首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Hydroxy acid-based matrix metalloproteinase (MMP) inhibitors have been shown to inhibit tumor infiltration and growth, endotoxin shock, and acute graft-versus-host disease. Blockade of the release of soluble tumor necrosis factor-alpha (TNF-alpha) and CD95 ligand (CD95L; FasL) from cell-associated forms is reportedly involved in the mechanism of the drug effect. We investigated the effect of a MMP inhibitor, KB-R7785, on host resistance against Listeria monocytogenes infection, in which TNF-alpha is essentially required for the defense, in mice. The administration of KB-R7785 exacerbated listeriosis, while the drug prevented lethal shock induced by lipopolysaccharide and D-galactosamine. KB-R7785 inhibited soluble TNF-alpha production in spleen cell cultures stimulated by heat-killed L. monocytogenes and the drug treatment reduced serum TNF-alpha levels in infected mice, whereas the compound was ineffective on the modulation of interferon-gamma and interleukin-10 production. The effect of KB-R7785 was considered to be dependent on TNF-alpha because the drug failed to affect L. monocytogenes infection in anti-TNF-alpha monoclonal antibody-treated mice and TNF-alpha knockout mice. Anti-CD95L monoclonal antibody was also ineffective on the infection. These results suggest that induction of infectious diseases, to which TNF-alpha is critical in host resistance, should be considered in MMP inhibitor-treated hosts.  相似文献   

2.
Multiple studies have shown that infection with the endosymbiotic bacterium Wolbachia pipientis confers Drosophila melanogaster and other insects with resistance to infection by RNA viruses. Studies investigating whether Wolbachia infection induces the immune system or confers protection against secondary bacterial infection have not shown any effect. These studies, however, have emphasized resistance against extracellular pathogens. Since Wolbachia lives inside the host cell, we hypothesized that Wolbachia might confer resistance to pathogens that establish infection by invading host cells. We therefore tested whether Wolbachia-infected D. melanogaster are protected against infection by the intracellular pathogenic bacteria Listeria monocytogenes and Salmonella typhimurium, as well as the extracellular pathogenic bacterium Providencia rettgeri. We evaluated the ability of flies infected with Wolbachia to suppress secondary infection by pathogenic bacteria relative to genetically matched controls that had been cured of Wolbachia by treatment with tetracycline. We found no evidence that Wolbachia alters host ability to suppress proliferation of any of the three pathogenic bacteria. Our results indicate that Wolbachia-induced antiviral protection does not result from a generalized response to intracellular pathogens.  相似文献   

3.
Epidemiological, clinical, and experimental approaches have convincingly demonstrated that host resistance to infection with intracellular pathogens is significantly influenced by genetic polymorphisms. Using a mouse model of infection with virulent Mycobacterium tuberculosis (MTB), we have previously identified the sst1 locus as a genetic determinant of host resistance to tuberculosis. In this study we demonstrate that susceptibility to another intracellular pathogen, Listeria monocytogenes, is also influenced by the sst1 locus. The contribution of sst1 to anti-listerial immunity is much greater in immunodeficient scid mice, indicating that this locus controls innate immunity and becomes particularly important when adaptive immunity is significantly depressed. Similar to our previous observations using infection with MTB, the resistant allele of sst1 prevents formation of necrotic infectious lesions in vivo. We have shown that macrophages obtained from sst1-resistant congenic mice possess superior ability to kill L. monocytogenes in vitro. The bactericidal effect of sst1 is dependent on IFN-gamma activation and reactive oxygen radical production by activated macrophages after infection, but is independent of NO production. It is possible that there is a single gene that controls common IFN-dependent macrophage function, which is important in the pathogenesis of infections caused by both MTB and L. monocytogenes. However, host resistance to the two pathogens may be controlled by two different polymorphic genes encoded within the sst1 locus. The polymorphic gene(s) encoded within the sst1 locus that controls macrophage interactions with the two intracellular pathogens remains to be elucidated.  相似文献   

