首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Eukaryotic translation initiation factor 4GI (eIF4GI) is an essential protein that is the target for translational regulation in many cellular processes and viral systems. It has been shown to function in both cap-dependent and cap-independent translation initiation by recruiting the 40S ribosomal subunit to the mRNA cap structure or internal ribosome entry site (IRES) element, respectively. Interestingly eIF4GI mRNA itself has been reported to contain an IRES element in its 5' end that facilitates eIF4GI protein synthesis via a cap-independent mechanism. In HeLa cells, eIF4GI exists as several isoforms that differ in their migration in sodium dodecyl sulfate (SDS) gels; however, the nature of these isoforms was unclear. Here, we report a new cDNA clone for eIF4GI that extends the 5' sequence 340 nucleotides beyond the previously published sequence. The new extended sequence of eIF4GI is located on chromosome 3, within two additional exons immediately upstream of the previously published eIF4GI sequence. When mRNA transcribed from this cDNA clone was translated in vitro, five eIF4GI polypeptides were generated that comigrated in SDS-polyacrylamide gels with the five isoforms of native eIF4GI. Furthermore, translation of eIF4GI-enhanced green fluorescent protein fusion constructs in vitro or in vivo generated five isoforms of fusion polypeptides, suggesting that multiple isoforms of eIF4GI are generated by alternative translation initiation in vitro and in vivo. Mutation of two of the five in-frame AUG residues in the eIF4GI cDNA sequence resulted in loss of corresponding polypeptides after translation in vitro, confirming alternate use of AUGs as the source of the multiple polypeptides. The 5' untranslated region of eIF4GI mRNA also contains an out-of-frame open reading frame (ORF) that may down-regulate expression of eIF4GI. Further, data are presented to suggest that a proposed IRES embedded in the eIF4GI ORF is able to catalyze synthesis of multiple eIF4GI isoforms as well. Our data suggest that expression of the eIF4GI isoforms is partly controlled by a complex translation strategy involving both cap-dependent and cap-independent mechanisms.  相似文献   

2.
Expression of the two isoforms p55 and p40 of HIV-1 Gag proteins relies on distinct translation initiation mechanisms, a cap-dependent initiation and two internal ribosome entry sites (IRESs). The regulation of these processes is complex and remains poorly understood. This study was focused on the influence of the 5'-UTR and on the requirement for the eukaryotic initiation factor (eIF)4F complex components. By using an in?vitro system, we showed substantial involvement of the 5'-UTR in the control of p55 expression. This highly structured 5'-UTR requires the eIF4F complex, especially RNA helicase eIF4A, which mediates initiation at the authentic AUG codon. In addition, the 5'-UTR regulates expression in an RNA concentration-dependent manner, with a high concentration of RNA triggering specific reduction of full-length Gag p55 production. HIV-1 genomic RNA also has the ability to use a strong IRES element located in the gag coding region. We show that this mechanism is particularly efficient, and that activity of this IRES is only poorly dependent on RNA helicase eIF4A when the viral 5'-UTR is removed. HIV-1 genomic mRNA exhibits in?vitro translational features that allow the expression of Gag p55 protein by different mechanisms that involve different requirements for eIF4E, eIF4G, and eIF4A. This suggests that HIV-1 could adapt to its mode of translation according to the availability of the initiation factors in the infected cell.  相似文献   

