首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tartrate resistant acid phosphatase (TRAP) has been accepted as a marker for identification of osteoclasts. A method is reported here for quantitating TRAP using an image analysis system. The amount of the enzyme specific to osteoclasts can be used to differentiate osteoclasts from other cells capable of TRAP expression. TRAP expression characteristic of the osteoclast was compared with that of multinucleated giant cells (MNGC)s recruited to the site of subcutaneously implanted mineralized bone matrix. Two weeks post-implantation, the pellets were removed and processed for the demonstration of TRAP along with rat proximal tibiae. A large amount of TRAP was consistently expressed by the in situ osteoclasts. The MNGCs associated with the mineralized bone implants expressed little if any TRAP reaction product. Using this system, the amount of TRAP reaction product or any other enzyme reaction product expressed can be objectively and reproducibly quantitated.  相似文献   

2.
Pellets of mineralized and demineralized bone and a composite mixture of mineralized and demineralized, devitalized bone particles were implanted subcutaneously on the dorsal body wall of young adult rats. Two weeks post-implantation, the pellets were removed and processed for histochemical and morphological analyses. Rat proximal tibia was also processed for evaluation. The levels of tartrate-resistant acid phosphatase (TRAP) activity in the multinucleated giant cells (MNGCs) from each of the three implants and from osteoclasts were assessed using an image analyzer. The osteoclasts from the proximal tibia and the majority of MNGCs from the demineralized implants demonstrated high levels of TRAP activity. MNGCs from the mineralized implants showed either a low level or absence of TRAP activity. Most MNGCs from the composite implants exhibited a low level of TRAP activity; however, there was a population of cells that demonstrated a high level of reaction product, similar to that seen in the tibia and demineralized implant. Morphologically, osteoclasts from the proximal tibia and from the osteogenic demineralized implant exhibited ruffled borders. A small population of MNGCs from the composite implant also revealed osteoclastic features. In summary, MNGCs from the mineralized implant did not exhibit a level of TRAP reaction product or morphology similar to osteoclasts, while the majority of cells from the demineralized implant and a subpopulation of the MNGCs elicited by the composite implant did demonstrate TRAP expression and morphology similar to osteoclasts. The expression of osteoclastic characteristics in cells at an ectopic site may be dependent on accessory signals from the skeletal microenvironment; such signals appear to be absent from or incomplete in the mineralized implants but appear to be present when demineralized bone particles are implanted.  相似文献   

3.
4.
Tartrate-resistant acid phosphatase (TRAP) is expressed by osteoclasts, macrophages and dendritic cells. TRAP has been identified in a wide variety of tissues, however, its biological function is not fully understood. Serum TRAP is a marker of diseases involving excessive bone resorption including metastatic bone disease in breast cancer patients and can be used to monitor responses to treatment. Our aim in this study was to determine whether TRAP is expressed by human breast tumours. Four breast cancer cell lines were assayed for TRAP activity. MDA-MB-435, the most tumourigenic line, had an activity twofold higher than the other cell lines. Immunohistochemistry using a TRAP specific antibody confirmed that both cell lines and human breast tumours express TRAP. Expression was absent in benign tissues and abundant in more aggressive tumours. This work suggests that tumour derived TRAP contributes to the raised enzyme activity found in the serum of breast cancer patients.  相似文献   

5.
Enzymatic activity of type 5 tartrate-resistant acid phosphatase (TRAP) has been regarded as one of the reliable markers for osteoclasts and their precursors. The presence of TRAP activity in osteocytes near the bone resorbing surface has also been pointed out in some reports. However, the significance of TRAP reactions in osteocytes remains controversial and, in fact, there is no agreement as to whether the histochemical enzyme reactions in osteocytes represent the TRAP enzyme generated by the respective osteocytes or is a mere diffusion artifact of the reaction products derived from the nearby osteoclasts. Current histochemical, immunohistochemical, and in situ hybridization studies of rat and canine bones confirmed TRAP enzyme activity, TRAP immunoreactivity, and the expression of Trap mRNA signals in osteocytes located close to the bone-resorbing surface. TRAP/Trap- positive osteocytes thus identified were confined to the areas no further than 200 microm from the bone-resorbing surface and showed apparent upregulation of TRAP/Trap expression toward the active osteoclasts. Spatial and temporal patterns of TRAP/Trap expression in the osteocytes should serve as a valuable parameter for further analyses of biological interactions between the osteocytes and the osteoclasts associated with bone remodeling.  相似文献   

