首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In different marine red algae (Chondrus crispus, Delesseria sanguinea, Membranoptera alata, Phycodrys rubens, Phyllophora truncata, Polyneura hilliae) photoinhibition of photosynthesis has been investigated by means of both fluorescence and oxygen measurements. Measurements of absolute oxygen production show that photoinhibition causes a decline in the initial slope and in the rate of bending of the fluence rate-response curve (i.e. the photosynthetic efficiency at non-saturating fluence rates), as well as a decline in the photosynthetic capacity (Pm) at saturating fluence rates. Fluorescence data (Fv/Fm) were consistent with the results of oxygen measurements. Under excessive light photoinhibition protects photosynthesis against photo-damage in red algae. However, an increase in the initial fluorescence (Fo) after photoinhibitory treatment indicates that it could not prevent photodamage entirely. Action spectra of photoinhibition demonstrate that the main photoinhibition site in Polyneura hiliae is PS II, because far red light absorbed by PS I was ineffective. The strong increase of Fo in the blue wavelength range and the slight and partial recovery in weak blue light indicate that blue light especially causes photodamage. Recovery of photosynthesis requires dim white light conditions. Experiments with monochromatic light also show a wavelength dependence of recovery. Moreover, the recovery of photosynthesis after a photoinhibitory treatment is strongly temperature dependent, indicating participation of enzymatic processes. The comparison of fluorescence and oxygen measurement of the recovery shows different results in some species. The rate of oxygen production in red control light increased immediately after photoinhibited algae were exposed to weak light conditions. Surprisingly, the ratio of variable to maximum fluorescence (Fv/Fm) of Phyllophora truncata and the maximum fluorescence (Fm) of Polyneura hilliae show first a delay of the recovery under weak light conditions. Thus, in recovery experiments fluorescence and oxygen data are not quite consistent.  相似文献   

2.
Summary MicropropagatedRosa hybrida plantlets were simultaneously rooted and acclimatized under 100 and 200 μmol m−2 s−1 light for 2 wk. At the end of the first week of acclimatization, the plantlets were transferred onto a low water potential medium (from −0.06 MPa to −0.3 MPa). Dry weight was decreased by increased hight and low water potential. Photoinhibition of photosynthesis, expressed as a decrease in Fv/Fm ratio and ΦPSII and an increase in 1 −qp, occurred in plants grown under 200 μmol m−2 s−1. When high light (200 μmol m−2 s−1) and water stress were applied simultaneously, their effects on chlorophyll fluorescence parameters depended on stress duration; after 1 d of water stress, photoinhibition was more pronounced; after 7 d of stress, Fv/Fm ratio and ΦPSII were higher than after 1 d of stress; photoinhibition was reduced. This suggests that after a 1-d stress, the effect of water stress alone included a superimposed effect of photoinhibition to which the water-stressed plants were sensitized; after 7 d, plantlets had adapted to water stress. The photoprotective effects under high light might result in energy dissipative mechanisms linked to photochemical and nonphotochemical quenching other than CO2 fixation.  相似文献   

3.
Photoinhibition of photosynthesis was induced in intact leaves of Phaseolus vulgaris L. grown at a photon flux density (PFD; photon fluence rate) of 300 mol·m-2·s-1, by exposure to a PFD of 1400 mol·m-2·s-1. Subsequent recovery from photoinhibition was followed at temperatures ranging from 5 to 35°C and at a PFD of either 20 or 140 mol·m-2·s-1 or in complete darkness. Photoinhibition and recovery were monitored mainly by chlorophyll fluorescence emission at 77K but also by photosynthetic O2 evolution. The effects of the protein-synthesis inhibitors, cycloheximide and chloramphenicol, on photoinhibition and recovery were also determined. The results demonstrate that recovery was temperature-dependent with rates slow below 15°C and optimal at 30°C. Light was required for maximum recovery but the process was light-saturated at a PFD of 20 mol·m-2·s-1. Chloramphenicol, but not cycloheximide, inactivated the repair process, indicating that recovery involved the synthesis of one or more chloroplast-encoded proteins. With chloramphenicol, it was shown that photoinhibition and recovery occurred concomitantly. The temperature-dependency of the photoinhibition process was, therefore, in part determined by the effect of temperature on the recovery process. Consequently, photoinhibition is the net difference between the rate of damage and the rate of repair. The susceptibility of chilling-sensitive plant species to photoinhibition at low temperatures is proposed to result from the low rates of recovery in this temperature range.Abbreviations and symbols Da Dalton - Fo, Fm, Fv instantaneous, maximum, variable fluorescence emission - PFD photon flux density - PSII photosystem II - photon yield C.I.W.-D.P.B. Publication No. 871  相似文献   

