首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) is essential for EBV-mediated transformation of primary B lymphocytes. LMP1 spontaneously aggregates in the plasma membrane and enables two transformation effector sites (TES1 and TES2) within the 200-amino-acid cytoplasmic carboxyl terminus to constitutively engage the tumor necrosis factor receptor (TNFR)-associated factors TRAF1, TRAF2, TRAF3, and TRAF5 and the TNFR-associated death domain proteins TRADD and RIP, thereby activating NF-kappaB and c-Jun N-terminal kinase (JNK). To investigate the importance of the 60% of the LMP1 carboxyl terminus that lies between the TES1-TRAF and TES2-TRADD and -RIP binding sites, an EBV recombinant was made that contains a specific deletion of LMP1 codons 232 to 351. Surprisingly, the deletion mutant was similar to wild-type (wt) LMP1 EBV recombinants in its efficiency in transforming primary B lymphocytes into lymphoblastoid cell lines (LCLs). Mutant and wt EBV-transformed LCLs were similarly efficient in long-term outgrowth and in regrowth after endpoint dilution. Mutant and wt LMP1 proteins were also similar in their constitutive association with TRAF1, TRAF2, TRAF3, TRADD, and RIP. Mutant and wt EBV-transformed LCLs were similar in steady-state levels of Bcl2, JNK, and activated JNK proteins. The wt phenotype of recombinants with LMP1 codons 232 to 351 deleted further demarcates TES1 and TES2, underscores their central importance in B-lymphocyte growth transformation, and provides a new perspective on LMP1 sequence variation between TES1 and TES2.  相似文献   

2.
The Epstein-Barr virus (EBV) transforming protein LMP1 appears to be a constitutively activated tumor necrosis factor receptor (TNFR) on the basis of an intrinsic ability to aggregate in the plasma membrane and an association of its cytoplasmic carboxyl terminus (CT) with TNFR-associated factors (TRAFs). We now show that in EBV-transformed B lymphocytes most of TRAF1 or TRAF3 and 5% of TRAF2 are associated with LMP1 and that most of LMP1 is associated with TRAF1 or TRAF3. TRAF1, TRAF2, and TRAF3 bind to a single site in the LMP1 CT corresponding to amino acids (aa) 199 to 214, within a domain which is important for B-lymphocyte growth transformation (aa 187 to 231). Further deletional and alanine mutagenesis analyses and comparison with TRAF binding sequences in CD40, in CD30, and in the LMP1 of other lymphycryptoviruses provide the first evidence that PXQXT/S is a core TRAF binding motif. The negative effects of point mutations in the LMP1(1-231) core TRAF binding motif on TRAF binding and NF-kappaB activation genetically link the TRAFs to LMP1(1-231)-mediated NF-kappaB activation. NF-kappaB activation by LMP1(1-231) is likely to be mediated by TRAF1/TRAF2 heteroaggregates since TRAF1 is unique among the TRAFs in coactivating NF-kappaB with LMP1(1-231), a TRAF2 dominant-negative mutant can block LMP1(1-231)-mediated NF-kappaB activation as well as TRAF1 coactivation, and 30% of TRAF2 is associated with TRAF1 in EBV-transformed B cells. TRAF3 is a negative modulator of LMP1(1-231)-mediated NF-kappaB activation. Surprisingly, TRAF1, -2, or -3 does not interact with the terminal LMP1 CT aa 333 to 386 which can independently mediate NF-kappaB activation. The constitutive association of TRAFs with LMP1 through the aa 187 to 231 domain which is important in NF-kappaB activation and primary B-lymphocyte growth transformation implicates TRAF aggregation in LMP1 signaling.  相似文献   