6.
Osteoclasts are multinucleated cells specialized in degrading bone and characterized by high expression of the enzymes tartrate-resistant acid phosphatase (TRAP) and cathepsin K (CtsK). Recent studies show that osteoclasts exhibit phenotypic differences depending on their anatomical site of action.Using immunohistochemistry, RT-qPCR, FPLC chromatography and immunoblotting, we compared TRAP expression in calvaria and long bone. TRAP protein and enzyme activity levels were higher in long bones compared to calvaria. In addition, proteolytic processing of TRAP was more extensive in long bones than calvaria which correlated with higher cysteine proteinase activity and protein expression of CtsK. These two types of bones also exhibited a differential expression of monomeric TRAP and CtsK isoforms. Analysis of CtsK−/− mice revealed that CtsK is involved in proteolytic processing of TRAP in calvaria. Moreover, long bone osteoclasts exhibited higher expression of not only TRAP and CtsK but also of the membrane markers CD68 and CD163.The results suggest that long bone osteoclasts display an augmented osteoclastic phenotype with stronger expression of both membranous and secreted osteoclast proteins.  相似文献   

7.
Histochemical demonstration of tartrate-resistant acid phosphatase (TRAP) is used for the specific identification of osteoclasts. The enzyme, which we have shown to be critical for normal bone development in mice, is also characteristic of monohistiocytes, including alveolar macrophages, and is associated with diverse pathological conditions such as Gaucher's disease and hairy cell leukemia. TRAP activity is enhanced in serum when bone resorption is increased, and the activity is used routinely to monitor treatment responses in Gaucher's disease. We have lately shown widespread expression of the enzyme in murine tissues with particular reference to the skin, thymus, gut epithelia, and isolated dendritic cells, suggesting a possible role in immunity. To further clarify the significance of TRAP in human physiology, we have examined its distribution in non-skeletal human tissues and in CD34+ -derived human dendritic cells. TRAP mRNA determined by Northern blotting analysis was expressed abundantly in spleen, liver, colon, lung, small intestine, kidney, stomach, testis, placenta, lymph node, thymus, peripheral blood leukocyte, bone marrow, and fetal liver. Expression of TRAP protein was investigated by immunohistochemistry, with which the enzyme was identified in multiple tissues. Histochemical staining detected enzymatically active protein in spleen, lung, skin, colon, stomach, and ileum. Active TRAP was identified in CD34+ -derived immature dendritic cells and co-localized to intracellular CD63 positive organelles. When these cells were matured by induction with LPS, the TRAP activity increased fivefold and remained within the cell during the phase associated with CD63 surface expression. Our findings demonstrate widespread expression of TRAP in human tissues. Its abundant expression in epithelia and dendritic cells suggests a potential role in antigen processing and in immune responses.  相似文献   

8.
Although much has been learned recently of the mechanisms by which the differentiation of osteoclasts is induced, less is known of the factors that regulate their migration and localization, and their interactions with other bone cells. In related cell types, chemokines play a major role in these processes. We therefore systematically tested the expression of RNA for chemokines and their receptors by osteoclasts. Because bone is the natural substrate for osteoclasts and may influence osteoclast behavior, we also tested expression on bone slices. Quantitative RT-PCR using real-time analysis with SYBR Green was therefore performed on RNA isolated from bone marrow cells after incubation with macrophage-colony stimulating factor (M-CSF) with/without receptor-activator of NFkappaB ligand (RANKL), on plastic or bone. We found that RANKL induced expression of CCL9/MIP-1gamma to levels comparable to that of tartrate-resistant acid phosphatase (TRAP), a major specialized product of osteoclasts. CCL22/MDC, CXCL13/BLC/BCA-1, and CCL25/TECK were also induced. The dominant chemokine receptor expressed by osteoclasts was CCR1, followed by CCR3 and CX3CR1. Several receptors expressed on macrophages and associated with inflammatory responses, including CCR2 and CCR5, were down-regulated by RANKL. CCL9, which acts through CCR1, stimulated cytoplasmic motility and polarization in osteoclasts, identical to that previously observed in response to CCL3/MIP-1alpha, which also acts through CCR1 and is chemotactic for osteoclasts. These results identify CCL9 and its receptor CCR1 as the major chemokine and receptor species expressed by osteoclasts, and suggest a crucial role for CCL9 in the regulation of bone resorption.  相似文献   