3.
A number of viral proteases are able to cleave translation initiation factors leading to the inhibition of cellular translation. This is the case of human immunodeficiency virus type 1 protease (HIV-1 PR), which hydrolyzes eIF4GI and poly(A)-binding protein (PABP). Here, the effect of HIV-1 PR on cellular and viral protein synthesis has been examined using cell-free systems. HIV-1 PR strongly hampers translation of pre-existing capped luc mRNAs, particularly when these mRNAs contain a poly(A) tail. In fact, HIV-1 PR efficiently blocks cap- and poly(A)-dependent translation initiation in HeLa extracts. Addition of exogenous PABP to HIV-1 PR treated extracts partially restores the translation of polyadenylated luc mRNAs, suggesting that PABP cleavage is directly involved in the inhibition of poly(A)-dependent translation. In contrast to these data, PABP cleavage induced by HIV-1 PR has little impact on the translation of polyadenylated encephalomyocarditis virus internal ribosome entry site (IRES)-containing mRNAs. In this case, the loss of poly(A)-dependent translation is compensated by the IRES transactivation provided by eIF4G cleavage. Finally, translation of capped and polyadenylated HIV-1 genomic mRNA takes place in HeLa extracts when eIF4GI and PABP have been cleaved by HIV-1 PR. Together these results suggest that proteolytic cleavage of eIF4GI and PABP by HIV-1 PR blocks cap- and poly(A)-dependent initiation of translation, leading to the inhibition of cellular protein synthesis. However, HIV-1 genomic mRNA can be translated under these conditions, giving rise to the production of Gag polyprotein.  相似文献   

4.
The eukaryotic translation initiation factor 4GI (eIF4GI) serves as a central adapter in cap-binding complex assembly. Although eIF4GI has been shown to be sensitive to proteasomal degradation, how the eIF4GI steady-state level is controlled remains unknown. Here, we show that eIF4GI exists in a complex with NAD(P)H quinone-oxydoreductase 1 (NQO1) in cell extracts. Treatment of cells with dicumarol (dicoumarol), a pharmacological inhibitor of NQO1 known to preclude NQO1 binding to its protein partners, provokes eIF4GI degradation by the proteasome. Consistently, the eIF4GI steady-state level also diminishes upon the silencing of NQO1 (by transfection with small interfering RNA), while eIF4GI accumulates upon the overexpression of NQO1 (by transfection with cDNA). We further reveal that treatment of cells with dicumarol frees eIF4GI from mRNA translation initiation complexes due to strong activation of its natural competitor, the translational repressor 4E-BP1. As a consequence of cap-binding complex dissociation and eIF4GI degradation, protein synthesis is dramatically inhibited. Finally, we show that the regulation of eIF4GI stability by the proteasome may be prominent under oxidative stress. Our findings assign NQO1 an original role in the regulation of mRNA translation via the control of eIF4GI stability by the proteasome.In eukaryotes, eukaryotic translation initiation factor 4G (eIF4G) plays a central role in the recruitment of ribosomes to the mRNA 5′ end and is therefore critical for the regulation of protein synthesis (14). Two homologues of eIF4G, eIF4GI and eIF4GII, have been cloned (15). Although they differ in various respects, both homologues clearly function in translation initiation. The most thoroughly studied of these is eIF4GI, which serves as a scaffolding protein for the assembly of eIF4F, a protein complex composed of eIF4E (the mRNA cap-binding factor) and eIF4A (an ATP-dependent RNA helicase). Thus, via its association with the mRNA cap-binding protein eIF4E and with another translation initiation factor (eIF3) which is bound to the 40S ribosomal subunit, eIF4GI creates a physical link between the mRNA cap structure and the ribosome, thus facilitating cap-dependent translation initiation (25). eIF4GI functions also in cap-independent, internal ribosome entry site (IRES)-mediated translation initiation. For instance, upon picornavirus infection, eIF4G is rapidly attacked by viral proteases. The resulting eIF4GI cleavage products serve to reprogram the cell''s translational machinery, as the N-terminal cleavage product inhibits cap-dependent translation of host cell mRNAs by sequestering eIF4E while the C-terminal cleavage product stimulates IRES-mediated translation of viral mRNAs (23). Similarly, apoptotic caspases cleave eIF4G into an N-terminal fragment that blocks cap-dependent translation and a C-terminal fragment that is utilized for IRES-mediated translation of mRNAs encoding proapoptotic proteins (22).The regulation of eIF4GI cleavage by viral proteases or apoptotic caspases has been extensively studied. Little is known, however, about the regulation of eIF4GI steady-state levels. Yet the eIF4GI amount that exists at a given moment results from the sum of the effects of de novo synthesis and ongoing degradation. Many cellular proteins are physiologically degraded by the proteasome. This has been shown to be true for eIF4GI, as the factor can be degraded by the proteasome in vitro (5) and in living cells (6). However, how eIF4GI targeting for or protection from destruction by the proteasome is regulated remains unknown.There are two major routes to degradation by the proteasome. In the more conventional route, polyubiquitinated proteins are targeted to the 26S proteasome. Alternatively, a few proteins can be degraded by the 20S proteasome (and sometimes by the 26S proteasome) in a ubiquitin-independent manner (16). Interestingly, it has been shown recently that a few of these proteins (1, 2, 13) can be protected from degradation by the 20S proteasome by binding to the NAD(P)H quinone-oxydoreductase 1 (NQO1). It has been proposed that NQO1 may interact with the 20S proteasome and may consequently block access of target proteins to the 20S degradation core. Because eIF4GI can be degraded in vitro by the 20S proteasome (5) and since it appears that proteasomes can degrade eIF4GI in living cells independently of ubiquitination (6), we asked whether NQO1 could protect eIF4GI from degradation by the proteasome.  相似文献   

