首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Friend murine leukemia virus clone A8 causes spongiform neurodegeneration in the rat brain, and the env gene of A8 is a primary determinant of neuropathogenicity. In order to narrow down the critical region within the env gene that determines neuropathogenicity, we constructed chimeric viruses having chimeric env between A8 and non-neuropathogenic 57 on the background of A8 virus. After replacement of the BamHI (at nucleotide 5715)-AgeI (at nucleotide 6322) fragment of A8 virus with the corresponding fragment of 57, neuropathogenicity was lost. In contrast, the chimeric viruses that have the BamHI (5715)-AgeI (6322) fragment of A8 induced spongiosis in 100% of infected rats at the same or slightly lower intensity than A8 virus. These results indicate that the BamHI (5715)-AgeI (6322) fragment of A8, which contains the signal sequence and the N-terminal half of RBD, is crucial for the induction of spongiform neurodegeneration. In the BamHI (5715)-AgeI (6322) fragment, seven amino acids differed between A8 and 57, one in the signal sequence and six in RBD, which suggests that these amino acids significantly contribute to the neuropathogenicity of A8.  相似文献   

2.
Infection of rats with Friend murine leukemia virus (Fr-MLV) clone A8 causes thymoma in all the animals within 7 weeks. The rapid induction of thymoma is associated with a unique enhancer structure in the U3 region of the A8-LTR. Our Southern blot analyses showed that the thymomas were oligo clonal. The A8-induced thymomas showed 3-to 11-fold overexpression of c-myc mRNA. These results suggest that provirus insertion into particular positions of the host genome is correlated with tumorigenesis after A8 infection and that up-regulation of c-myc plays an important role in the induction of thymoma.  相似文献   

3.
The genome of the Friend murine leukemia virus (Fr‐MLV) contains a 5′ splice site (5′ss) located at 205 nt and a 3′ss located at 5489 nt. In our previous studies, it was shown that if the HindIII–BglII (879–1904 bp) fragment within gag is deleted from the proA8m1 vector, which carries the entire Fr‐MLV sequence, then cryptic splicing of env‐mRNA occurs. Here, attempts were made to identify the genomic segment(s) in this region that is/are essential to correct splicing. First, vectors with a serially truncated HindIII–BglII fragment were constructed. The vector, in which a 38 bp fragment (1612–1649 bp) is deleted or reversed in proA8m1, only produced splice variants. It was found that a 38 nt region within gag contains important elements that positively regulate splicing at the correct splice sites. Further analyses of a series of vectors carrying the 38 bp fragment and its flanking sequences showed that a region (1183–1611 nt) upstream of the 38 nt fragment also contains sequences that positively or negatively influence splicing at the correct splice sites. The SphI–NdeI (5140–5400 bp) fragment just upstream of the 3′ss was deleted from vectors that carried the 38 bp fragment and its flanking sequences, which yielded correctly spliced mRNA; interestingly, these deleted vectors showed cryptic splicing. These findings suggest that the 5140–5400 nt region located just upstream of the 3′ss is required for the splicing function of the 38 nt fragment and its flanking sequences.  相似文献   