4.
Photoinhibition of photosynthesis and its recovery in the cyanobacteriumSpirulina platensis was studied to find how photosynthetic rates were influenced by light and temperature. By exposing cell samples from a turbidostat culture to combinations of light and temperature, a connection between light, temperature and photoinhibition was found. The experiments showed that a 10 degree increase from 20 °C to 30 °C considerably reduced the photoinhibition. At 25 °C a photon flux density of 1720 µmol m–2 s–1 reduced the photosynthetic rate by 50 % in 1 h, but a similarly high photon flux density had nearly no negative effect at 35 °C. Reactivation in low light from 50% photoinhibition was fast and complete in 60 min at 30 °C, while at 20 °C only about 1/6 of the full capacity was regained in the same time. Addition of the protein synthesis inhibitor streptomycin to cultures undergoing photoinhibition and regeneration indicated the presence also in this organism of a repair mechanism based on protein synthesis.Author for correspondence  相似文献   

5.
Recovery of photosynthesis in winter-stressed Scots pine   总被引:9,自引:5,他引:4  
Abstract. . Winter-induced inhibition of photosynthesis in Scots pine (Pinns sylvestris L.) is caused by the combined effects of light and freezing temperatures; light causes photoinhibition of photosystem II (Strand & Oquist, 1985b, Physiologic Plantarum, 65 , 117–123), whereas frost causes inhibition of enzymatic steps of photosynthesis (Strand & Öquist, 1988, Plant, Cell & Environment, 11 , 231–238). To reveal limiting steps during recovery from winter stress, the potential of photosynthesis to recover and the actual recovery outdoors during spring, were studied in Scots pine. Studies of light dependent O2-evolution under saturating CO2 and recordings of room temperature fluorescence induction kinetics were used. When branches of pine, in February and March, were brought into the laboratory and kept at 18°Cand 100μmol m?2 s?1, light saturated rates and apparent quantum yields of photo-synthetic O2-evolution recovered fully within approximately 48h. The photochemical efficiency of photosystem II, as measured by Fv/Fm ratios, recovered fully within 24h after an initial lag-phase of 2-3 h. Under natural winter conditions, the Fv/Fm ratio decreased more in exposed than in shaded pine, whereas the efficiency of photosynthesis was similarly inhibited in exposed and shadedpine. However, when recovery from winter stress occurred during spring, the Fv/Fm ratios of both shaded and exposed pine recovered well before photosynthesis. It is concluded that the light-induced photoinhibition component of winter stress in photosynthesis of pine recovers well before the frost induced component(s) of winter stress. In this context, reversible photoinhibition of photosynthesis in evergreen conifers is considered as a dynamic down-regulation of photosystem II to prevent more severe photodynamic damage of the thylakoid membrane when photosynthesis is inhibited by frost.  相似文献   