4.
Even though at least 400 Listeria phages have been isolated from various sources, limited information is available on phages from the food processing plant environment. Phages in the processing plant environment may play critical roles in determining the Listeria population that becomes established in the plant. In this study, we pursued the isolation of Listeria-specific phages from environmental samples from four turkey processing plants in the United States. These environmental samples were also utilized to isolate Listeria spp. Twelve phages were isolated and classified into three groups in terms of their host range. Of these, nine (group 1) showed a wide host range, including multiple serotypes of Listeria monocytogenes, as well as other Listeria spp. (L. innocua, L. welshimeri, L. seeligeri, and L. ivanovii). The remaining phages mostly infected L. monocytogenes serotype 4b as well as L. innocua, L. ivanovii, and/or L. welshimeri. All but one of the strains of the serotype 4b complex (4b, 4d, 4e) from the processing plant environment could be readily infected by the wide-host-range phages isolated from the environment of the processing plants. However, many strains of other serotypes (1/2a [or 3a] and 1/2b [or 3b]), which represented the majority of L. monocytogenes strains isolated from the environmental samples, were resistant to infection by these phages. Experiments with two phage-resistant strains showed reduced phage adsorption onto the host cells. These findings suggest that phage resistance may be an important component of the ecology of L. monocytogenes in the turkey processing plants.  相似文献   

5.
Parasite host range plays a pivotal role in the evolution and ecology of hosts and the emergence of infectious disease. Although the factors that promote host range and the epidemiological consequences of variation in host range are relatively well characterized, the effect of parasite host range on host resistance evolution is less well understood. In this study, we tested the impact of parasite host range on host resistance evolution. To do so, we used the host bacterium Pseudomonas fluorescens SBW25 and a diverse suite of coevolved viral parasites (lytic bacteriophage Φ2) with variable host ranges (defined here as the number of host genotypes that can be infected) as our experimental model organisms. Our results show that resistance evolution to coevolved phages occurred at a much lower rate than to ancestral phage (approximately 50% vs. 100%), but the host range of coevolved phages did not influence the likelihood of resistance evolution. We also show that the host range of both single parasites and populations of parasites does not affect the breadth of the resulting resistance range in a naïve host but that hosts that evolve resistance to single parasites are more likely to resist other (genetically) more closely related parasites as a correlated response. These findings have important implications for our understanding of resistance evolution in natural populations of bacteria and viruses and other host–parasite combinations with similar underlying infection genetics, as well as the development of phage therapy.  相似文献   

6.
Listeriolysin O (LLO) is a secreted pore-forming toxin of the facultative intracellular bacterium Listeria monocytogenes. We assessed the ability of a murine anti-LLO mAb to affect the course of infection in mice challenged with Listeria. This mAb was previously shown to be capable of neutralizing LLO-mediated pore formation in vitro, and here we show that the passive administration of this Ab to mice before infection provides increased resistance. Mice treated with the mAb were protected from a lethal challenge with virulent Listeria and showed a significant reduction in Listeria burden during the first hours to days postinfection. These effects of the Ab were independent of host B or T cells, since treatment with the mAb provided enhanced resistance to SCID mice. The titer of anti-LLO Abs during the regular infection of mice with Listeria was found to be low to negative.  相似文献   

7.
8.
Infection by Listeria monocytogenes causes serious morbidity and mortality during the neonatal period. Previous studies established that immunostimulatory CpG oligodeoxynucleotides (ODN) can increased the resistance of adult mice to many infectious pathogens, including Listeria. This work examines the capacity of CpG ODN to stimulate a protective immune response in newborns. Results indicate that dendritic cells, macrophages, and B cells from 3-day-old mice respond to CpG stimulation by secreting IFN-gamma, IL-12, and/or TNF-alpha. Spleen cells from CpG-treated neonates produce large amounts of cytokine and NO when exposed to bacteria in vitro. Newborns treated with CpG ODN are protected from lethal Listeria challenge and generate Ag-specific CD4 and CD8 T cells that afford long-term protection against subsequent infection. These results demonstrate that cellular elements of the neonatal immune system respond to stimulation by CpG ODN, thereby reducing host susceptibility to infectious pathogens.  相似文献   