4.
The retroviral integrase (IN) carries out the integration of a dsDNA copy of the viral genome into the host DNA, an essential step for viral replication. All IN proteins have three general domains, the N‐terminal domain (NTD), the catalytic core domain, and the C‐terminal domain. The NTD includes an HHCC zinc finger‐like motif, which is conserved in all retroviral IN proteins. Two crystal structures of Moloney murine leukemia virus (M‐MuLV) IN N‐terminal region (NTR) constructs that both include an N‐terminal extension domain (NED, residues 1–44) and an HHCC zinc‐finger NTD (residues 45–105), in two crystal forms are reported. The structures of IN NTR constructs encoding residues 1–105 (NTR1–105) and 8–105 (NTR8–105) were determined at 2.7 and 2.15 Å resolution, respectively and belong to different space groups. While both crystal forms have similar protomer structures, NTR1–105 packs as a dimer and NTR8–105 packs as a tetramer in the asymmetric unit. The structure of the NED consists of three anti‐parallel β‐strands and an α‐helix, similar to the NED of prototype foamy virus (PFV) IN. These three β‐strands form an extended β‐sheet with another β‐strand in the HHCC Zn2+ binding domain, which is a unique structural feature for the M‐MuLV IN. The HHCC Zn2+ binding domain structure is similar to that in HIV and PFV INs, with variations within the loop regions. Differences between the PFV and MLV IN NEDs localize at regions identified to interact with the PFV LTR and are compared with established biochemical and virological data for M‐MuLV. Proteins 2017; 85:647–656. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
Despite the high mutation rate of HIV-1, the amino acid sequences of the membrane-spanning domain (MSD) of HIV-1 gp41 are well conserved. Arginine residues are rarely found in single membrane-spanning domains, yet an arginine residue, R696 (the numbering is based on that of HXB2), is highly conserved in HIV-1 gp41. To examine the role of R696, it was mutated to K, A, I, L, D, E, N, and Q. Most of these substitutions did not affect the expression, processing or surface distribution of the envelope protein (Env). However, a syncytia formation assay showed that the substitution of R696 with amino acid residues other than K, a naturally observed mutation in the gp41 MSD, decreased fusion activity. Substitution with hydrophobic amino acid residues (A, I, and L) resulted in a modest decrease, while substitution with D or E, potentially negatively-charged residues, almost abolished the syncytia formation. All the fusion-defective mutants showed slower kinetics with the cell-based dual split protein (DSP) assay that scores the degree of membrane fusion based on pore formation between fusing cells. Interestingly, the D and E substitutions did show some fusion activity in the DSP assays, suggesting that proteins containing D or E substitutions retained some fusion pore-forming capability. However, nascent pores failed to develop, due probably to impaired activity in the pore enlargement process. Our data show the importance of this conserved arginine residue for efficient membrane fusion.  相似文献   

6.
目的 预测EB病毒潜伏膜蛋白1(Latent Membrane Protein 1,LMPl)的B细胞表位.方法 基于EB病毒基因组序列,采用DNAStar Lasergene软件包中的Protean软件,对LMP1的亲水性,表面可能性,抗原指数及其二级结构中的柔性区域进行分析,并结合吴玉章的抗原指数预测法预测其B细胞表位.结果 B细胞表位最有可能位于潜伏膜蛋白N端第356-358,2-19,249-314区段或其附近,而潜伏膜蛋白N端第185-223区段内或附近也可能存在B细胞表位.结论 用多参数预测EB病毒LMP1的B细胞表位,为鼻咽癌的筛查及抗肿瘤转移靶向治疗的分子免疫学研究奠定基础.  相似文献   

7.
The open reading frame 4 (ORF 4) gene product of barley yellow dwarf virus (BYDV) may act as a movement protein (MP) by assisting the transport of viral genomic RNA across the nuclear envelope (NE) of host plant cells. To investigate interactions between BYDV MP and the NE, wild-type and mutant open reading frame (ORF 4)-green fluorescent protein (GFP) fusion cistrons were expressed in insect cells. A fusion protein expressed by the wild-type ORF 4-GFP cistron associated with the NE and caused protrusions from its surface. The fusion protein expressed by the mutant ORF 4-GFP cistron lacked a putative amphiphilic alpha-helix at its N-terminus and although associating with the NE, showed decreased levels of protrusions. A peptide homologue of this putative alpha-helix induced an increase of 7 degrees C in the phase transition temperature of dimyrystoyl phosphatidylserine (DMPS) membranes, accompanied by a decrease in membrane fluidity, but exhibited no significant interaction with either dimyristoyl phosphatidylcholine (DMPC) or dimyristoyl phosphatidylethanolamine (DMPE) membranes. These results strongly support the view that BYDV MP may interact with the NE to help transport viral genomic RNA into the nuclear compartment. This function of BYDV MP appears to involve protrusions on the surface of the NE and may require the presence of an N-terminal amphiphilic alpha-helix, which is speculated to destabilize membranes, thereby assisting the entry of BYDV-GAV into the nuclear compartment.  相似文献   