6.
Cold acclimation and photoinhibition of photosynthesis in Scots pine   总被引:13,自引:0,他引:13  
Cold acclimation of Scots pine did not affect the susceptibility of photosynthesis to photoinhibition. Cold acclimation did however cause a suppression of the rate of CO2 uptake, and at given light and temperature conditions a larger fraction of the photosystem II reaction centres were closed in cold-acclimated than in nonacclimated pine. Therefore, when assayed at the level of photosystem II reaction centres, i.e. in relation to the degree of photosystem closure, cold acclimation caused a significant increase in resistance to photoinhibition; at given levels of photosystem II closure the resistance to photoinhibition was higher after cold acclimation. This was particularly evident in measurements at 20° C. The amounts and activities of the majority of analyzed active oxygen scavengers were higher after cold acclimation. We suggest that this increase in protective enzymes and compounds, particularly Superoxide dismutase, ascorbate peroxidase, glutathione reductase and ascorbate of the chloroplasts, enables Scots pine to avoid excessive photoinhibition of photosynthesis despite partial suppression of photosynthesis upon cold acclimation. An increased capacity for light-induced de-epoxidation of violaxanthin to zeaxanthin upon cold acclimation may also be of significance.Abbreviations APX ascorbate peroxidase - DHA dehydroascorbate - DHAR dehydroascorbate reductase - Fm maximal fluorescence when all reaction centres are closed - Fv/Fm maximum photochemical yield of PSII - GR glutathione reductase - GSH reduced glutathione - Je rate of photosynthetic electron transport - MDAR monodehydroascorbate reductase - qN nonphotochemical quenching of fluorescence - qP photochemical quenching of fluorescence - SOD superoxide dismutase This work was supported by the Swedish Natural Science Research Council and the National Natural Science Foundation of China.  相似文献   

7.
Photoinhibition of photosynthesis in the brown alga, Dictyota dichotoma, was studied with a PAM fluorometer (Walz, Effeltrich, Germany) and a homemade oxygen measuring device. As a measure of fluorescence, Fv/Fm, and for the photosynthetic yield, ΔF/Fm', were used. Oxygen measurements show clearly that the observed degree, as well as the time course, of photoinhibition depends on the fluence rate of the light used to measure changes of the production rate. After photoinhibition of photosynthesis the depression of oxygen production caused by non-saturating fluence rates was generally much more pronounced than that caused by saturating or nearly saturating fluence rates. At minimal photoinhibition the initial slope and the convexity of the fluence rate-response curve of oxygen evolution decrease, whereas the level of light saturation decreases only after strong photoinhibition. Nevertheless, at different degrees of photoinhibition, changes in the degree of the upper bending of the fluence rate-response curve of oxygen production are also linearly correlated to changes in the fluorescence ratios (Fv/Fm and ΔF/Fm'). The action spectrum of photoinhibition, calculated on the basis of changes of Fv/Fm, indicates that the reaction center of PS I is not involved in photoinhibition. The lower effectiveness of blue light in comparison to effects of green and red light may be due to chloroplast displacement, as in the so-called strong light position, the light absorbed by the thalli in vivo is decreased.  相似文献   

8.
Laminaria abyssalis fronds were either collected at the Brazilian costal area - 40 meters below sea level - or grown in the laboratory. The photochemical yield as defined by the Fv/Fm and the Fo - the dark fluorescence level when all PSII centers are open - varied with the distance from the stipe to the tip of the blade in wild grown fronds while it stayed constant in the laboratory grown plants. The chlorophyll a/c ratio levels decreased in the wild fronds from 12 (near the stipe) to 6 near the top. The chlorophyll c content increased from 0.8 to near 1.7 mg cm–2 in the wild fronds. The laboratory fronds did not show variations in their chlorophyll contents. The wild fronds pattern changed after 2 months kept in the laboratory, producing similar results to those grown in the laboratory. The results indicate that the levels of the antenna complex in the wild fronds increase from the stipe to the top of the blade, in a fashion similar of the sun/shade leaves. Also, results show, that this alga is able to adapt itself to new light conditions, possibly increasing its level of antenna complex and photosynthetic units.Abbreviations PSII Photosystem II - Fo Chlorophyll fluorescence when all PSII are opened - Fm Chlorophyll Fluorescence when all PSII are closed - Fv Variable Fluorescence (Fm-Fo) - Fv/Fm Quantum Yield for Photochemistry  相似文献   