3.
Latent membrane protein 1 (LMP1), an oncogenic protein encoded by Epstein-Barr virus (EBV), has been verified to be phosphorylated in vitro by protein casein kinase 2 (CK2). In this study, we characterized the phosphorylation of the carboxyl terminus of LMP1 fused with glutathione-S-transferase (GST-LMP1c) and the FLAG-epitope-tagged LMP1 (F-LMP1) proteins expressed in HEK293T cells. Using a combination of chemical modification and tandem mass spectrometry, we detected the phosphorylation of a tryptic peptide, 191-223 amino acids, in both GST-LMP1c catalysed by CK2 and F-LMP1-expressing cell lines. Serine residues at positions 211 and 215 were determined to be the substrates of CK2 in vitro. Most importantly, the S215 phosphorylation was also detected in F-LMP1-expressing human cell lines. The phosphorylation of S215, which is located in the carboxyl-terminus activation region 1 of LMP1, provides a new insight for investigating the role and modulation of the phosphorylation of LMP1.  相似文献   

4.
EB病毒潜伏膜蛋白1诱导人鼻咽上皮细胞端粒酶的表达   总被引:7,自引:1,他引:6  
杨静  曹亚 《实验生物学报》2001,34(3):207-211
Telomerase activation has been linked to cell immortalization in vitro and tumorigenicity in vivo. In this study, for the first, we reported that Epstein-Barr virus activated the telomerase activity of human nasopharyngeal epithelial cells in the early stage of immortalization as tested by the PCR-ELISA. The telomerase activity in nasopharyngeal epithelial cells was only observed in presenescent cells. It was implicated that Epstein-Barr virus induced the escape of nasopharyngeal epithelial cells from senescence via the activation of telomerase. We further showed that telomerase activation in infected cells was dependent on the protein level of latent membrane protein 1 (LMP1) encoded by Epstein-Barr virus using a Tetracycline regulatory cell line expressing LMP1, pTet-on-LMP1-HNE2. The activity of telomerase in nasopharyngeal cells was decreased when the protein level of LMP1 was blocked by antisense LMP1 plasmid DNA. And the activity of telmerase was also related to the carboxyl terminus of LMP1. It was implicated that the ability of Epstein-Barr virus to suppress senescence is associated with telomerase activation by LMP1.  相似文献   

5.
上皮细胞逃避老化期是细胞永生化过程中一个重要分子事件,端粒酶活性表达是维持人染色体端粒长度、抑制细胞进入老化期的关键因素之一.我们利用最新的端粒酶PCR-ELISA半定量技术,检测永生化早期阶段人胚鼻咽上皮细胞中端粒酶表达的情况,探讨EB病毒在人胚鼻咽上皮细胞永生化过程中的分子机制.结果表明,EB病毒诱导老化前期人胚鼻咽上皮细胞端粒酶表达,从而促使人胚鼻咽上皮细胞逃避老化期、进入永生化早期阶段.此外,我们还首次发现,人胚鼻咽上皮细胞表达端粒酶活性依赖于EB病毒LMP1蛋白的表达水平和LMP1分子的完整性,LMP1可能通过诱导端粒酶活性表达促进人鼻咽上皮细胞永生化.我们的实验为进一步探讨EB病毒诱导人胚鼻咽上皮细胞永生化的作用机制提供了实验基础.  相似文献   

6.
The latency-regulated transmembrane protein LMP2A interferes with signaling from the B-cell antigen receptor by recruiting the tyrosine kinases Lyn and Syk and by targeting them for degradation by binding the cellular E3 ubiquitin ligase AIP4. It has been hypothesized that this constitutive activity of LMP2A requires clustering in the membrane, but molecular evidence for this has been lacking. In the present study we show that LMP2A coclusters with chimeric rat CD2 transmembrane molecules carrying the 27-amino-acid (aa) intracellular C terminus of LMP2A and that this C-terminal domain fused to the glutathione-S-transferase protein associates with LMP2A in cell lysates. This molecular association requires neither the cysteine-rich region between aa 471 and 480 nor the terminal three aa 495 to 497. We also show that the juxtamembrane cysteine repeats in the LMP2A C terminus are the major targets for palmitoylation but that this acylation is not required for targeting of LMP2A to detergent-insoluble glycolipid-enriched membrane microdomains.  相似文献   