9.
Tartrate-resistant acid phosphatase (TRAP) is a histochemical marker of the osteoclast. It is also characteristic of monohistiocytes, particularly alveolar macrophages, and is associated with diverse pathological conditions, including hairy cell leukemia and AIDS encephalopathy. To study the biology of this enzyme, we investigated its expression and activity in mouse tissues. Confocal fluorescence studies showed that TRAP is localized to the lysosomal compartment of macrophages. In adult mice, high activities of the enzyme were demonstrated in bone, spleen, liver, thymus, and colon, with lower amounts in lung, stomach, skin, brain, and kidney. Trace amounts were detected in testis, muscle, and heart. Expression of TRAP mRNA was investigated in tissue sections by in situ hybridization and protein expression was monitored by histochemical staining or immunohistochemically. TRAP is widely expressed in many tissues, where it is associated with cells principally originating from the bone marrow, including those of osteoclast/macrophage lineage. The cellular distribution of TRAP mRNA and enzyme antigen in the tissues corresponds closely to that of cells staining with an antibody directed to the CD80 (B7) antigen. Therefore, to confirm its putative localization in dendritic cells, isolated bone marrow dendritic cells were matured in culture. These co-stained strongly for TRAP protein and the CD80 antigen. These studies demonstrate that TRAP is a lysosomal enzyme that is found in diverse murine tissues, where it is expressed in dendritic cells as well as osteoclasts and macrophages, as previously shown. (J Histochem Cytochem 48:219-227, 2000)  相似文献   

10.
MCP-1 (monocyte chemotactic protein-1) is a CC chemokine that is induced by receptor activator of NFkappaB ligand (RANKL) in human osteoclasts. In the absence of RANKL, treatment of human peripheral blood mononuclear cells with macrophage colony-stimulating factor and MCP-1 resulted in tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells that are positive for calcitonin receptor (CTR) and a number of other osteoclast markers, including nuclear factor of activated t cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). Although NFATc1 was strongly induced by MCP-1 and was observed in the nucleus, MCP-1 did not permit the formation of bone-resorbing osteoclasts, although these cells had the typical TRAP(+)/CTR(+) multinuclear phenotype of osteoclasts. Despite a similar appearance to osteoclasts, RANKL treatment was required in order for TRAP(+)/CTR(+) multinuclear cells to develop bone resorption activity. The lack of bone resorption was correlated with a deficiency in expression of certain genes related to bone resorption, such as cathepsin K and MMP9. Furthermore, calcitonin blocked the MCP-1-induced formation of TRAP(+)/CTR(+) multinuclear cells as well as blocking osteoclast bone resorption activity, indicating that calcitonin acts at two stages of osteoclast differentiation. Ablation of NFATc1 in mature osteoclasts did not prevent bone resorption activity, suggesting NFATc1 is involved in cell fusion events and not bone resorption. We propose that the MCP-1-induced TRAP(+)/CTR(+) multinuclear cells represent an arrested stage in osteoclast differentiation, after NFATc1 induction and cellular fusion but prior to the development of bone resorption activity.  相似文献   

11.
Tartrate-resistant acid phosphatase (TRAP) is a well-known marker of osteoclasts and bone resorption. Here we have investigated whether osteoblast-like cells (hFOB 1.19) present TRAP activity and how would be its pattern of expression during osteoblastic differentiation. We also observed how the osteoblastic differentiation affected the reduced glutathione levels. TRAP activity was measured using the p-nitrophenylphosphate substrate. The osteogenic potential of hFOB 1.19 cells was studied by measuring alkaline phosphatase activity and mineralized nodule formation. Oxidative stress was determined by HPLC and DNTB assays. TRAP activity and the reduced glutathione-dependent microenvironment were modulated during osteoblastic differentiation. During this phase, TRAP activity, as well as alkaline phosphatase and glutathione increased progressively up to the 21st day, decreasing thereafter. We demonstrate that TRAP activity is modulated during osteoblastic differentiation, possibly in response to the redox state of the cell, since it seemed to depend on suitable levels of reduced glutathione.  相似文献   

