首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tetrameric molecule of pig skeletal muscle lactate dehydrogenase binds a cationic fluorescent probe, auramine O, at four equal non-interacting sites with a dissociation constant of (1.25 +/- 0.2) X 10(-4) M. Fluorescence of the dye/enzyme mixture is strongly pH-dependent, with a maximum at pH 6.3-6.8. Auramine O-binding sites are located outside the active center of the enzyme. The microenvironment of the bound dye changes upon interaction of lactate dehydrogenase with NAD+, NADH, ADP and pyruvate. The binding of specific ligands induces an increase in fluorescence of auramine O-enzyme complex. This effect was used to determine the dissociation constants of the complexes of lactate dehydrogenase with specific ligands. Pyruvate was demonstrated to bind to the apoenzyme-auramine O complex with a dissociation constant of 5.2 X 10(-4) M. With the use of auramine O, it became possible to reveal subunit interactions within the tetrameric molecule of lactate dehydrogenase. They are manifested in the changes of the microenvironment of a dye-binding site located on one of the subunits induced by the binding of ligands in the active center of a neighboring subunit.  相似文献   

2.
We have investigated the circular dichroism induced in Cibacron Blue and Congo Red upon binding to several dehydrogenases to probe the conformation of the bound dyes. The circular dichroism spectra of Congo Red are quite similar when the dye is bound to lactic dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and alcohol dehydrogenase but has bands of opposite sign when bound to cytoplasmic malic dehydrogenase. The circular dichroism spectra of Cibacron Blue bound to these same dehydrogenases are quite different from one another. Since circular dichroism is sensitive to the conformation of bound dye, these differences argue for at least local changes in dye conformation or environment when bound to different dehydrogenases. Congo Red appears to be less sensitive to these effects than Cibacron Blue.  相似文献   

3.
A Gafni 《Biochemistry》1978,17(7):1301-1304
The CD (circular dichroism) and CPL (circular polarization of luminescence) spectra of NADPH in aqueous solution were studied and found to be markedly different. The spectra were not affected by cleavage of the coenzyme molecule with phosphodiesterase. The differences are thus not due to the existence of extended and folded conformations of NADPH and it is concluded that they originate in excited state conformational changes of the nicotinamide--ribose fragment. Opposite signs of both the CD and CPL spectra were observed for NADH bound to horse liver alcohol dehydrogenase and to beef heart lactate dehydrogenase indicating structural differences between the nicotinamide binding sites. The binding of substrate analogues to enzyme--coenzyme complexes did not affect the CD spectra and hence no significant conformational changes are induced upon formation of the ternary complexes. No changes in the CPL spectrum of NADH bound to lactate dehydrogenase were observed upon adding oxalate to form the ternary complex. Marked differences were found between the CPL spectra of binary and ternary complexes with liver alcohol dehydrogenase, while the CD spectra of these complexes were identical. It is concluded that a conformational change of the excited NADH molecule occurs in the binary but not in the ternary complex involving LADH, thus indicating an increased rigidity of the latter complex.  相似文献   

4.
The zinc-deficient enzyme binds the fluorescence probes for the enzyme substrate pocket (auramine O, 13-ethylberberine, chlorprothixene and acridine orange) more tightly than the native enzyme, whereas 1-anilinonaphthalene 8-sulphonic acid is bound with comparable affinity. The use of fluorescence probes as reporter ligands revealed that the formation of binary complexes between the zinc-deficient enzyme and aldehydes is possible (as with the native enzyme) and confirmed an increased affinity of coenzymes to the modified enzyme. The absence of catalytic zinc ions brings about a loss of the essential stabilization effect in simultaneous NADH and aldehyde binding to liver alcohol dehydrogenase. 2,2'-Bipyridine, which chelates the active-site zinc ion in the native enzyme, is bound rather loosely to the same site as aldehydes, auramine O and ethylberberine in the case of the zinc-depleted enzyme. The stopped-flow measurements showed that the pH dependence of auramine O and ethylberberine binding to native and zinc-depleted enzyme is essentially similar. These data are compatible with the presence of ionizable groups in the surroundings of the bound probes. This group might be either His-67, bound to the zinc ion, or the zinc-liganding water molecule in the case of the native enzyme (pK close to 9), or the free His-67 residue in the case of the zinc-deficient enzyme (pK about 8).  相似文献   

