首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mammalian gonadotropin-releasing hormone (GnRH I) is a hypothalamic decapeptide that governs gonadotropin secretion through interaction with its seven transmembrane (7TM), G protein-coupled receptor (GPCR) expressed by anterior pituitary cells. A second decapeptide, GnRH II, originally discovered in the chicken hypothalamus was recently reported to be expressed in the mammalian hypothalamus as well. A search of the recently-sequenced human genome identified a 7TM/GPCR on chromosome 1 that exhibited a higher identity with non-mammalian vertebrate GnRH II receptors (55%) than with the human GnRH I receptor (39%). Molecular cloning and nucleotide sequencing of this putative GnRH II receptor cDNA from monkey pituitary gland revealed a 379 amino acid receptor that, unlike the GnRH I receptor, possessed a C-terminal tail. Heterologous expression and functional testing of the receptor in COS-1 cells confirmed its identity as a GnRH II receptor: measurement of 3H-inositol phosphate accumulation revealed EC(50)s for GnRH II of 0.86 nM and for GnRH I of 337 nM. Ubiquitous tissue expression of GnRH II receptor mRNA was observed using a human tissue RNA expression array and a 32P-labeled antisense riboprobe representing the 7TM region of human GnRH II receptor cDNA. As predicted by the presence of its C-terminal tail, the GnRH II receptor was desensitized by GnRH II treatment whereas the naturally tail-less GnRH I receptor was not desensitized by GnRH I. Pharmacological analysis of the GnRH II receptor revealed that GnRH I 'superagonists' were more potent than GnRH I but less potent than GnRH II. Numerous GnRH I antagonists showed neither antagonistic nor agonistic activity with the GnRH II receptor. The functions of the GnRH II receptor are unknown but may include regulation of gonadotropin secretion, female sexual behavior, or tumor cell growth.  相似文献   

2.
3.
4.
5.
C Séguin 《Gene》1991,97(2):295-300
The metal ion requirement of nuclear proteins for binding to the metal regulatory element d(MREd) of the mouse gene encoding metallothionein-1 was investigated using an in vitro exonuclease III footprinting assay. The specific DNA-binding activity of the factor was inactivated by the chelating agents, EDTA and 1,10-phenanthroline. Binding activity was restored by Zn2+, but not by Cd2+. These results show that Zn2+ ions are a required component for specific in vitro DNA binding of the MREd-binding protein.  相似文献   

6.

Background  

Luteinizing hormone secreted by the anterior pituitary gland regulates gonadal function. Luteinizing hormone secretion is regulated both by alterations in gonadotrope responsiveness to hypothalamic gonadotropin releasing hormone and by alterations in gonadotropin releasing hormone secretion. The mechanisms that determine gonadotrope responsiveness are unknown but may involve regulators of G protein signaling (RGSs). These proteins act by antagonizing or abbreviating interaction of Gα proteins with effectors such as phospholipase Cβ. Previously, we reported that gonadotropin releasing hormone-stimulated second messenger inositol trisphosphate production was inhibited when RGS3 and gonadotropin releasing hormone receptor cDNAs were co-transfected into the COS cell line. Here, we present evidence for RGS3 inhibition of gonadotropin releasing hormone-induced luteinizing hormone secretion from cultured rat pituitary cells.  相似文献   

7.
8.
9.
Summary 1. Gonadotropin-releasing hormone (GnRH) is the hypothalamic releasing factor that controls pituitary gonadotropin subunit gene expression and indirectly gametogenesis and steroidogenesis from the gonad, which results in reproductive competence.2. GnRH is synthesized in only about 1000 neurons in the hypothalamus and released in an episodic fashion down the median eminence to regulate gonadotropin biosynthesis.3. Although much is known about the secretory dynamics of GnRH release, little is known about the pretranslational control of GnRH biosynthesis due to lack of appropriate model systems. The recent availability of immortalized neuronal cell lines that produce GnRH allows investigators for the first time to begin to dissect the factors that directly regulate GnRH gene expression.4. This article reviews the current state of knowledge concerning the mechanisms that direct tissue-specific and peptide hormone control of GnRH biosynthesis.  相似文献   