9.
D. H. Greer  W. A. Laing 《Planta》1988,174(2):159-165
Recovery of photoinhibition in intact leaves of shade-grown kiwifruit was followed at temperatures between 10° and 35° C. Photoinhibition was initially induced by exposing the leaves for 240 min to a photon flux density (PFD) of 1 500 mol·m-2·s-1 at 20° C. In additional experiments to determine the effect of extent of photoinhibition on recovery, this period of exposure was varied between 90 and 400 min. The kinetics of recovery were followed by chlorophyll fluorescence at 77K. Recovery was rapid at temperatures of 25–35° and slow or negligible below 20° C. The results reinforce those from earlier studies that indicate chilling-sensitive species are particularly susceptible to photoinhibition at low temperatures because of the low rates of recovery. At all temperatures above 15° C, recovery followed pseudo first-order kinetics. The extent of photoinhibition affected the rate constant for recovery which declined in a linear fashion at all temperatures with increased photoinhibition. However, the extent of photoinhibition had little effect on the temperature-dependency of recovery. An analysis of the fluorescence characteristics indicated that a reduction in non-radiative energy dissipation and repair of damaged reaction centres contributed about equally to the apparent recovery though biochemical studies are needed to confirm this. From an interpretation of the kinetics of photoinhibition, we suggest that recovery occurring during photoinhibition is limited by factors different from those that affect post-photoinhibition recovery.Abbreviations and symbols F o, F m, F v instantaneous, maximum, variable fluorescence - K D, K F, K P, K T rate constants for non-radiative energy dissipation, fluorescence, photochemistry, transfer to photosystem I - K(PI), k(R) rate constants for photoinhibition and recovery - PFD photon flux density - PSI, II photosystem I, II - i photon yield of photosynthesis (incident light)  相似文献   

10.
Susceptibility of a moss,Ceratodon purpureus (Hedw.) Brid., to photoinhibition and subsequent recovery of the photochemical efficiency of PSII was studied in the presence and absence of the chloroplast-encoded protein-synthesis inhibitor lincomycin.Ceratodon had a good capacity for repairing the damage to PSII centers induced by strong light. Tolerance against photoinhibition was associated with rapid turnover of the D1 protein, since blocking of D1 protein synthesis more than doubled the photoinhibition rate measured as the decline in the ratio of variable fluorescence to maximal fluorescence (Fv/Fmax). Under exposure to strong light in the absence of lincomycin a net loss of D1 protein occurred, indicating that the degradation of damaged D1 protein inCeratodon was rapid and independent of the resynthesis of the polypeptide. The result suggests that synthesis is the limiting factor in the turnover of D1 protein during photoinhibition of the mossCeratodon. The level of initial fluorescence (Fo) correlated with the production of inactive PSII centers depleted of D1 protein. The higher the Fo level, the more severe was the loss of D1 protein seen in the samples during photoinhibition. Restoration of Fv/Fmax at recovery light consisted of a fast and slow phase. The recovery of fluorescence yield in the presence of lincomycin, which was added at different times in the recovery, indicated that the chloroplast-encoded protein-synthesis-dependent repair of damaged PSII centers took place during the fast phase of recovery. Pulse-labelling experiments with [35S]methionine supported the conclusion drawn from fluorescence measurements, since the rate of D1 protein synthesis after photoinhibition exceeded that of the control plants during the first hours under recovery conditions.  相似文献   