5.
Aldehyde binding to liver alcohol dehydrogenase in the absence and presence of coenzymes has been characterized by spectrometric equilibrium methods, using auramine O and bipyridine as reporter ligands. Free enzyme shows a significant affinity for aldehydes, and equilibrium constants for dissociation of the binary complexes formed with typical aldehyde substrates are reported. Binary-complex formation does not lead to any detectable inner-sphere coordination of aldehydes to the catalytic zinc ion of the enzyme subunit. Complex formation with NAD+ or NADH increases the affinity of the enzyme for aromatic aldehydes by a factor of 1.8 - 3.5 and 6-17, respectively. Benzaldehyde and dimethylaminocinnamaldehyde binding to the enzyme . NAD+ complex is not detectably associated with inner-sphere coordination of the aldehyde to zinc. It is concluded that binding of NADH is required to induce catalytically adequate bonding interactions between enzyme and aromatic aldehydes. The effect of reduced coenzyme in this respect is attributed to hydrophobic interactions leading to dehydration of the active-site region, which allows aldehyde substrates to compete successfully with water for inner-sphere coordination to the catalytic zinc ion. Oxidized coenzyme is proposed to have a similar promoting effect on metal coordination of aldehydes which function as substrates for the dismutase activity of the enzyme.  相似文献   

6.
This work reports on the interaction of the fluorescent nicotinamide 1,N6-ethenoadenine dinucleotide (epsilonNAD+) with horse liver alcohol dehydrogenase, octopine dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase from different sources (yeast, lobster muscle, and rabbit muscle). The coenzyme fluorescence is enhanced by a factor of 10-13 in all systems investigated. It is shown that this enhancement cannot be due to changes in the polarity of the environment upon binding, and that it must be rather ascribed to structural properties of the bound coenzyme. Although dynamic factors could also be important for inducing changes in the quantum yield of epsilonNAD+ fluorescence, the close similarity of the fluorescence enhancement factor in all cases investigated indicates that the conformation of bound coenzyme is rather invariant in the different enzyme systems and overwhelmingly shifted toward an open form. Dissociation constants for epsilonNAD+-dehydrogenases complexes can be determined by monitoring the coenzyme fluorescence enhancement or the protein fluorescence quenching. In the case of yeast glyceraldehyde-3-phosphate dehydrogenase at pH 7.0 and t = 20 degrees the binding plots obtained by the two methods are coincident, and show no cooperativity. The affinity of epsilonNAD+ is generally lower than that of NAD+, although epsilonNAD+ maintains most of the binding characteristics of NAD+. For example, it forms a tight complex with horse liver alcohol dehydrogenase and pyrazole, and with octopine dehydrogenase saturated by L-arginine and pyruvate. One major difference in the binding behavior of NAD+ and epsilonNAD+ seems to be present in the muscle glyceraldehyde-3-phosphate dehydrogenase. In fact, no difference was found for epsilon NAD+ between the affinities of the third and fourth binding sites. The results and implications of this work are compared with those obtained recently by other authors.  相似文献   

7.
The interaction between horse liver alcohol dehydrogenase and the oxidized and reduced forms of the 3-thionicotinamide--adenine dinucleotide coenzyme analogues (sNAD and sNADH) has been investigated by ultraviolet absorption, fluorescence and circular dichroism. The fluorescence of sNADH is enhanced when bound to the enzyme, and the protein fluorescence is quenched by both sNADH (60--65%) and sNAD (65%). The possible origin of the larger quenching produced by sNAD with respect to that of NAD is discussed. Coenzyme dissociation constants have been determined by monitoring the quenching of the protein fluorescence, and some kinetic consequences of these dissociation constants are discussed. The dichroic properties of various enzyme complexes have been investigated, and are discussed in terms of conformational changes and environmental changes during coenzyme binding. The conformation of sNAD bound to the enzyme in the presence of trifluorethanol and the conformation of sNADH bound to the enzyme in the presence of isobutyramide have been analyzed in particular detail. Also the circular dichroic spectrum of the apoenzyme is discussed in terms of contributions of the aromatic amino acid residues in the highly resolved 240--310-nm region and in terms of helix content in the 220-nm region.  相似文献   

8.
Corrected fluorescence properties of yeast alcohol dehydrogenase and its coenzyme complexes have been investigated as a function of temperature. Dissociation constants have been obtained for binary and ternary complexes of NAD and NADH by following the enhancement of NADH fluorescence or the quenching of the protein fluorescence. It is found that the presence of pyrazole increases the affinity of NAD to the enzyme approximately 100-fold. The formation of the ternary enzyme - NAD - pyrazole complex is accompanied by a large change in the ultraviolet absorption properties, with a new band in the 290-nm region. Significant optical changes also accompany the formation of the ternary enzyme-NADH-acetamide complex. The possible origin for the quenching of the protein fluorescence upon coenzyme binding is discussed, and it is suggested that a coenzyme-induced conformational change can cause it. Thermodynamic parameters associated with NAD and NADH binding have been evaluated on the basis of the change of the dissociation constants with temperature. Optical and thermodynamic properties of binary and ternary complexes of yeast alcohol dehydrogenase are compared with the analogous properties of horse liver alcohol dehydrogenase.  相似文献   