10.
11.
Specialized membrane microdomains known as lipid rafts are thought to contribute to G-protein coupled receptor (GPCR) signaling by organizing receptors and their cognate signaling molecules into discrete membrane domains. To determine if the GnRHR, an unusual member of the GPCR superfamily, partitions into lipid rafts, homogenates of alpha T3-1 cells expressing endogenous GnRHR or Chinese hamster ovary cells expressing an epitope-tagged GnRHR were fractionated through a sucrose gradient. We found the GnRHR and c-raf kinase constitutively localized to low density fractions independent of hormone treatment. Partitioning of c-raf kinase into lipid rafts was also observed in whole mouse pituitary glands. Consistent with GnRH induced phosphorylation and activation of c-raf kinase, GnRH treatment led to a decrease in the apparent electrophoretic mobility of c-raf kinase that partitioned into lipid rafts compared with unstimulated cells. Cholesterol depletion of alpha T3-1 cells using methyl-beta-cyclodextrin disrupted GnRHR but not c-raf kinase association with rafts and shifted the receptor into higher density fractions. Cholesterol depletion also significantly attenuated GnRH but not phorbol ester-mediated activation of extracellular signal-related kinase (ERK) and c-fos gene induction. Raft localization and GnRHR signaling to ERK and c-Fos were rescued upon repletion of membrane cholesterol. Thus, the organization of the GnRHR into low density membrane microdomains appears critical in mediating GnRH induced intracellular signaling.  相似文献   

12.
Reproduction in mammals is controlled by interactions between the hypothalamus, anterior pituitary and gonads. Interaction of GnRH with its cognate receptor is essential to regulating reproduction. Characterization of the structure, distribution and expression of GnRH receptors (GnRH-R) has furthered our understanding of the physiological consequences of GnRH stimulation of pituitary gonadotropes. Based on the putative topology of the amino acid sequence of the GnRH-R and point mutation studies, key elements of the GnRH-R have been identified to play a role in ligand recognition and binding, G-protein activation and internalization. Normally, reproductive function is mediated by GnRH-R expressed only on the membranes of pituitary gonadotropes. The density of GnRH-R on gonadotropes determines their ability to respond to GnRH. This density is highest just prior to ovulation and likely is important for complete expression of the pre-ovulatory surge of LH. Therefore, knowledge regarding what regulates the density of GnRH-R is essential to understanding changes in pituitary sensitivity to GnRH and ultimately, to expression of the LH surge. Regulation of GnRH-R gene expression is influenced by a multitude of factors including gonadal steroid hormones, inhibin, activin and perhaps most importantly GnRH itself.  相似文献   

13.
14.
Mammalian gonadotropin-releasing hormone (GnRH) I is the neuropeptide that regulates reproduction. In recent years, a second isoform of GnRH, GnRH II, and its highly selective type II GnRH receptor were cloned and identified in monkey brain, but its physiological function remains unknown. We sought to determine whether GnRH II stimulates LH and FSH secretion by activating specific receptors in primary pituitary cultures from male monkeys. Dispersed pituitary cells were maintained in steroid-depleted media and stimulated with GnRH I and/or GnRH II for 6 h. Cells were also treated with Antide (Bachem, King of Prussia, PA), a GnRH I antagonist, to block gonadotropin secretion. In monkey as well as rat pituitary cultures, GnRH II was a less effective stimulator of LH and FSH secretion than was GnRH I. In both cell preparations, Antide completely blocked LH and FSH release provoked by GnRH II as well as GnRH I. Furthermore, the combination of GnRH I and GnRH II was no more effective than either agonist alone. These results indicate that GnRH II stimulates FSH and LH secretion, but they also imply that this action occurs through the GnRH I receptor. The GnRH II receptors may have a unique function in the monkey brain and pituitary other than regulation of gonadotropin secretion.  相似文献   

15.
We and others have observed that the response of serum luteinizing hormone (LH) and follicle-stimulating hormone (FSH) to chronic gonadotropin-releasing hormone-agonist (GnRH-A) treatment is substantially different in normal compared to hypogonadal males. These data suggested that products of the testes determine the gonadotropin response to GnRH-A. The present studies were designed to determine whether this effect is mediated by products of the interstitial (steroids) or the tubular compartment. To create experimental states with selective impairment of interstitial, tubular, or both compartments, 100 male sexually mature Wistar rats were divided into five groups: I, intact; II, castrated; III, castrated with 20-mm testosterone (T) implants; IV, bilaterally cryptorchid; and V, ketoconazole-treated animals. Cryptorchid animals have been shown to have impairment of tubular function while ketoconazole inhibits T biosynthesis. Each of the 5 groups was divided into 2 subgroups to receive daily injections of either saline or 1 microgram of a potent GnRH agonist, D-leu6 des-Gly10 GnRH N-ethylamide, for 4 wk. Unlike the intact animals, which showed an elevation of basal serum LH concentration after 4 wk of GnRH-A treatment, the castrated animals showed significant suppression below baseline. Animals with preferential impairment of tubular function (cryptorchid and castrated + T) also showed significant suppression of LH after GnRH-A treatment. However, the ketoconazole-treated animals (with inhibition of T biosynthesis and intact tubular function), behaved similarly to intact animals and demonstrated an elevation of LH after GnRH-A treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The objectives were to (a) determine the age in development when GnRH is first detectable in the brain and (b) observe the distribution of GnRH throughout the fetal and early postnatal period. GnRH was localized immunohistochemically in fetal (15, 16, 17 and 19 days of gestation) and early postnatal (1- and 7-day-old) mice with the peroxidase-antiperoxidase (PAP) method of Sternberger. In the organum vasculosum of the lamina terminalis (OVLT) and in the median eminence of the fetus, GnRH was first detected at 17 days of gestation. In the OVLT, GnRH was found ventral to the preoptic recess of the third ventricle near the ventral surface of the brain. In addition, GnRH was located adjacent to the superficial portal capillaries near the surface of the median eminence. At 19 days of gestation, the distribution of GnRH was similar to that observed at 17 days and there was a marked increase in amount. In the newborn mouse, GnRH was undetectable in the OVLT and its content in the median eminence was decreased as compared to that observed in the fetus. By the seventh postnatal day, a considerable accumulation of GnRH had occurred in the OVLT and median eminence. In the OVLT, it was associated with capillaries ventral to the preoptic recess, and its distribution in the median eminence was similar to that in the adult mouse. In both the OVLT and median eminence of the fetal and early postnatal mouse GnRH appeared to be stored in axons and axon endings, but was not detectable in nerve cell bodies or ependymal cells. These observations suggest that the potential for neuroendocrine control of gonadotropin secretion exists in the fetal mouse early as 17 days of gestation.  相似文献   

