein coupled to horseradish peroxidase - IgG immunoglobulin - PBS pnosphate buffered saline  相似文献   

16.
17.
Both ethanol and hexanol inhibited the growth of Escherichia coli, but their effects on the organization and composition of the cell envelope were quite different. Hexanol (7.8 x 10(-3) mM) increased membrane fluidity, whereas ethanol (0.67 M) had little effect. During growth in the presence of ethanol, the proportion of unsaturated fatty acids increased. The opposite change was induced by hexanol. Unlike hexanol, growth in the presence of ethanol resulted in the production of un-cross-linked peptidoglycan with subsequent lysis. Salt (0.3 M) protected cells against ethanol-induced lysis but potentiated growth inhibition by hexanol. Mutants isolated for resistance to ethanol-induced lysis synthesized cross-linked peptidoglycan during growth in the presence of ethanol but remained sensitive to hexanol. A general hypothesis was presented to explain the differential effects of ethanol and hexanol. All alcohols are viewed as similar in having both an apolar chain capable of interacting with hydrophobic environments and a hydroxyl function capable of hydrogen bonding. The differential effects of short-chain alcohols may represent effects due to the high molar concentrations of hydrogen bonding groups with an apolar end within the environment. These may replace bound water in some cases. With longer-chain alcohols such as hexanol, the effects of the acyl chain would dominate, and limitations of solubility and cellular integrity would mask these hydroxyl effects.  相似文献   

18.
This communication deals with the location of penicillin-binding proteins in the cell envelope of Escherichia coli. For this purpose, bacterial cells have been broken by various procedures and their envelopes have been fractioned. To do so, inner (cytoplasmic) and outer membranes were separated by isopycnic centrifugation in sucrose gradients. Some separation methods (Osborn et al., J. Biol. Chem. 247:3962-3972, 1972; J. Smit, Y. Kamio, and H. Nikaido, J. Bacteriol. 124:942-958, 1975) revealed that penicillin-binding proteins are not exclusively located in the inner membrane. They are also found in the outer membrane (A. Rodríguez-Tébar, J. A. Barbas, and D. Vásquez, J. Bacteriol. 161:243-248, 1985). Under the milder conditions for cell rupture used in this work, an intermembrane fraction, sedimenting between the inner and outer membrane, can be recovered from the gradients. This fraction has a high content of both penicillin-binding proteins and phospholipase B activity and may correspond to the intermembrane adhesion sites (M. H. Bayer, G. P. Costello, and M. E. Bayer, J. Bacteriol. 149:758-769, 1982). We postulate that this intermembrane fraction is a labile structure that contains a high amount of all penicillin-binding proteins which are usually found in both the inner and outer membranes when the adhesion sites are destroyed by the cell breakage and fractionation procedures.  相似文献   

19.
20.
The Tol assembly of proteins is an interacting network of proteins located in the Escherichia coli cell envelope that transduces energy and contributes to cell integrity. TolA is central to this network linking the inner and outer membranes by interactions with TolQ, TolR, TolB, and Pal. Group A colicins, such as ColA, parasitize the Tol network through interactions with TolA and/or TolB to facilitate translocation through the cell envelope to reach their cytotoxic site of action. We have determined the first structure of the C-terminal domain of TolA (TolAIII) bound to an N-terminal ColA polypeptide (TA(53-107)). The interface region of the TA(53-107)-TolAIII complex consists of polar contacts linking residues Arg-92 to Arg-96 of ColA with residues Leu-375-Pro-380 of TolA, which constitutes a β-strand addition commonly seen in more promiscuous protein-protein contacts. The interface region also includes three cation-π interactions (Tyr-58-Lys-368, Tyr-90-Lys-379, Phe-94-Lys-396), which have not been observed in any other colicin-Tol protein complex. Mutagenesis of the interface residues of ColA or TolA revealed that the effect on the interaction was cumulative; single mutations of either partner had no effect on ColA activity, whereas mutations of three or more residues significantly reduced ColA activity. Mutagenesis of the aromatic ring component of the cation-π interacting residues showed Tyr-58 of ColA to be essential for the stability of complex formation. TA(53-107) binds on the opposite side of TolAIII to that used by g3p, ColN, or TolB, illustrating the flexible nature of TolA as a periplasmic hub protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号