9.
Listeria monocytogenes, a unique model in infection biology: an overview   总被引:2,自引:0,他引:2  
This review rather than covering the whole field intends to highlight recent findings on the Listeria monocytogenes infectious process or some Listeria specific traits, place them within the framework of well-established data, and demonstrate how this Gram-positive bacterium has, in two decades, emerged as a multifaceted paradigm. Indeed, the cell biology of the infectious process has been deciphered in great detail and provided insights in both the way bacterial pathogen manipulate the host and unsuspected functions of well-known cellular proteins. The intra- and intercellular motility has in particular been instrumental in understanding actin-based motility in general. The analysis of the two main Listeria invasion proteins and that of their host specificities have illustrated how in vitro studies can help generating or choosing relevant animal models for in vivo studies. Listeria post-genomics studies have highlighted the power of comparative genomics in virulence studies. Together, Listeria, after being recognized as a powerful tool in immunology, now appears as one of the most insightful models in infection biology.  相似文献   

10.
Mice were infected with either Listeria monocytogenes (LM) or Yersinia pestis EV 76 stain (YP), which are facultative intracellular and extracellular organisms, respectively. Bacterial growth in spleen was determined at various intervals following challenge, focusing particularly on the critical period prior to the emergence of specific immunity. Natural resistance to LM during the first 2 days was diminished by treatment of adult mice with 80Sr or silica particles, but not by treatment with lethal total-body irradiation, cortisol, or cyclophosphamide (CY). Early stages of resistance to YP were unaffected by 80Sr, but were reduced by lethal total-body irradiation, silica particles, cortisol, and (CY). Infant mice manifested no resistance comparable to that of adults against LM prior to 19 days of age, whereas resistance against YP was attained by 14 days of age. The data are consistent with the hypothesis that marrow-dependent (M) cells function in host defense against early stages of infection with LM but not with YP.  相似文献   

11.
Deactivation of macrophage functions plays an important role in human infectious and inflammatory diseases. In this study, differential-display RT-PCR was used to analyze the gene expression of human mononuclear phagocytes deactivated with interleukin (IL)-4, IL-10, and dexamethasone (DEX), in the absence and presence of infection with Listeria monocytogenes (Listeria). Two novel differentially expressed mRNA species were discovered: FIND (IL-Four INDuced) was upregulated with IL-4 but down-regulated with DEX, and is predicted to code for an M(r) 53,000 transmembrane protein. LIND (Listeria INDuced) was induced by Listeria infection, and is predicted to code for an M(r) 39,000 nuclear or cytoplasmic protein containing three coiled-coil domains. In addition, we report several novel effects of deactivators and infection on the expression of known genes: (1) IL-4 caused pronounced upregulation of ABCG2, coding for an ATP-binding cassette transporter highly expressed in the placenta, which mediates multidrug resistance of cancer cells, but is otherwise of unknown function; (2) both DEX and IL-4 downregulated osteopontin, an important factor of host resistance against intracellular infections; (3) inhibition of the CC-chemokine I-309 mRNA expression by all three deactivators in the presence of Listeria infection, and (4) upregulation by Listeria infection of the interferon-stimulated gene ISG20 of unknown function, whose product localizes with nuclear dots/PML bodies.  相似文献   

12.
A variety of experimental infections with pathogenic mycobacteria are associated with the development of persistent disease, in which little or no changes in the numbers of the infectious organism can be detected. This report describes a simple experimental model designed to test the hypothesis that this persistence may reflect in part the ability of these organisms to resist the enhanced bacteriostatic and bactericidal properties acquired by host macrophages as a result of these mycobacterial infections. To examine this possibility mice were inoculated with test organisms at a time when these animals were expressing very high levels of nonspecific resistance, and hence macrophage activation, as a result of a prior intravenous infection with Mycobacterium bovis bacillus Calmette-Guerin (BCG). The results show that the test organisms fall into three groups; (a) those, such as Mycobacterium tuberculosis, which were sensitive to the presence of activated macrophages, (b) those, such as Mycobacterium avium and Mycobacterium kansasii, which were insensitive, and (c) one organism, Mycobacterium intracellulare, in which progressive growth of the infection was significantly improved. These results are consistent with the hypothesis that some mycobacteria, particularly those associated with persistent disease, possess an intrinsic resistance to host bactericidal and bacteriostatic mechanisms in vivo.  相似文献   