8.
We have analyzed the mechanism by which Sop4, a novel ER membrane protein, regulates quality control and intracellular transport of Pma1–7, a mutant plasma membrane ATPase. At the restrictive temperature, newly synthesized Pma1–7 is targeted for vacuolar degradation instead of being correctly delivered to the cell surface. Loss of Sop4 at least partially corrects vacuolar mislocalization, allowing Pma1–7 routing to the plasma membrane. Ste2–3 is a mutant pheromone receptor which, like Pma1–7, is defective in targeting to the cell surface, resulting in a mating defect. sop4Δ suppresses the mating defect of ste2–3 cells as well as the growth defect of pma1–7 . Visualization of newly synthesized Pma1–7 in sop4Δ cells by indirect immunofluorescence reveals delayed export from the ER. Similarly, ER export of wild-type Pma1 is delayed in the absence of Sop4 although intracellular transport of Gas1 and CPY is unaffected. These observations suggest a model in which a selective increase in ER residence time for Pma1–7 may allow it to achieve a more favorable conformation for subsequent delivery to the plasma membrane. In support of this model, newly synthesized Pma1–7 is also routed to the plasma membrane upon release from a general block of ER-to-Golgi transport in sec13–1 cells.  相似文献   

9.
The trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S) is the sole viral protein responsible for both viral binding to a host cell and the membrane fusion event needed for cell entry. In addition to facilitating fusion needed for viral entry, S can also drive cell–cell fusion, a pathogenic effect observed in the lungs of SARS-CoV-2–infected patients. While several studies have investigated S requirements involved in viral particle entry, examination of S stability and factors involved in S cell–cell fusion remain limited. A furin cleavage site at the border between the S1 and S2 subunits (S1/S2) has been identified, along with putative cathepsin L and transmembrane serine protease 2 cleavage sites within S2. We demonstrate that S must be processed at the S1/S2 border in order to mediate cell–cell fusion and that mutations at potential cleavage sites within the S2 subunit alter S processing at the S1/S2 border, thus preventing cell–cell fusion. We also identify residues within the internal fusion peptide and the cytoplasmic tail that modulate S-mediated cell–cell fusion. In addition, we examined S stability and protein cleavage kinetics in a variety of mammalian cell lines, including a bat cell line related to the likely reservoir species for SARS-CoV-2, and provide evidence that proteolytic processing alters the stability of the S trimer. This work therefore offers insight into S stability, proteolytic processing, and factors that mediate S cell–cell fusion, all of which help give a more comprehensive understanding of this high-profile therapeutic target.  相似文献   

10.
11.
We previously described a novel mode of downregulation of human immunodeficiency virus type 1 (HIV-1) Gag expression by a cytoplasmic domain fusion protein of the envelope (Env) transmembrane protein, β-galactosidase (β-gal)/706–856, which contains the cytoplasmic tail of gp41 fused at the C terminus of Escherichia coli β-gal. In the present study, we showed that this mediator conferred a dose-dependent dominant interference with virus infectivity. In the context of an HIV-1 provirus, this inhibitor downregulated steady-state Env expression. Paradoxically, Env overexpression suppressed β-gal/706–856-mediatd Gag downregulation. Sucrose gradient ultracentrifugation and confocal microscopy revealed that Gag, Env, and β-gal/706–856 had stable interactions and formed aggregated complexes in perinuclear regions. Moreover, Env overexpression hindered colocalization of Gag with β-gal/706–856 in the perinuclear region. Further cytoplasmic domain mapping analyses showed a correlation between the ability of cytoplasmic subdomains to downregulate Gag expression and the ability of these subdomains to stably interact with Gag. These studies show that redirection of Gag from its cytoplasmic synthesis site to a perinuclear compartment is a prerequisite for β-gal/706–856-mediated Gag downregulation. The results also illustrate that the dynamic interplay among Gag, Env, and β-gal/706–856 can modulate Gag and Env expression, thus controlling HIV-1 infection.  相似文献   