5.
6.
Two isoforms of the translation initiation factor eIF4G, eIF4GI and eIF4GII, have been described in eukaryotic cells. The exact function of each isoform during the initiation of protein synthesis is still under investigation. We have developed an efficient and reliable method of expressing poliovirus 2Apro, which differentially proteolyzes eIF4GI and eIF4GII in a time- and dose-dependent manner. This system is based on the electroporation of an in vitro transcribed mRNA that contains the encephalomyocarditis virus internal ribosome entry site followed by the sequence of poliovirus 2Apro. In contrast to HeLa cells, expression of this protease in BHK-21 cells induces delayed hydrolysis kinetics of eIF4GI with respect to eIF4GII. Moreover, under these conditions the polyadenylate binding protein is not cleaved. Interestingly, translation of de novo synthesized luciferase mRNA is highly dependent on eIF4GI integrity, whereas ongoing translation is inhibited at the same time as eIF4GII cleavage. Moreover, reinitiation of a preexisting mRNA translation after polysome run-off is dependent on the integrity of eIF4GII. Notably, de novo translation of heat shock protein 70 mRNA depends little on eIF4GI integrity but is more susceptible to eIF4GII hydrolysis. Finally, translation of an mRNA containing encephalomyocarditis virus internal ribosome entry site when the two isoforms of eIF4G are differentially hydrolyzed has been examined.  相似文献   

7.
8.
9.
Rhopalosiphum padi virus (RhPV) is an insect virus of the Dicistroviridae family. Recently, the 579-nucleotide-long 5' untranslated region (UTR) of RhPV has been shown to contain an internal ribosome entry site (IRES) that functions efficiently in mammalian, plant, and insect in vitro translation systems. Here, the mechanism of action of the RhPV IRES has been characterized by reconstitution of mammalian 48S initiation complexes on the IRES from purified components combined with the toeprint assay. There is an absolute requirement for the initiation factors eIF2 and eIF3 and the scanning factor eIF1 to form 48S complexes on the IRES. In addition, eIF1A, eIF4F (or the C-terminal fragment of eIF4G), and eIF4A strongly stimulated the assembly of this complex, whereas eIF4B had no effect. Although the eIF4-dependent pathway is dominant in the RhPV IRES-directed cell-free translation, omission of either eIF4G or eIF4A or both still allowed the assembly of 48S complexes from purified components with approximately 23% of maximum efficiency. Deletions of up to 100 nucleotides throughout the 5'-UTR sequence produced at most a marginal effect on the IRES activity, suggesting the absence of specific binding sites for initiation factors. Only deletion of the U-rich unstructured 380-nucleotide region proximal to the initiation codon resulted in a complete loss of the IRES activity. We suggest that the single-stranded nature of the RhPV IRES accounts for its strong but less selective potential to bind key mRNA recruiting components of the translation initiation apparatus from diverse origins.  相似文献   