7.
Glycogen synthase kinase-3β (GSK-3β) regulates the sequential activation of caspase-2 and caspase-8 before mitochondrial apoptosis. Here, we report the regulation of Mcl-1 destabilization and cathepsin D-regulated caspase-8 activation by GSK-3β and caspase-2. Treatment with either the ceramide analogue C2-ceramide or the topoisomerase II inhibitor etoposide sequentially induced lysosomal membrane permeabilization (LMP), the reduction of mitochondrial transmembrane potential, and apoptosis. Following LMP, cathepsin D translocated from lysosomes to the cytoplasm, whereas inhibiting cathepsin D blocked mitochondrial apoptosis. Furthermore, cathepsin D caused the activation of caspase-8 but not caspase-2. Inhibiting GSK-3β and caspase-2 blocked Mcl-1 destabilization, LMP, cathepsin D re-localization, caspase-8 activation, and mitochondrial apoptosis. Expression of Mcl-1 was localized to the lysosomes, and forced expression of Mcl-1 prevented apoptotic signaling via the lysosomal-mitochondrial pathway. These results demonstrate the importance of GSK-3β and caspase-2 in ceramide- and etoposide-induced apoptosis through mechanisms involving Mcl-1 destabilization and the lysosomal-mitochondrial axis.  相似文献   

8.
Caspase-12, mainly detected in endoplasmic reticulum (ER), has been suggested to play a role in ER-mediated apoptosis and inflammatory caspase activation pathway. Cleavage of the prodomain by caspase-3/-7 at the carboxyl terminus of Asp94 or m-calpain at the carboxyl terminus of Lys158 was reported to be a part of caspase-12-involved apoptosis. We biochemically characterized the prodomain-free forms of caspase-12 and the equivalent enzymes; Δpro1(G95-D419), rev-Δpro1[(T319-N419)-(G95-D318), a reverse form of Δpro1] and rev-Δpro2[(T319-N419)-(T159-D318)]. The three variants showed comparable activities which were dependent on salt concentration and pH. Auto-proteolytic cleavage was observed at two sites (carboxyl termini of Asp318 and Asp320) in Δpro1. Constitutively active forms of caspase-12 (rev-Δpro1 and rev-Δpro2) could induce cell death in cells transfected with the corresponding expression vectors, but no cleavage of caspase-3, DFF45 or Bid was observed, indicating caspase-12 may mediate a distinct apoptotic pathway rather than caspase-8 or -9-mediated cell death.  相似文献   

9.
D Wang  D Liebowitz    E Kieff 《Journal of virology》1988,62(7):2337-2346
The gene encoding the Epstein-Barr virus membrane protein LMP, expressed in latent infection, is known to induce morphologic changes and some loss of contact inhibition in NIH 3T3 cells as well as profound loss of contact inhibition and of anchorage dependence in Rat-1 cells. Another form of LMP (D1LMP), deleted for the amino terminus and first four putative transmembrane domains of LMP, was recently shown to be expressed late in Epstein-Barr virus replication. We now demonstrate that D1LMP has no transformation-associated phenotypic effect in Rat-1 cells and does not significantly affect LMP-induced Rat-1 cell transformation. LMP activity and D1LMP inactivity in inducing anchorage-independent growth are not restricted to Rat-1 cells, but are also evident in BALB/c 3T3 cells. In both cell types, loss of contact inhibition and anchorage independence are acutely evident after LMP expression. Although newly transfected polyclonal Rat-1 or BALB/c cells have a lower agar cloning efficiency than established LMP-expressing clones, this is attributable, at least in part, to their lower average LMP expression, since among clones of transfected cells, higher cloning efficiencies correlated with higher levels of LMP. LMP is bound to the vimentin cytoskeletal network in rodent fibroblasts as it is in transformed lymphocytes, whereas D1LMP showed no detectable cytoskeletal binding, suggesting that cytoskeletal association may be integral to LMP-mediated cell transformation. LMP association with the cytoskeleton in latently infected, growth-transformed lymphocytes and LMP-transformed rodent fibroblasts, correlated with the lack of both rodent cell-transforming activity and cytoskeletal association of D1LMP supports working hypothesis that cytoskeletal association is important in LMP transforming activity.  相似文献   