12.
In addition to the env gene, a 0.3‐kb fragment containing the R‐U5‐5′ leader sequence is essential for the induction of spongiform neurodegeneration by Friend murine leukemia virus (Fr‐MLV) clone A8 and it also influences expression of the Env protein. Kinetic studies were carried out using two recombinant viruses, R7f, carrying the A8 0.3‐kb fragment, and Rec5, carrying the 0.3‐kb fragment of the non‐neuropathogenic Fr‐MLV clone 57. These analyses suggested that the 0.3‐kb fragment influenced the expression level of the Env protein by regulating the amount of spliced env‐mRNA rather than the amount of total viral mRNA or viral production.  相似文献   

13.
Anoplin is a recently discovered antimicrobial peptide (AMP) isolated from the venom sac of the spider wasp Anoplius samariensis, and it is one of the shortest α‐helical AMP found naturally to date consisting of only ten amino acids. Previous results showed that anoplin exhibits potent antimicrobial activity but little hemolytic activity. In this study, we synthesized anoplin, studied its cytotoxicity in Friend virus‐induced leukemia cells [murine erythroleukemia (MEL) cells], and proposed its possible mechanism. Our results showed that anoplin could inhibit the proliferation of MEL cells in a dose‐dependent and time‐dependent manner via disrupting the integrity of cell membrane, which indicated that anoplin exerts its cytotoxicity efficacy. In addition, the cell cycle distribution of MEL cells was arrested in the G0/G1 phase significantly. However, anoplin could not induce obvious apoptosis in MEL cells, as well as anoplin could not induce visible changes on morphology and quantity in the bone marrow cells isolated from normal mice. All of these results indicate that anoplin, as generally believed, is a selective AMP, a value characteristic in the design of safe therapeutic agents. The cytotoxicity of anoplin on MEL cells was mainly attributable to the plasma membrane perturbation and also to the intracellular events such as the arrest of cell cycle. Although this is an initial study that explored the activity of anoplin in vitro rather than in vivo, with the increasing resistance of conventional chemotherapy, there is no doubt that anoplin has desirable feature to be developed as a novel and selective anticancer agent. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

14.
We have previously shown that SNU-1103, which is a latency type III Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line (LCL) that was developed from a Korean cancer patient, resists serum starvation-induced G(1) arrest. In this study, we examined the role of latent membrane protein-1 (LMP-1) in serum starvation resistance, since LMP-1 is known to be essential for EBV-mediated immortalization of human B lymphocytes. The LMP-1 gene from SNU-1103 was introduced into the EBV-negative BJAB cell line, and shown to be associated with resistance to G(1) arrest during serum starvation. Western blot analyses of the LMP-1-transfected cells revealed several protein alterations as compared to vector-transfected control cells. The expression of key cell-cycle regulatory proteins was affected in the G(1) phase: the expression of cyclin D3, CDK2, p27, and E2F-4 was up-regulated, and the expression of cyclin D2, CDK6, p21, and p103 was down-regulated during serum starvation. These results imply that of the several EBV viral genes expressed in EBV-negative B lymphoma cells, LMP-1 mediates resistance to serum starvation-induced G(1) arrest. However, we cannot rule out the possibility that other EBV genes are also involved in the cell-cycle progression of the EBV-transformed LCL during serum starvation, since the altered protein expression profile of the LMP-1 transfectants was distinct from that of the SNU-1103 cells that expressed all of the EBV viral proteins.  相似文献   

15.
The influenza A virus PB1-F2 protein predominantly localizes in the mitochondria of virus-infected cells. A series of cDNAs encoding N- and C-terminal deletion mutants and site-directed mutagenesis of the basic residues of PB1-F2 appended to 3xFLAG revealed the domain from residues 46 to 75 to be both necessary and sufficient for mitochondrial targeting. In addition, the subdomain residues 63-75 and both Lys73 and Arg75 are minimally required for mitochondrial localization. Transfection of untagged- and 3xFLAG tagged-PB1-F2 into Vero, HeLa and MDCK cells changed the mitochondrial morphology from a filamentous to a dotted structure and suppressed the inner-membrane potential.  相似文献   