11.
Chilling induced inhibition of photosynthesis was studied in nine isolates of the marine tropical to warm-temperate green macrophyte Valonia utricularis (Roth) C. Agardh. According to their temperature requirements for growth and survival, the isolates belong to a cold-tolerant Atlantic/Mediterranean group and a cold-sensitive Indo-west Pacific group. After 5 hours exposure to 5 degrees C under moderate light, all isolates experienced similar substantial photoinhibition, which approached steady state levels after a decline in Fv/Fm to about 40% of the initial values. After return to optimal temperature and dim light conditions, Fv/Fm values increased with biphasic kinetics. A fast phase with half-life times of less than 30 minutes (dynamic photoinhibition) was followed by a slow phase lasting a few hours, indicating repair of photodamaged PSII reaction centres (chronic photoinhibition). In the Atlantic/Mediterranean isolates the fast phase accounted for more than 80 % of the recovery response, showing that these isolates were able to cope with the applied low temperature stress by down-regulating their PSII reaction centres. In contrast, the two isolates from the Seychelles were predominantly photodamaged. In a second experiment, three isolates (Corsica, Seychelles, Japan) were exposed to a similar relative amount of cold stress (0, 10, 15 degrees C, respectively). The Japanese isolate and the isolate from the Seychelles showed significantly less inhibition compared to 5 degrees C exposure, but no significant difference was found in the Corsican isolate. However, the degree of low temperature stress had no significant influence on the relative contributions of dynamic and chronic photoinhibition. Only two of the seven investigated isolates had a lower final inhibition level when grown at sub-optimal temperatures than at optimal temperatures. However, all sub-optimally grown Atlantic/Mediterranean isolates exhibited faster recovery kinetics from chilling-induced photoinhibition than optimally grown plants. This is related to a faster recovery from chronic photoinhibition than to a higher relative contribution of dynamic photoinhibition. A specific role of the photoprotective pigments of the xanthophyll cycle, leading to an acclimation response in the Atlantic/Mediterranean isolates may be involved. We conclude that ecotypic differentiation in V. utricularis is mirrored in different degrees of susceptibility to low temperature stress.  相似文献   

12.
S. Somersalo  G. H. Krause 《Planta》1989,177(3):409-416
The effects of moderate light at chilling temperature on the photosynthesis of unhardened (acclimated to +18° C) and hardened (cold-acclimated) spinach (Spinacea oleracea L.) leaves were studied by means of fluorescence-induction measurements at 20° C and 77K and by determination of quantum yield of O2 evolution. Exposure to 550 mol photons·m-2·s-1 at +4° C induced a strong photoinhibition in the unhardened leaves within a few hours. Photoinhibition manifested by a decline in quantum yield was characterized by an increase in initial fluorescence (F o) and a decrease in variable fluorescence (F v) and in the ratio of variable to maximum fluorescence (F V/F M), both at 77K and 20° C. The decline in quantum yield was more closely related to the decrease in the F V/F M ratio measured at 20° C, as compared with F V/F M at 77K. Quenching of the variable fluorescence of photosystem II was accompanied by a decline in photosystem-I fluorescence at 77K, indicating increased thermal de-excitation of pigments as the main consequence of the light treatment. All these changes detected in fluorescence parameters as well as in the quantum yield of O2 evolution were fully reversible within 1–3 h at a higher temperature in low light. The fast recovery led us to the view that this photoinhibition represents a regulatory mechanism protecting the photosynthetic apparatus from the adverse effects of excess light by increasing thermal energy dissipation. Long-term cold acclimation probably enforces other protective mechanisms, as the hardened leaves were insensitive to the same light treatment that induced strong inhibition of photosynthesis in unhardened leaves.Abbreviations F 0 initial fluorescence - F M maximum fluorescence - F V variable fluorescence (F M-F 0 - PFD photon flux density - PS photosystem  相似文献   

13.
Photosynthetic parameters were determined in disks from leaves of C. arabica cv. Red Catuaí and C. canephora cv. Kouillou grown in the field. Kouillou showed a relatively higher irradiance requirement for saturating photosynthesis, lower chlorophyll (Chl) content, and higher Chl a/b ratio than Catuaí. Photoinhibition of photosynthesis under bright irradiance was manifested by decreases in maximum photochemical efficiency (evaluated by the variable to maximum fluorescence ratio, Fv/Fm), as a consequence of an increased initial and a quenched maximum fluorescence. Restoration of Fv/Fm following photoinhibition in low irradiance was faster in Kouillou than in Catuaí. Chloramphenicol both accelerated photoinhibition (mainly in Kouillou) and blocked its recovery for at least 190 min in either cultivar. Photosynthetic oxygen evolution under photoinhibitory conditions was decreased by chloramphenicol; in control leaf disks this decrease was only observed in C. arabica, but with a rapid recovery within 90 min of low irradiance exposure. In both coffee cultivars, the depressed photochemical efficiency of photosystem 2 was not accompanied by a concomitant lowering in oxygen evolution during reversal from photoinhibition.  相似文献   