10.
We previously demonstrated that the Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) potently activates the cellular c-Jun N-terminal kinase (JNK) pathway by sequentially engaging an unknown adaptor, TRAF6, TAB1/TAK1, and JNKKs. We now show that BS69, a MYND domain-containing cellular protein, is the missing adaptor that bridges LMP1 and TRAF6, as the MYND domain and a separate region of BS69 bind to the carboxyl termini of LMP1 and TRAF6, respectively. While LMP1 promotes the interaction between BS69 and TRAF6, the complex formation between LMP1 and TRAF6 is BS69 dependent. A fraction of LMP1 and BS69 is constitutively colocalized in the membrane lipid rafts. Importantly, knockdown of BS69 by small interfering RNAs specifically inhibits JNK activation by LMP1 but not tumor necrosis factor alpha. Although overexpression of either BS69 or a mutant LMP1 without the cytoplasmic carboxyl tail is not sufficient to activate JNK, interestingly, when BS69 is covalently linked to the mutant LMP1, the chimeric protein restores the ability to activate JNK. This indicates that the recruitment and aggregation of BS69 is a prerequisite for JNK activation by LMP1.  相似文献   

11.
We investigated the membrane topology of Bves/Pop1A as a foundation to dissect the molecular basis and function of Bves/Pop1A trafficking during development. Bves contains two asparagine-linked glycosylation sites within the amino terminus and three putative membrane domains. Therefore, glycosylation assays were performed to determine if the amino terminus of Bves is delivered into the endoplasmic reticulum lumen and glycosylated. We establish that Bves from chick heart and transfected cells is glycosylated, implying that the amino terminus of cell surface molecules is extracellular. Three biochemically distinct approaches were utilized to determine the orientation of the carboxyl terminus of Bves. First, glycosylation of Bves at exogenous sites within the carboxyl terminus was only observed in a construct that lacked the third membrane domain, which presumably reversed the orientation of the carboxyl terminus. Second, co-expression of full-length Bves with soluble, carboxyl-terminal Bves constructs that reside in different subcellular compartments revealed that Bves-Bves interactions occur in the cytoplasm. Third, the immunoreactivity of endogenous Bves at the cell surface of epicardial cells was dramatically enhanced with detergent. These results suggest that the membrane topology of cell surface Bves/Pop1A is composed of an extracellular amino terminus, three transmembrane domains, and a cytoplasmic carboxyl terminus. We therefore hypothesize that the carboxyl terminus regulates the cellular distribution of Bves/Pop1A during coronary vessel development.  相似文献   

12.
The murine fatty acid transport protein (FATP1) was identified in an expression cloning screen for proteins that facilitate transport of fatty acids across the plasma membranes of mammalian cells. Hydropathy analysis of this protein suggests a model in which FATP1 has multiple membrane-spanning domains. To test this model, we inserted a hemagglutinin epitope tag at the amino terminus or a FLAG tag at the carboxyl terminus of the FATP1 cDNA and expressed these constructs in NIH 3T3 cells. Both tagged constructs produce proteins of the expected molecular masses and are functional in fatty acid import assays. Indirect immunofluorescence studies with selective permeabilization conditions and protease protection studies of sealed membrane vesicles from cells expressing epitope-tagged FATP1 were performed. These experiments show that the extreme amino terminus of tagged FATP1 is oriented toward the extracellular space, whereas the carboxyl terminus faces the cytosol. Additionally, enhanced green fluorescent protein fusion constructs containing predicted membrane-associated or soluble portions of FATP1 were expressed in Cos7 cells and analyzed by immunofluorescence and subcellular fractionation. These experiments demonstrate that amino acids 1-51, 52-100, and 101-190 contain signals for integral association with the membrane, whereas residues 258-313 and 314-475 are only peripherally membrane-associated. Amino acid residues 191-257 and 476-646 do not direct membrane association and likely face the cytosol. Taken together, these data support a model of FATP1 as a polytopic membrane protein with at least one transmembrane and multiple membrane-associated domains. This study provides the first experimental evidence for topology of a member of the family of plasma membrane fatty acid transport proteins.  相似文献   