10.
Mammalian eukaryotic initiation factor 4GI (eIF4GI) may be divided into three similarly sized regions. The central region (amino acids [aa] 613 to 1090) binds eIF3, eIF4A, and the encephalomyocarditis virus (EMCV) internal ribosomal entry site (IRES) and mediates initiation on this RNA. We identified the regions of eIF4GI that are responsible for its specific interaction with the IRES and that are required to mediate 48S complex formation on the IRES in vitro. Mutational analysis demarcated the IRES binding fragment of eIF4GI (aa 746 to 949) and indicated that it does not resemble an RNA recognition motif (RRM)-like domain. An additional amino-terminal sequence (aa 722 to 746) was required for binding eIF4A and for 48S complex formation. eIF4GI bound the EMCV IRES and beta-globin mRNA with similar affinities, but association with eIF4A increased its affinity for the EMCV IRES (but not beta-globin RNA) by 2 orders of magnitude. On the other hand, eIF4GI mutants with defects in binding eIF4A were defective in mediating 48S complex formation even if they bound the IRES normally. These data indicate that the eIF4G-eIF4A complex, rather than eIF4G alone, is required for specific high-affinity binding to the EMCV IRES and for internal ribosomal entry on this RNA.  相似文献   

11.
Many cellular stresses lead to the inhibition of protein synthesis. Despite this, some cellular mRNAs are selectively translated under these conditions. It was suggested that the presence of internal ribosome entry site (IRES) sequences in the 5'-untranslated regions allow these mRNAs to be actively translated despite the overall cessation of protein synthesis. Here we tested the hypothesis that the IRES elements of genes that are involved in the control of cell survival are distinctly regulated by cellular stresses. We show that the transient conditions of cellular stress favor the translation of pro-survival IRES, while the severe apoptotic conditions support translation of pro-death IRES elements. Furthermore, activation of pro-death IRES during the etoposide-induced apoptosis is caspase-dependent and correlates with the expression of apoptotic fragments of two members of the eIF4G translation initiation factor family, p97/DAP5/NAT1 and eIF4GI. Our results suggest that the regulation of IRES translation during stress contributes to the fine-tuning of cell fate.  相似文献   

12.
Poliovirus translation is initiated at the internal ribosome entry site (IRES). Most likely involving the action of standard initiation factors, this highly structured cis element in the 5" noncoding region of the viral RNA guides the ribosome to an internal silent AUG. The actual start codon for viral protein synthesis further downstream is then reached by ribosomal scanning. In this study we show that two of the secondary structure elements of the poliovirus IRES, domain V and, to a minor extent, domain VI, are the determinants for binding of the eukaryotic initiation factor eIF4B. Several mutations in domain V which are known to greatly affect poliovirus growth also seriously impair the binding of eIF4B. The interaction of eIF4B with the IRES is not dependent on the presence of the polypyrimidine tract-binding protein, which also binds to the poliovirus IRES. In contrast to its weak interaction with cellular mRNAs, eIF4B remains tightly associated with the poliovirus IRES during the formation of complete 80S ribosomes. Binding of eIF4B to the IRES is energy dependent, and binding of the small ribosomal subunit to the IRES requires the previous energy-dependent association of initiation factors with the IRES. These results indicate that the interaction of eIF4B with the 3" region of the poliovirus IRES may be directly involved in translation initiation.  相似文献   

13.
Translation initiation promoted by picornavirus internal ribosome entry site (IRES) elements is dependent on the association of specific IRES sequences to the initiation factor eIF4G. However the RNA determinants interacting with other components of the translational machinery are still unknown. In this study, we have identified novel RNA-protein interactions between the foot-and-mouth disease virus (FMDV) IRES and three translation initiation factors. A doublet of 116/110 kDa that crosslinked to the FMDV IRES is a component of eIF3. We show here that domain 5 holds the preferential binding site for eIF3, although this complex initiation factor can establish multiple contacts with the IRES structure. We have also identified the phylogenetically conserved hairpin of domain 5 as the RNA motif responsible for eIF4B interaction. Mutation of this stem-loop structure abrogated eIF4B, but not eIF3, binding to the IRES. Remarkably, IRES mutants severely affected in their interaction with eIF4B showed a mild reduction in IRES activity when tested in the context of a bicistronic expression vector in transfected cells. Finally, we provide evidence of the interaction of eIF4GII with FMDV IRES, the RNA determinants for this interaction being shared with its functional homolog eIF4GI. The FMDV Lb protease generated a C-terminal fragment of eIF4GII that binds to the IRES as efficiently as the intact protein. Competition experiments showed that titration of eIF4B or p110/116 interaction with the FMDV IRES required a large excess of competitor relative to eIF4G, strongly suggesting that eIF4G-IRES interaction is a limiting factor to titrate the IRES. Comparative analysis of the activity of IRES mutants affected in domains 4 and 5 regarding their pattern of RNA-protein complex formation demonstrates that while binding of eIF4B with the FMDV IRES is dispensable, interaction of eIF4G is a central feature of the activity of this element.  相似文献   