14.
To determine the dependence of in vivo photosystem (PS) II function on photon exposure and to assign the relative importance of some photoprotective strategies of PSII against excess light, the maximal photochemical efficiency of PSII (Fv/Fm) and the content of functional PSII complexes (measured by repetitive flash yield of oxygen evolution) were determined in leaves of pea (Pisum satlvum L.) grown in moderate light. The modulation of PSII functionality in vivo was induced by varying either the duration (from 0 to 3 h) of light treatment (fixed at 1200 or 1800 mol photons · m-2 · s-1) or irradiance (from 0 to 3000 mol photons · m-2 · s-1) at a fixed duration (1 h) after infiltration of leaves with water (control), lincomycin (an inhibitor of chloroplast-encoded protein synthesis), nigericin (an uncoupler), or dithiothreitol (an inhibitor of the xanthophyll cycle) through the cut petioles of leaves of 22 to 24-day-old plants. We observed a reciprocity of irradiance and duration of illumination for PSII function, demonstrating that inactivation of functional PSII depends on the total number of photons absorbed, not on the rate of photon absorption. The Fv/Fm ratios from photoinhibitory light-treated leaves, with or without inhibitors, declined pseudo-linearly with photon exposure. The number of functional PSII complexes declined multiphasically with increasing photon exposure, in the following decreasing order of inhibitor effect: lincomycin > nigericin > DTT, indicating the central role of D1 protein turnover. While functional PSII and Fv/Fm ratio showed a linear relationship under high photon exposure conditions, in inhibitor-treated leaves the Fv/Fm ratio failed to reveal the loss of up to 25% of the total functional PSII under low photon exposure. The loss of this 25% of less-stable functional PSII was accompanied by a decrease of excitation-energy trapping capacity at the reaction centre of PSII (revealed by the fluorescence parameter, 1/Fo-1/Fm, where Fo and Fm stand for chlorophyll fluorescence when PSII reaction centres are open and closed, respectively), but not by a loss of excitation energy at the antenna (revealed by the fluorescence parameter, 1/Fm). We conclude that (i) PSII is an intrinsic photon counter under photoinhibitory conditions, (ii) PSII functionality is mainly regulated by D1 protein turnover, and to a lesser extent, by events mediated via the transthylakoid pH gradient, and (iii) peas exhibit PSII heterogeneity in terms of functional stability during photon exposure.Abbreviations D1 protein psbA gene product - DTT dithiothreitol - Fo chlorophyll fluorescence corresponding to open PSII reaction centres - Fv, Fm variable and maximum fluorescence after dark incubation, respectively - Fs, Fm steady-state and maximum fluorescence during illumination, respectively - P680 reactioncentre chlorophyll and primary electron donor of PSII - PS photosystem Financial support of this work by Department of Employment, Education and Training/Australian Research Council International Research Fellowships Program (Korea) is gratefully acknowledged.  相似文献   

15.
Da Matta  F.M.  Maestri  M. 《Photosynthetica》1998,34(3):439-446
Photosynthetic parameters were determined in disks from leaves of C. arabica cv. Red Catuaí and C. canephora cv. Kouillou grown in the field. Kouillou showed a relatively higher irradiance requirement for saturating photosynthesis, lower chlorophyll (Chl) content, and higher Chl a/b ratio than Catuaí. Photoinhibition of photosynthesis under bright irradiance was manifested by decreases in maximum photochemical efficiency (evaluated by the variable to maximum fluorescence ratio, Fv/Fm), as a consequence of an increased initial and a quenched maximum fluorescence. Restoration of Fv/Fm following photoinhibition in low irradiance was faster in Kouillou than in Catuaí. Chloramphenicol both accelerated photoinhibition (mainly in Kouillou) and blocked its recovery for at least 190 min in either cultivar. Photosynthetic oxygen evolution under photoinhibitory conditions was decreased by chloramphenicol; in control leaf disks this decrease was only observed in C. arabica, but with a rapid recovery within 90 min of low irradiance exposure. In both coffee cultivars, the depressed photochemical efficiency of photosystem 2 was not accompanied by a concomitant lowering in oxygen evolution during reversal from photoinhibition.  相似文献   