12.
Tartrate-resistant acid phosphatase (TRAP) has been proposed as a cytochemical marker for osteoclasts. We have developed an improved technique for the localization of TRAP in rat and mouse bone and cartilage. This procedure employs JB-4 plastic as the embedding medium, permits decalcification, and results in improved morphology compared with frozen sections. Peritoneal lavage cells were used to determine the appropriate isomer and concentration of tartrate necessary for inhibition of tartrate-sensitive acid phosphatase. After incubation in medium containing 50 mM L(+)-tartaric acid, osteoclasts and chondroclasts were heavily stained with reaction product. On the basis of their relative sensitivity to tartrate inhibition, three populations of mononuclear cells could also be distinguished. These three populations may represent: heavily stained osteoclast/chondroclast precursors; sparsely stained osteoblast-like cells lining the bone surface; and unstained cells of monocyte-macrophage lineage. Our results are consistent with the use of TRAP as a histochemical marker for study of the osteoclast.  相似文献   

13.
Osteoclasts are large, multinucleated cells responsible for the resorption of mineralized bone matrix. These cells are critical players in the bone turnover involved in bone homeostasis. Osteoclast activity is connected to the establishment and expansion of skeletal metastases from a number of primary neoplasms. Thus, the formation and activation of osteoclasts is an area of research with many potential avenues for clinical translation. Past studies of osteoclast biology have utilized primary murine cells cultured in vitro. Recently, techniques have been described that involve the generation of osteoclasts from human precursor cells. However, these protocols are often time-consuming and insufficient for generating large numbers of osteoclasts. We therefore developed a simplified protocol by which human osteoclasts may be easily and reliably generated in large numbers in vitro. In this study, osteoclasts were differentiated from bone marrow cells that had been aliquotted and frozen. Cells were generated by culture with recombinant macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). Both human and murine RANKL were shown to efficiently generate osteoclasts, although higher concentrations of murine RANKL were required. Formation of osteoclasts was demonstrated qualitatively by tartrate-resistant acid phosphatase (TRAP) staining. These cells were fully functional, as confirmed by their ability to form resorption pits on cortical bone slices. Functional human osteoclasts can be difficult to generate in vitro by current protocols. We have demonstrated a simplified system for the generation of human osteoclasts in vitro that allows for large numbers of osteoclasts to be obtained from a single donor.  相似文献   

14.
Tartrate-resistant purple acid phosphatase (TRAP) of osteoclasts and certain cells of the monocyte-macrophage lineage belongs to the family of purple acid phosphatases (PAPs). We provide here evidence for TRAP/PAP expression in the central and peripheral nervous systems in the rat. TRAP/PAP protein was partially purified and characterized from the trigeminal ganglion, brain, and spinal cord. The TRAP activity (U/mg tissue) in these tissues was about 10-20 times lower than in bone. Reducing agents, e.g. ascorbate and ferric iron, increased the TRAP activity from the neural tissues (nTRAP) and addition of oxidizing agents completely inactivated both bone and nTRAP. The IC(50) for three known oxyanion inhibitors of TRAP/PAP was similar for bone and nTRAP with the same rank order of potency (molybdate > tungstate > phosphate). This indicates that the redox-sensitive binuclear iron center characteristic of mammalian PAPs is present also in nTRAP. Western blots of partially purified nTRAP revealed a band with the expected size of 35 kD. The expression of TRAP in the trigeminal ganglion, brain, and spinal cord was confirmed at the mRNA level by RT-PCR. In situ hybridization histochemistry demonstrated TRAP mRNA expression in small ganglion cells of the trigeminal ganglion, in alpha-motor neurons of the ventral spinal cord, and in Purkinje cells of the cerebellum. TRAP-like immunoreactivity was encountered in the cytoplasm of neuronal cell bodies in specific areas of both the central and the peripheral nervous system. Together, the data demonstrate that active TRAP/PAP is expressed in certain parts of the rat nervous system.  相似文献   