16.
Uso1 is a yeast essential protein that functions to tether vesicles in the ER-to-Golgi transport. Its recruitment to the ER-derived vesicles has been demonstrated in in vitro membrane transport systems using semi-intact cells. Here we report that the binding of Uso1 to specific membranes can be detected through simple sucrose density block centrifugation. The purified Uso1 protein binds to slowly sedimenting membranes generated from rapidly sedimenting P10 membranes. These membranes were produced dependent on ATP hydrolysis, contained COPII vesicle components, but had neither of the coat subunits or ER proteins, which indicates that they were representative of the uncoated ER-derived COPII vesicles. The slowly sedimenting membranes of different origins were physically linked when they were mixed in the presence of Uso1. The C-terminal acidic region was not required in membrane binding. The presence of membranes to which Uso1 could bind in the yeast cell lysate was detected using the current method.  相似文献   

17.
Friend murine leukemia virus clone A8 causes spongiform neurodegeneration in the rat brain. A 0.3-kb fragment containing the R-U5-5' leader sequence of A8 is required in addition to the A8-env gene to induce spongiosis. The A8-env gene is a primary determinant of neuropathogenicity. Comparative studies of the neuropathogenic virus R7f, which carries the 0.3-kb fragment of A8 and A8-env on the background of the non-neuropathogenic clone 57, and the non-neuropathogenic virus Rec5, which carries A8-env on the background of 57, showed that the 0.3-kb fragment of A8 was responsible for increasing the ratio of Env/Gag expression in the brain, but not in the spleen.  相似文献   

18.
We studied physiological mechanisms of photoavoidance and photoprotection of a dwarf rice mutant with erect leaves, d1, in which the RGA1 gene, which encodes the Gα subunit of the heterotrimeric G protein, is non‐functional. Leaves of d1 exhibit lower leaf temperature and higher photochemical reflectance index relative to wild type (WT), indicative of increased photoavoidance and more efficient light harvesting. RNA sequencing analysis of flag leaves revealed that messenger RNA levels of genes encoding heat shock proteins, enzymes associated with chlorophyll breakdown, and ROS scavengers were down‐regulated in d1. By contrast, genes encoding proteins associated with light harvesting, Photosystem II, cyclic electron transport, Photosystem I, and chlorophyll biosynthesis were up‐regulated in d1. Consistent with these observations, when WT and d1 plants were experimentally subjected to the same light intensity, d1 plants exhibited a greater capacity to dissipate excess irradiance (increased nonphotochemical quenching) relative to WT. The increased capacity in d1 for both photoavoidance and photoprotection reduced sustained photoinhibitory damage, as revealed by a higher Fv/Fm. We therefore propose RGA1 as a regulator of photoavoidance and photoprotection mechanisms in rice and highlight the prospect of exploiting modulation of heterotrimeric G protein signalling to increase these characteristics and improve the yield of cereals in the event of abiotic stress.  相似文献   

19.
20.
Culex quinquefasciatus Say (Diptera: Culicidae), an important vector of West Nile virus (WNV) in the U.S.A., was first detected on the Galápagos Islands (Ecuador) in the 1980s. However, little is known of its ecology, distribution or capacity for arbovirus transmission in the Galápagos. We characterize details of lifecycle (including gonotrophic period), temporal abundance, spatial distribution, vector competence and host‐feeding behaviour. Culex quinquefasciatus was detected on five islands of the Galápagos during 2006–2011. A period of 7–14 days was required for egg–adult emergence; water salinity above 5 ppt was demonstrated to hinder larval development. Blood‐meal analysis indicated feeding on reptiles, birds and mammals. Assessment of WNV vector competency of Galápagos C. quinquefasciatus showed a median infectious dose of 7.41 log10 plaque‐forming units per millilitre and evidence of vertical transmission (minimal filial infection rate of 3.7 per 1000 progeny). The distribution of C. quinquefasciatus across the archipelago could be limited by salt intolerance, and its abundance constrained by high temperatures. Feeding behaviour indicates potential to act as a bridge vector for transmission of pathogens across multiple taxa. Vertical transmission is a potential persistence mechanism for WNV on Galápagos. Together, our results can be used for epidemiological assessments of WNV and target vector control, should this pathogen reach the Galápagos Islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号