16.
Janda  T.  Szalai  G.  Ducruet  J.-M.  Páldi  E. 《Photosynthetica》1998,35(2):205-212
The effects of growth temperature on changes in net photosynthetic rate (PN) and the chlorophyll fluorescence induction parameter Fv/Fm were investigated after cold stress in inbred maize lines with different degrees of cold tolerance. There was no significant difference between lines grown at optimum temperatures of 25/23 and 20/18 °C as regards PN and Fv/Fm determined at the growth temperature, but these parameters were lower for plants grown at a suboptimum temperature of 15/13 °C. After cold treatment, the decrease in PN was more pronounced in chilling-sensitive lines. The higher the growth temperature was, the more pronounced decrease occurred in PN and Fv/Fm. Thus at low growth temperature both damaging and adaptive processes occur.  相似文献   

17.
The photoinhibition of photosynthesis at chilling temperatures was investigated in cold-acclimated and unhardened (acclimated to +18° C) spinach (Spinacia oleracea L.) leaves. In unhardened leaves, reversible photoinhibition caused by exposure to moderate light at +4° C was based on reduced activity of photosystem (PS) II. This is shown by determination of quantum yield and capacity of electron transport in thylakoids isolated subsequent to photoinhibition and recovery treatments. The activity of PSII declined to approximately the same extent as the quantum yield of photosynthesis of photoinhibited leaves whereas PSI activity was only marginally affected. Leaves from plants acclimated to cold either in the field or in a growth chamber (+1° C), were considerably less susceptible to the light treatment. Only relatively high light levels led to photoinhibition, characterized by quenching of variable chlorophyll a fluorescence (FV) and slight inhibition of PSII-driven electron transport. Fluorescence data obtained at 77 K indicated that the photoinhibition of cold-acclimated leaves (like that of the unhardened ones) was related to increased thermal energy dissipation. But in contrast to the unhardened leaves, 77 K fluorescence of cold-acclimated leaves did not reveal a relative increase of PSI excitation. High-light-treated, cold-acclimated leaves showed increased rates of dark respiration and a higher light compensation point. The photoinhibitory fluorescence quenching was fully reversible in low light levels both at +18° C and +4° C; the recovery was much faster than in unhardened leaves. Reversible photoinhibition is discussed as a protective mechanism against excess light based on transformation of PSII reaction centers to fluorescence quenchers.Abbreviations FO initial fluorescence - FM maximal fluorescence - FV devariable fluorescence (fm-fo) - PFD photon flux density - PS photosystem - SD standard deviation The authors thank the Deutsche Forschungsgemeinschaft and the Academy of Finland for financial support.  相似文献   

18.
D. H. Greer  W. A. Laing 《Planta》1989,180(1):32-39
Intact leaves of kiwifruit (Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson) from plants grown in a range of controlled temperatures from 15/10 to 30/25°C were exposed to a photon flux density (PFD) of 1500 μmol·m−2·s−1 at leaf temperatures between 10 and 25°C. Photoinhibition and recovery were followed at the same temperatures and at a PFD of 20 μmol·m−2·s−1, by measuring chlorophyll fluorescence at 77 K and 692 nm, by measuring the photon yield of photosynthetic O2 evolution and light-saturated net photosynthetic CO2 uptake. The growth of plants at low temperatures resulted in chronic photoinhibition as evident from reduced fluorescence and photon yields. However, low-temperature-grown plants apparently had a higher capacity to dissipate excess excitation energy than leaves from plants grown at high temperatures. Induced photoinhibition, from exposure to a PFD above that during growth, was less severe in low-temperature-grown plants, particularly at high exposure temperatures. Net changes in the instantaneous fluorescence,F 0, indicated that little or no photoinhibition occurred when low-temperature-grown plants were exposed to high-light at high temperatures. In contrast, high-temperature-grown plants were highly susceptible to photoinhibitory damage at all exposure temperatures. These data indicate acclimation in photosynthesis and changes in the capacity to dissipate excess excitation energy occurred in kiwifruit leaves with changes in growth temperature. Both processes contributed to changes in susceptibility to photoinhibition at the different growth temperatures. However, growth temperature also affected the capacity for recovery, with leaves from plants grown at low temperatures having moderate rates of recovery at low temperatures compared with leaves from plants grown at high temperatures which had negligible recovery. This also contributed to the reduced susceptibility to photoinhibition in low-temperature-grown plants. However, extreme photoinhibition resulted in severe reductions in the efficiency and capacity for photosynthesis.  相似文献   