14.
Eukaryotic translation is initiated following binding of ribosomes either to the capped 5' end of an mRNA or to an internal ribosomal entry site (IRES) within its 5' nontranslated region. These processes are both mediated by eukaryotic initiation factor 4F (eIF4F), which consists of eIF4A (helicase), eIF4E (cap-binding protein), and eIF4G subunits. Here we present a functional analysis of eIF4F which defines the subunits and subunit domains necessary for its function in initiation mediated by the prototypical IRES element of encephalomyocarditis virus. In an initiation reaction reconstituted in vitro from purified translation components and lacking eIF4A and -4F, IRES-mediated initiation did not require the cap-binding protein eIF4E but was absolutely dependent on eIF4A and the central third of eIF4G. This central domain of eIF4G bound strongly and specifically to a structural element within the encephalomyocarditis virus IRES upstream of the initiation codon in an ATP-independent manner and with the same specificity as eIF4F. The carboxy-terminal third of eIF4G did not bind to the IRES. The central domain of eIF4G was itself UV cross-linked to the IRES and strongly stimulated UV cross-linking of eIF4A to the IRES in conjunction with either eIF4B or with the carboxy-terminal third of eIF4G.  相似文献   

15.
Several picornaviruses shut down host cellular protein synthesis by proteolytic cleavage of the eukaryotic initiation factor (eIF) 4GI and eIF4GII isoforms. Viral RNA translation is maintained by a cap-independent mechanism. Here, we identify the human rhinovirus 2 2A(pro) cleavage site in eIF4GII in vitro as PLLNV(699)*GSR; this sequence lies seven amino acids C-terminal to the cleavage site previously identified in eIF4GI (LSTR681*GPP).  相似文献   

16.
Sequence elements that can function as internal ribosome entry sites (IRES) have been identified in 5' noncoding regions of certain uncapped viral and capped cellular mRNA molecules. However, it has remained largely unknown whether IRES elements are functional when located in their natural capped mRNAs. Therefore, the polysomal association and translation of several IRES-containing cellular mRNAs was tested under conditions that severely inhibited cap-dependent translation, that is, after infection with poliovirus. It was found that several known IRES-containing mRNAs, such as BiP and c-myc, were both associated with the translation apparatus and translated in infected cells when cap-dependent translation of most host-cell mRNAs was blocked, indicating that the IRES elements were functional in their natural mRNAs. Curiously, the mRNAs that encode eukaryotic initiation factor 4GI (eIF4GI) and 4GII (eIF4GII), two proteins with high identity and similar functions in the initiation of cap-dependent translation, were both associated with polysomes in infected cells. The 5'-end sequences of eIF4GI mRNA were isolated from a cDNA expression library and shown to function as an internal ribosome entry site when placed into a dicistronic mRNA. These findings suggest that eIF4G proteins can be synthesized at times when 5' cap-dependent mRNA translation is blocked, supporting the notion that eIF4G proteins are needed in both 5' cap-independent and 5' cap-dependent translational initiation mechanisms.  相似文献   