15.
Licochalcone A on the formation and bone resorptive activity of osteoclasts up to 5muM significantly inhibited the receptor activator of nuclear factor kappaB (NF-kappaB) ligand (RANKL)-induced activity of tartrate-resistant acid phosphatase (TRAP) activity and formation of osteoclasts without any effect on cell viability. Interestingly, licochalcone A was shown to inhibit the RANKL-induced activation of extracellular signal-regulated kinase, translocation of NF-kappaB into nucleus and mRNA expression of Fra-2. Licochalcone A also inhibited the bone resorptive activity of mature osteoclasts and the expression of bone resorption-related genes. Inhibitory effects of licochalcone A on the formation and bone resorptive activity of mouse bone marrow macrophage-derived osteoclasts were also observed. In conclusion, licochalcone A has the potential to inhibit the formation of osteoclasts as well as the bone resorptive activity of mature osteoclasts.  相似文献   

16.
There have been dramatic advances recently in our understanding of the regulation of osteoclastic differentiation. However, much less is known of the mechanisms responsible for the induction and modulation of resorptive behavior. We have developed a strategy whereby osteoclasts can be generated in vitro and released into suspension in a fully-functional state. We now exploit this approach to show that tartrate-resistant acid phosphatase (TRAP) is released by osteoclasts during bone resorption. TRAP release was inhibited by the secretion-inhibitor Brefeldin A, and was not accompanied by LDH release. This suggests that TRAP release is due to secretion, rather than cell death. Consistent with this, TRAP secretion was stimulated by resorbogenic cytokines, was inhibited by the resorption-inhibitor calcitonin, and correlated with excavation of the bone surface. We found that, in contrast to incubation on bone, incubation on plastic, glass, or vitronectin-coated plastic substrates did not induce secretion of TRAP. This suggests that the induction of resorptive behavior in osteoclasts depends upon stimulation by bone matrix of a putative osteoclastic "mineral receptor." Release of TRAP by osteoclasts thus represents not only a productive approach to the analysis of the mechanisms that modulate the rate of resorptive activity, but also a system whereby the mechanism through which bone substrates induce resorptive behavior can be identified.  相似文献   

17.
Poly-and monoclonal antibodies, raised against mammalian membrane-bound proton pump (V-ATPase) were applied to the bone-resorbing cells of Oreochromis niloticus to clarify if osteoclasts of an advanced teleost species display V-ATPase, a key enzyme in the process of bone resorption. All antibodies labelled cells at known sites of bone resorption, the endosteal bone surfaces surrounding the tooth anlagen. The best results were achieved with a monoclonal antibody (E11). Although the majority of labelled cells were flat and mononucleated, the occurrence of V-ATPase in these cells indicates that they function as active bone-resorbing cells. The monoclonal antibody E11 was also applied successfully to monocytes, cells that are believed to be related most closely to osteoclasts. The assignment of V-ATPase to boneresorbing cells of O. niloticus was confirmed by application of the additional osteoclast markers, tartrate-resistant acid phosphatase (TRAP) and tartrate-resistant ATPase (TraATPase). Co-expression of V-ATPase, TRAP and TraATPase in fish osteoclasts is demonstrated for the first time.  相似文献   