19.
Damage to primary photosynthetic reactions by drought, excess light and heat in leaves of Macroptilium atropurpureum Dc. cv. Siratro was assessed by measurements of chlorophyll fluorescence emission kinetics at 77 K (-196°C). Paraheliotropic leaf movement protected waterstressed Siratro leaves from damage by excess light (photoinhibition), by heat, and by the interactive effects of excess light and high leaf temperatures. When the leaves were restrained to a horizontal position, photoinhibition occurred and the degree of photoinhibitory damage increased with the time of exposure to high levels of solar radiation. Severe inhibition was followed by leaf death, but leaves gradually recovered from moderate damage. This drought-induced photoinhibitory damage seemed more closely related to low leaf water potential than to low leaf conductance. Exposure to leaf temperatures above 42°C caused damage to the photosynthetic system even in the dark and leaves died at 48°C. Between 42 and 48°C the degree of heat damage increased with the time of exposure, but recovery from moderate heat damage occurred over several days. The threshold temperature for direct heat damage increased with the growth temperature regime, but was unaffected by water-stress history or by current leaf water status. No direct heat damage occurred below 42°C, but in water-stressed plants photoinhibition increased with increasing leaf temperature in the range 31–42°C and with increasing photon flux density up to full sunglight values. Thus, water stress evidently predisposes the photosynthetic system to photoinhibition and high leaf temperature exacerbates this photoinhibitory damage. It seems probable that, under the climatic conditions where Siratro occurs in nature, but in the absence of paraheliotropic leaf movement, photoinhibitory damage would occur more frequently during drought than would direct heat damage.Abbreviations and symbols PFD photon flux area density - PSI, PSII photosyntem I, II - F M, F O, F V maximum, instantaneous, variable fluorescence emission - PLM paraheliotropic leaf movement; all data of parameter of variation are mean ± standard error  相似文献   

20.
A chlorophyll fluorescence technique was applied to anin situ study on the effects of low temperature and high light stresses onSpirulina cultures grown outdoors in controlled tubular photobioreactors at high (1.1 g L–1) and low (0.44 g L–1) biomass concentrations. Diurnal changes in PSII photochemistry (F v/F m) after 15 min of darkness, or in the light (dF/F m), and non-photochemical (qN) quenching were measured using a portable, pulse-amplitude-modulated fluorometer. The depression of theF v/F m ratio ofSpirulina cultures grown outdoors at 25°C (i.e. 10°C below optimum for growth) and 0.44 g L–1, reached 30% at the middle of the day. At the same time of the day thedF/F m ratio showed a reduction of up to 52%. The depression of bothF v/F m anddF/F m was lower in the cultures grown at 1.1 g L–1. Photoinhibition reduced the daily productivity of the culture grown at 0.44 g L–1 and 25°C by 33% with respect to that grown at 35°C. Changes in the growth yields of the cultures grown under different temperatures and growth rates correlate well with analogous changes in photon yield (dF/F m). Simple measurements of photochemical yield (F v/F m) can be used to test the physiological status ofSpirulina cultures. The results indicate that the saturating pulse fluorescence technique, when usedin situ, is a powerful tool for assessment of the photosynthetic characteristics of outdoor cultures ofSpirulina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号