17.
M Piron  P Vende  J Cohen    D Poncet 《The EMBO journal》1998,17(19):5811-5821
Most eukaryotic mRNAs contain a 5'cap structure and a 3'poly(A) sequence that synergistically increase the efficiency of translation. Rotavirus mRNAs are capped, but lack poly(A) sequences. During rotavirus infection, the viral protein NSP3A is bound to the viral mRNAs 3' end. We looked for cellular proteins that could interact with NSP3A, using the two-hybrid system in yeast. Screening a CV1 cell cDNA library allowed us to isolate a partial cDNA of the human eukaryotic initiation factor 4GI (eIF4GI). The interaction of NSP3A with eIF4GI was confirmed in rotavirus infected cells by co-immunoprecipitation and in vitro with NSP3A produced in Escherichia coli. In addition, we show that the amount of poly(A) binding protein (PABP) present in eIF4F complexes decreases during rotavirus infection, even though eIF4A and eIF4E remain unaffected. PABP is removed from the eIF4F complex after incubation in vitro with the C-terminal part of NSP3A, but not with its N-terminal part produced in E.coli. These results show that a physical link between the 5' and the 3' ends of mRNA is necessary for the efficient translation of viral mRNAs and strongly support the closed loop model for the initiation of translation. These results also suggest that NSP3A, by taking the place of PABP on eIF4GI, is responsible for the shut-off of cellular protein synthesis.  相似文献   

18.
《Cellular signalling》2014,26(9):1878-1887
BackgroundDeregulation of protein synthesis is integral to the malignant phenotype and translation initiation is the rate limiting stage. Therefore, eIF4F translation initiation complex components are attractive therapeutic targets.MethodsProtein lysates of myeloma cells (cell lines/patients' bone marrow samples) untreated/treated with bevacizumab were assayed for eIF4GI expression, regulation (NQO1/proteosome dependent fragmentation) (WB, Dicumarol, qPCR) and targets (WB). eIF4GI was inhibited by knockdown and 4EGI-1. Cells were tested for viability (ELISA), death (FACS) and eIF4GI targets (WB).ResultsPreviously, we have shown that manipulation of VEGF in myeloma cells attenuated eIF4E dependent translation initiation. Here we assessed the significance of eIF4GI to MM cells. We demonstrated increased expression of eIF4GI in myeloma cells and its attenuation upon VEGF inhibition attributed to elevated NQO1/proteasome dependent fragmentation and diminished mRNA levels. Knockdown of eIF4GI was deleterious to myeloma cells phenotype and expression of specific molecular targets (SMAD5/ERα/HIF1α/c-Myc). Finally, we showed that the small molecule 4EGI-1 inhibits eIF4GI and causes a reduction in expression of its molecular targets in myeloma.ConclusionOur findings substantiate that translation initiation of particular targets in MM is contingent on the function of eIF4GI, critical to cell phenotype, and mark it as a viable target for pharmacological intervention.  相似文献   

19.
Gallie DR 《Journal of virology》2001,75(24):12141-12152
The 5' leader of tobacco etch virus (TEV) genomic RNA directs efficient translation from the naturally uncapped viral mRNA. Two distinct regions within the TEV 143-nucleotide leader confer cap-independent translation in vivo even when present in the intercistronic region of a discistronic mRNA, indicating that the TEV leader contains an internal ribosome entry site (IRES). In this study, the requirements for TEV IRES activity were investigated. The TEV IRES enhanced translation of monocistronic or dicistronic mRNAs in vitro under competitive conditions, i.e., at high RNA concentration or in lysate partially depleted of eukaryotic initiation factor 4F (eIF4F) and eIFiso4F, the two cap binding complexes in plants. The translational advantage conferred by the TEV IRES under these conditions was lost when the lysate reduced in eIF4F and eIFiso4F was supplemented with eIF4F (or, to a lesser extent, eIFiso4F) but not when supplemented with eIF4E, eIFiso4E, eIF4A, or eIF4B. eIF4G, the large subunit of eIF4F, was responsible for the competitive advantage conferred by the TEV IRES. TEV IRES activity was enhanced moderately by the poly(A)-binding protein. These observations suggest that the TEV IRES directs cap-independent translation through a mechanism that involves eIF4G specifically.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号