13.
The potential action of certain fatty acids has been studied since the early 1970s. Numerous effects on immune system functions have been related to dietary lipid administration; therefore, several of them have been applied in the treatment of inflammatory disorders. Nevertheless, n-3 polyunsaturated fatty acids may affect host resistance to infectious diseases. In addition, several studies have demonstrated that certain fatty acids are involved in apoptosis induction. Here, we have examined the action of different dietary lipids on the promotion of apoptosis in thymocytes from mice fed with dietary lipids and infected with Listeria monocytogenes. Thus, L. monocytogenes promoted an important cytotoxic effect in all of the groups, but it did not increase the percentage of DNA fragmentation. Similarly, an important increase of caspase-3 activity was demonstrated in OO and FO groups, but infection with L. monocytogenes exerted an inhibitory effect. Finally, L. monocytogenes did not modify proteasome activity among groups fed with dietary lipids. On the basis of this preliminary study, we can state that the infection of thymocytes from mice fed with dietary lipids does not promote a synergistic effect in the induction of apoptosis. Hence, these results may partially serve to elucidate the immune mechanisms involved in cells from mice fed with dietary lipids in an infectious process.  相似文献   

14.
Resistance of mice to infection by Listeria monocytogenes involves a biphasic response. The first phase consists of the first 48 h after infection, during which there is multiplication of Listeria in the liver and spleen of infected mice. In these nonimmune mice, macrophages and polymorphonuclear leukocytes are the effector cells involved in controlling multiplication. In the second phase, cell-mediated immunity develops, beginning on day 2, during which multiplication of Listeria is prevented by macrophages possessing increased microbicidal activity that is mediated through the action of lymphokines released by immunologically committed T lymphocytes. The purpose of the present study was to define a role for natural killer (NK) cells in natural resistance to Listeria during the first 48 h after infection, prior to the development of specific immunity. Splenic NK cell activity was enhanced following a sublethal intravenous injection of viable Listeria as early as 24 h after injection and remained elevated throughout the nonimmune phase of infection. Interestingly, treatment of mice with anti-asialo-GM1 significantly enhanced the ability of mice to clear Listeria from the spleen relative to infected controls possessing intact NK cell populations. This was evidenced by 23-fold fewer bacteria obtained from the spleens of anti-asialo-GM1-treated mice. In addition, Percoll-enriched NK cell populations obtained from 48-hour Listeria-infected mice do not exhibit in vitro listericidal activity. These observations suggest a regulatory role of NK cells in resistance against Listeria and preclude a role for NK cells in direct cytolysis. Perhaps these cells modulate the immune response to Listeria by down-regulating the activity of the immune cells crucial to listerial resistance.  相似文献   

15.
We studied the effect of lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the susceptibility to Listeria infection of offspring in C57BL /6NCji mice. The offspring were nursed by TCDD-treated dams and exposed to TCDD from birth to weaning via milk. The exposure had little effect on the weights of immune organs and the spleen or the thymus cell population in the dams and offspring, but it enhanced the production of tumor necrosis factor alpha (TNF-alpha) and interferon gamma (IFN-gamma) in the serum after Listeria infection. The clearance of Listeria monocytogenes from the spleen was impaired in the off-spring. These results suggest that the exposure to TCDD of the offspring via milk disrupted the host resistance of the offspring, even though the main immune parameters were unchanged.  相似文献   

16.
Infection with Listeria monocytogenes stimulates T cell proliferation and T cell-derived lymphokine production. The release of lymphokines, in turn, "activates" macrophages, enhancing their bactericidal capacity. Because prior studies suggest that I-A+ accessory cells play a critical role in this pathway, we assessed the effects of an anti-I-A antibody on the murine host resistance to listerial infection. To this end, we infused Listeria into control C57BL/6 mice (I-Ab haplotype) and mice of the same strain which had been pretreated 18 hr earlier with D3137 (a monoclonal IgG2a anti-I-Ab,d antibody). Preliminary studies demonstrated that this antibody can markedly inhibit antigen-induced proliferation of Listeria-dependent T cells in vitro and (at a dose of 1 mg/animal) can markedly reduce I-A expression on splenocytes in vivo. Even though D3137 pretreatment prevented the splenomegaly normally observed after Listeria infusion into mice, it protected animals infused with otherwise lethal concentrations of Listeria. Because antibody-treated animals had sevenfold fewer organisms in their spleens 18 hr after infection and 1000-fold fewer organisms than control animals 3 days after infection, improved survival resulted from an antibody-induced increase in the bactericidal capacity of the MPS. Protection was not noted when C1.18.4 (an IgG2a myeloma protein without known antibody activity) was infused into C57BL/6 mice or when D3137 was infused in B10.BR (I-Ak) mice. D3137 also protected (B10 X B10.BR)F1 mice (which are hybrids bearing I-Ab and I-Ak), suggesting that complete blockade of antigen presentation is not a prerequisite for its protective action. Further studies into the mechanism for these effects may provide new insights into the pathophysiology of MPS activation in response to immunologic challenge.  相似文献   