13.
14.
Chp (Cdc42 homologous protein) shares significant sequence and functional identity with the human Cdc42 small GTPase, and like Cdc42, promotes formation of filopodia and activates the p21-activated kinase serine/threonine kinase. However, unlike Cdc42, Chp contains unique amino- and carboxyl-terminal extensions. Here we determined whether Chp, like Cdc42, can promote growth transformation and evaluated the role of the amino- and carboxyl-terminal sequences in Chp function. Surprisingly, we found that a GTPase-deficient mutant of Chp exhibited low transforming activity but that deletion of the amino terminus of Chp greatly enhanced its transforming activity. Thus, the amino terminus may serve as a negative regulator of Chp function. The carboxyl terminus of Cdc42 contains a CAAX (where C is cysteine, A is aliphatic amino acid, X is terminal amino acid) tetrapeptide sequence that signals for the posttranslational modification critical for Cdc42 membrane association and biological function. Although Chp lacks aCAAXmotif, we found that Chp showed carboxyl terminus-dependent localization to the plasma membrane and to endosomes. Furthermore, an intact carboxyl terminus was required for Chp transforming activity. However, treatment with inhibitors of protein palmitoylation, but not prenylation, caused Chp to mislocalize to the cytoplasm. Thus, Chp depends on palmitoylation, rather than isoprenylation, for membrane association and function. In summary, Chp is implicated in cell transformation, and the unique amino and carboxyl termini of Chp represent atypical mechanisms of regulation of Rho GTPase function.  相似文献   

15.
Nucleotide Sequence of the Akv env Gene   总被引:63,自引:47,他引:16       下载免费PDF全文
The sequence of 2,191 nucleotides encoding the env gene of murine retrovirus Akv was determined by using a molecular clone of the Akv provirus. Deduction of the encoded amino acid sequence showed that a single open reading frame encodes a 638-amino acid precursor to gp70 and p15E. In addition, there is a typical leader sequence preceding the amino terminus of gp70. The locations of potential glycosylation sites and other structural features indicate that the entire gp70 molecule and most of p15E are located on the outer side of the membrane. Internal cleavage of the env precursor to generate gp70 and p15E occurs immediately adjacent to several basic amino acids at the carboxyl terminus of gp70. This cleavage generates a region of 42 uncharged, relatively hydrophobic amino acids at the amino terminus of p15E, which is located in a position analogous to the hydrophobic membrane fusion sequence of influenza virus hemagglutinin. The mature polypeptides are predicted to associate with the membrane via a region of 30 uncharged, mostly hydrophobic amino acids located near the carboxyl terminus of p15E. Distal to this membrane association region is a sequence of 35 amino acids at the carboxyl terminus of the env precursor, which is predicted to be located on the inner side of the membrane. By analogy to Moloney murine leukemia virus, a proteolytic cleavage in this region removes the terminal 19 amino acids, thus generating the carboxyl terminus of p15E. This leaves 15 amino acids at the carboxyl terminus of p15E on the inner side of the membrane in a position to interact with virion cores during budding. The precise location and order of the large RNase T(1)-resistant oligonucleotides in the env region were determined and compared with those from several leukemogenic viruses of AKR origin. This permitted a determination of how the differences in the leukemogenic viruses affect the primary structure of the env gene products.  相似文献   

16.
Coronin 3 is a ubiquitously expressed member of the coronin protein family in mammals. In fibroblasts and HEK 293 cells, it is localized both in the cytosol and in the submembranous cytoskeleton, especially at lamellipodia and membrane ruffles. The carboxyl terminus of all coronins contains a coiled coil suggested to mediate dimerization. We show here that in contrast to other coronin homologues, the recombinant human coronin 3 carboxyl terminus forms oligomers rather than dimers, and that this part is sufficient to bind to and cross-link F-actin in vitro. The carboxyl terminus alone also conferred membrane association in vivo, and removal of the coiled coil abolished membrane localization but not in vitro F-actin binding. Coronin 3 is exclusively extracted as an oligomer from both the cytosol and the membrane fraction. Because oligomerization was not reported for other coronins, it might be a key feature governing coronin 3-specific functions. Cytosolic coronin 3 showed a high degree of phosphorylation, which is likely to regulate the subcellular localization of the protein.  相似文献   