17.
The asynchronous secretion of gonadotrope LH and FSH under the control of GnRH is crucial for ovarian cyclicity but the underlying mechanism is not fully resolved. Because prostaglandins (PG) are autocrine regulators in many tissues, we determined whether they have this role in gonadotropes. We first demonstrated that GnRH stimulates PG synthesis by induction of cyclooxygenase-2, via the protein kinase C/c-Src/phosphatidylinositol 3'-kinase/MAPK pathway in the LbetaT2 gonadotrope cell line. We then demonstrated that PGF(2alpha) and PGI2, but not PGE2 inhibited GnRH receptor expression by inhibition of phosphoinositide turnover. PGF(2alpha), but not PGI2 or PGE2, reduced GnRH-induction of LHbeta gene expression, but not the alpha-gonadotropin subunit or the FSHbeta subunit genes. The prostanoid receptors EP1, EP2, FP, and IP were expressed in rat gonadotropes. Incubations of rat pituitaries with PGF(2alpha), but not PGI2 or PGE2, inhibited GnRH-induced LH secretion, whereas the cyclooxygenase inhibitor, indomethacin, stimulated GnRH-induced LH secretion. None of these treatments had any effect on GnRH-induced FSH secretion. The findings have thus elaborated a novel GnRH signaling pathway mediated by PGF(2alpha)-FP and PGI2-IP, which acts through an autocrine/paracrine modality to limit autoregulation of the GnRH receptor and differentially inhibit LH and FSH release. These findings provide a mechanism for asynchronous LH and FSH secretions and suggest the use of combination therapies of GnRH and prostanoid analogs to treat infertility, diseases with unbalanced LH and FSH secretion and in hormone-dependent diseases such as prostatic cancer.  相似文献   

18.
The olfactory epithelium in vertebrates generates the olfactory sensory neurons and several migratory cell types. Prominent among the latter are the gonadotropin-releasing hormone (GnRH) neurons that differentiate within the olfactory epithelium during embryogenesis and migrate along the olfactory nerve to the central nervous system. We initiated studies to characterize additional neuronal phenotypes of olfactory epithelial derivation. Neuropeptide Y (NPY) neurons are functionally related to the reproductive axis, modulating the release of GnRH and directly enhancing GnRH-induced luteinizing hormone (LH) secretion from gonadotrophs. We demonstrate that a population of migratory NPY neurons originates within the olfactory epithelium of the chick. At stage 25, NPY-positive fibers, but not cells, were detected in the epithelium and the nerve. By stages 28–34, NPY neurons and processes were present in the olfactory epithelium, olfactory nerve, and at the junction of the olfactory nerve and forebrain. In these regions the number of NPY neurons increased until stage 30 and then declined as development progressed. Electron microscopic immunocytochemistry confirmed the neuronal phenotype of the NPY-positive cells. The origin and migratory nature of some of these NPY cells was confirmed by double-label immunocytochemical detection of NPY and GnRH. A large percentage of the NPY-cells coexpressed the GnRH peptide. Between stages 28 and 34 single- and double-labeled NPY and GnRH neurons were found side by side along the GnRH migratory route emanating from the nasal epithelium, along the olfactory nerve, and into the ventral forebrain. These data suggest that an NPY population originates in the olfactory epithelium and migrates into the central nervous system during embryogenesis. By stage 42, no NPY/GnRH double-labeled cells were detected. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号