18.
Tartrate-resistant acid phosphatase (TRAP) is a characteristic constituent of osteoclasts and some mononuclear preosteoclasts and, therefore, used as a histochemical and biochemical marker for osteoclasts and bone resorption. We now report the isolation of a 1397-base pair (bp) full-length TRAP/tartrate-resistant acid ATPase (TrATPase) cDNA clone from a neonatal rat calvaria lambda gt11 cDNA library. The cDNA clone consists of a 92-bp untranslated 5'-flank, an open reading frame of 981 bp and a 324-bp untranslated 3'-poly(A)-containing region. The deduced protein sequence of 327 amino acids contains a putative cleavable signal sequence of 21 amino acids. The mature polypeptide of 306 amino acids has a calculated Mr of 34,350 Da and a pI of 9.18, and it contains two potential N-glycosylation sites and the lysosomal targeting sequence DKRFQ. At the protein level, the sequence displays 89-94% homology to TRAP enzymes from human placenta, beef spleen, and uteroferrin and identity to the N terminus of purified rat bone TRAP/TrATPase. An N-terminal amino acid segment is strikingly homologous to the corresponding region in lysosomal and prostatic acid phosphatases. The cDNA recognized a 1.5-kilobase mRNA in long bones and calvaria, and in vitro translation using, as template, mRNA transcribed from the full-length insert yielded an immunoprecipitated product of 34 kDa. In neonatal rats, TRAP/TrATPase mRNA was highly expressed in skeletal tissues, with much lower (less than 10%) levels detected in spleen, thymus, liver, skin, brain, kidney, brain, lung, and heart. In situ hybridization demonstrated specific labeling of osteoclasts at endostal surfaces and bone trabeculae of long bones. Thus, despite the apparent similarity of this osteoclastic TRAP/TrATPase with type 5, tartrate-resistant and purple, acid phosphatases expressed in other mammalian tissues, this gene appears to be preferentially expressed at skeletal sites.  相似文献   

19.
Osteoclasts are unique cells that resorb bone, and are involved in not only bone remodeling but also pathological bone loss such as osteoporosis and rheumatoid arthritis. The regulation of osteoclasts is based on a number of molecules but full details of these molecules have not yet been understood. MicroRNAs are produced by Dicer cleavage an emerging regulatory system for cell and tissue function. Here, we examine the effects of Dicer deficiency in osteoclasts on osteoclastic activity and bone mass in vivo. We specifically knocked out Dicer in osteoclasts by crossing Dicer flox mice with cathepsin K‐Cre knock‐in mice. Dicer deficiency in osteoclasts decreased the number of osteoclasts (N.Oc/BS) and osteoclast surface (Oc.S/BS) in vivo. Intrinsically, Dicer deficiency in osteoclasts suppressed the levels of TRAP positive multinucleated cell development in culture and also reduced NFATc1 and TRAP gene expression. MicroRNA analysis indicated that expression of miR‐155 was suppressed by RANKL treatment in Dicer deficient cells. Dicer deficiency in osteoclasts suppressed osteoblastic activity in vivo including mineral apposition rate (MAR) and bone formation rate (BFR) and also suppressed expression of genes encoding type I collagen, osteocalcin, Runx2, and Efnb2 in vivo. Dicer deficiency in osteoclasts increased the levels of bone mass indicating that the Dicer deficiency‐induced osteoclastic suppression was dominant over Dicer deficiency‐induced osteoblastic suppression. On the other hand, conditional Dicer deletion in osteoblasts by using 2.3 kb type I collagen‐Cre did not affect bone mass. These results indicate that Dicer in osteoclasts controls activity of bone resorption in vivo. J. Cell. Biochem. 109: 866–875, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
This study sought to test whether targeted overexpression of osteoactivin (OA) in cells of osteoclastic lineage, using the tartrate-resistant acid phosphase (TRAP) exon 1B/C promoter to drive OA expression, would increase bone resorption and bone loss in vivo. OA transgenic osteoclasts showed ~2-fold increases in OA mRNA and proteins compared wild-type (WT) osteoclasts. However, the OA expression in transgenic osteoblasts was not different. At 4, 8, and 15.3 week-old, transgenic mice showed significant bone loss determined by pQCT and confirmed by μ-CT. In vitro, transgenic osteoclasts were twice as large, had twice as much TRAP activity, resorbed twice as much bone matrix, and expressed twice as much osteoclastic genes (MMP9, calciton receptor, and ADAM12), as WT osteoclasts. The siRNA-mediated suppression of OA expression in RAW264.7-derived osteoclasts reduced cell size and osteoclastic gene expression. Bone histomorphometry revealed that transgenic mice had more osteoclasts and osteoclast surface. Plasma c-telopeptide (a resorption biomarker) measurements confirmed an increase in bone resorption in transgenic mice in vivo. In contrast, histomorphometric bone formation parameters and plasma levels of bone formation biomarkers (osteocalcin and pro-collagen type I N-terminal peptide) were not different between transgenic mice and WT littermates, indicating the lack of bone formation effects. In conclusion, this study provides compelling in vivo evidence that osteoclast-derived OA is a novel stimulator of osteoclast activity and bone resorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号