17.
The assembly of four pore-forming α-subunits into tetramers is a prerequisite for the formation of functional K(+) channels. A short carboxyl assembly domain (CAD) in the distal end of the cytoplasmic carboxyl terminus has been implicated in the assembly of Eag α-subunits, a subfamily of the ether-à-go-go K(+) channel family. The precise role of CAD in the formation of Eag tetrameric channels, however, remains unclear. Moreover, it has not been determined whether other protein regions also contribute to the assembly of Eag subunits. We addressed these questions by studying the biophysical properties of a series of different rat Eag1 (rEag1) truncation mutants. Two truncation mutants without CAD (K848X and W823X) yielded functional phenotypes similar to those for wild-type (WT) rEag1 channels. Furthermore, nonfunctional rEag1 truncation mutants lacking the distal region of the carboxyl terminus displayed substantial dominant-negative effects on the functional expression of WT as well as K848X and W823X channels. Our co-immunoprecipitation studies further revealed that truncation mutants containing no CAD indeed displayed significant association with rEag1-WT subunits. Finally, surface biotinylation and protein glycosylation analyses demonstrated that progressive truncations of the carboxyl terminus resulted in aggravating disruptions of membrane trafficking and glycosylation of rEag1 proteins. Overall, our data suggest that the distal carboxyl terminus, including CAD, is dispensable for the assembly of rEag1 K(+) channels but may instead be essential for ensuring proper protein biosynthesis. We propose that the S6 segment and the proximal carboxyl terminus may constitute the principal subunit recognition site for the assembly of rEag1 channels.  相似文献   

18.
Abstract: The molecular forms and membrane association of SPC2, SPC3, and furin were investigated in neuroendocrine secretory vesicles from the anterior, intermediate, and neural lobes of bovine pituitary and bovine adrenal medulla. The major immunoreactive form of SPC2 was the full-length enzyme with a molecular mass of 64 kDa. The major immunoreactive form of SPC3 was truncated at the carboxyl terminus and had a molecular mass of 64 kDa. Full-length 86-kDa SPC3 with an intact carboxyl terminus was found only in bovine chromaffin granules. Immunoreactive furin was also detected in secretory vesicles. The molecular masses of 80 and 76 kDa were consistent with carboxyl-terminal truncation of furin to remove the transmembrane domain. All three enzymes were distributed between the soluble and membrane fractions of secretory vesicles although the degree of membrane association was tissue specific and, in the case of SPC3, dependent on the molecular form of the enzyme. Significant amounts of membrane-associated and soluble forms of SPC2, SPC3, and furin were found in pituitary secretory vesicles, whereas the majority of the immunoreactivity in chromaffin granules was membrane associated. More detailed analyses of chromaffin granule membranes revealed that 86-kDa SPC3 was more tightly associated with the membrane fraction than the carboxyl terminus-truncated 64-kDa form.  相似文献   

19.
20.
To determine the effect of protein isoprenylation with farnesyl vs geranylgeranyl groups on membrane association in vivo, COS cells were transfected with cDNAs encoding the wild-type G-protein alpha i1 (WT) subunit, the soluble nonmyristoylated G-protein alpha i1 glycine to alanine mutant (GA), a double mutant in which the carboxy-terminal residues CGLF of GA were mutated to CVLS (GA-CVLS), and a double mutant in which the carboxy terminus of GA was mutated to CALL (GA-CALL). As opposed to the WT and GA proteins, the GA-CVLS and GA-CALL proteins were not pertussis toxin substrates nor were they recognized by antibodies that recognize the nonmutated alpha i1 carboxy terminus. Only the GA-CVLS and GA-CALL proteins incorporated [3H]mevalonate in the form of a farnesyl and a geranylgeranyl moiety, respectively. Subcellular localization, as assessed by immunoblotting and immunoprecipitation, revealed that the WT protein localizes almost exclusively to the membrane fraction, whereas the GA, GA-CVLS, and GA-CALL proteins localize predominantly to the soluble fraction. The soluble GA-CVLS and GA-CALL proteins were not carboxyl methylated, but the small amount localized to the membrane was partially carboxyl methylated. These results indicate that neither farnesylation nor geranylgeranylation is sufficient alone to lead to membrane association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号