17.
Electron microscopy of Listeria monocytogenes-infected mouse spleen   总被引:10,自引:2,他引:8  
Armstrong, B. A. (The University of Kansas, Lawrence), and C. P. Sword. Electron microscopy of Listeria monocytogenes-infected mouse spleen. J. Bacteriol. 91:1346-1355. 1966.-Mouse spleen infected with Listeria monocytogenes was observed during the acute phase of infection; 72 hr after infection, organisms were usually found within phagocytic vacuoles in the cytoplasm of macrophages. These vacuoles, which resembled phagosomes, often contained several organisms as well as varying amounts of amorphous electron-dense material, ferritin-like particles, membrane fragments, and vesicles of varying density. Breakdown of vacuolar membranes appeared to be accompanied by damage to the host cell cytoplasm. Nuclear membrane damage was occasionally observed when phagocytic vacuoles were close to the nucleus.  相似文献   

18.
Sword, C. P. (The University of Kansas, Lawrence). Mechanisms of pathogenesis in Listeria monocytogenes infection. I. Influence of iron. J. Bacteriol. 92: 536-542. 1966.-The effects of ferric and ferrous iron as well as other cations on Listeria infection in mice were studied. Iron compounds caused a reduction in the ld(50) dose of Listeria, and, when added to a synthetic medium, proved stimulatory for in vitro growth of the organism. Bacterial counts on spleen and liver tissue from iron-treated mice showed that iron injections caused more rapid growth of bacteria and resulted in higher numbers of organisms in the tissue. The reticuloendothelial system did not appear to be impaired by this treatment. Immunized animals were not affected by iron treatment during challenge. Mice with experimentally induced hemolytic anemia showed increased susceptibility to listeriosis, whereas those treated with Desferal, a specific iron-chelating agent, appeared more resistant. Iron proved stimulatory for the avirulent strain, 9037-7, and resulted in an ld(50) of 1.3 x 10(4) organisms in iron-treated animals. Growth of L. monocytogenes and mortality from experimental infection appeared to be correlated with availability of iron to the bacteria. The results suggest that host iron metabolism may play a part in the onset and progress of Listeria infections.  相似文献   

19.
The aim of this study was to examine the contribution of IL-18 in host defense against infection caused by Cryptococcus neoformans in mice with defective IL-12 production. Experiments were conducted in mice with a targeted disruption of the gene for IL-12p40 subunit (IL-12p40-/- mice). In these mice, host resistance was impaired, as shown by increased number of organisms in both lungs and brains, compared with control mice. Serum IFN-gamma was still detected in these mice at a considerable level (20-30% of that in control mice). The host resistance was moderately impaired in IL-12p40-/- mice compared with IFN-gamma-/- mice. Neutralizing anti-IFN-gamma mAb further increased the lung burdens of organisms. In addition, treatment with neutralizing anti-IL-18 Ab almost completely abrogated the production of IFN-gamma and also impaired the host resistance. Host resistance in IL-12p40-/- IL-18-/- mice was more profoundly impaired than in IL-12p40-/- mice. Administration of IL-12 as well as IL-18 increased the serum levels of IFN-gamma and significantly restored the reduced host resistance. Spleen cells obtained from infected IL-12p40-/- mice did not produce any IFN-gamma upon restimulation with the same organisms, while those from infected and IL-12-treated mice produced IFN-gamma. In contrast, IL-18 did not show such effect. Finally, depletion of NK cells by anti-asialo GM1 Ab mostly abrogated the residual production of IFN-gamma in IL-12p40-/- mice. Our results indicate that IL-18 contributes to host resistance to cryptococcal infection through the induction of IFN-gamma production by NK cells, but not through the development of Th1 cells, under the condition in which IL-12 synthesis is deficient.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号