9.
Quenching of the fluorescence of the complex between horse liver alcohol dehydrogenase (alcohol:NAD+ oxidoreductase (EC 1.1.1.1) and auramine O complex is inconsistent with a simple competitive displacement of auramine O by ethanol. Instead, the action of ethanol requires an explanation in terms of a solvent effect, or the formation of an enzyme-auramine O-ethanol ternary complex. The latter complex would have to be the low-affinity variety similar to the enzyme-NADH-ethanol ternary complex encountered in the kinetic system.  相似文献   

10.
The binding of Cibacron F3GA to orthorhombic crystals of liver alcohol dehydrogenase has been studied to 0.37-nm resolution. Similarities in the binding of this dye were found for rings B, C and D with the binding of the coenzyme NAD+. However, ring A of the dye and the nicotinamide ribose part of the coenzyme are quite differently bound to the enzyme.  相似文献   

11.
Optical characteristics of enzyme-reduced coenzyme complexes of yeast NADP-specific glutamate dehydrogenase have been investigated in the presence and absence of product (L-glutamate) and in the presence or absence of phosphate. The phosphate effect, pointed out in a previous work, is found again: inorganic phosphate (Pi) destabilizes the binary complex (E - NADPH), the dissociation constant of which is equal to 14 muM, a value much higher than that determined in Tris-HCl buffer: Kd = 0.9 muM. Concerning the role of phosphate some assumptions are drawn up with respect to a similar behaviour of Pi toward yeast glutamate dehydrogenase and ADP toward the beef liver enzyme. In the same way, L-glutamate induces a stabilization of the binary complex; this latter effect is unchanged in the presence of phosphate, yet it is less marked than in the case of beef liver glutamate dehydrogenase. Protein fluorescence, nucleotide fluorescence and circular dichroism measurements allowed the determination of three identical and independent NADPH binding sites per hexameric active unit. In analogy with beef liver enzyme, it seems that yeast glutamate dehydrogenase is a good model to study anticooperativity in ligand binding.  相似文献   

12.
Different metal binding inhibitors of horse liver alcohol dehydrogenase, similarly affect the Drosophila melanogaster AdhS and AdhUF alleloenzymes. However, binding is generally weaker and the experiments show that the alleloenzymes although not zinc metalloenzymes, behave to the metal binding reagents very much as if they were. The metal-directed, affinity-labelling, imidazole derivative BrImPpOH reversibly inhibits, but does not inactivate the alleolenzymes. This confirms there is no active site metal atom with cysteine as a metal ligand, as found in zinc alcohol dehydrogenases. Pyrazole is a strong ethanol-competitive inhibitor of AdhS and AdhUF alleloenzymes. Formation of the ternary enzyme-NAD-pyrazole complex gives an absorption increase between 295-330 nm. This enables an active site titration to be performed and the determination of epsilon (305 nm) of 15.8 . 10(3) M-1 . cm-1. Inhibition experiments with imidazole confirm that with secondary alcohols such as propan-2-ol, a Theorell-Chance mechanism predominates, but with ethanol and primary alcohols, interconversion of the ternary complexes is rate limiting. Salicylate is a coenzyme competitive inhibitor and KEI suggests that the coenzyme adenosine binding region is similar is Drosophila and horse liver alcohol dehydrogenase. Drosophila alcohol dehydrogenase is found not to form a ternary complex with NADH and isobutyramide. In this and other properties it is like carboxymethyl liver alcohol dehydrogenase. Both Drosophila and carboxymethyl alcohol dehydrogenase bind coenzyme in a similar manner to native horse liver alcohol dehydrogenase, but substrate binding differs between each. Inhibition by Cibacrone blue, indicates that amino acid 192 which is lysine in AdhS and threonine in AdhUF, is located in the coenzyme-binding region. Proteolytic activity present in preparations of alcohol dehydrogenase from D. melanogaster, is considered due to a metalloprotease, for which BrImPpOH is a potent inactivator.  相似文献   

13.
The spectral properties and binding of Auramine O were studied as a model for the binding of cationic ligands to proteins. The dye was fluorescent in H2O with a quantum yield of 4 × 10?5, but the emission became blue-shifted and more intense in less polar solvents, as in the case of more common fluorescent probes. Emission increased where dye motion was restricted, e.g., when bound to proteins, in glycerol solutions, dried on filter paper, or embedded in ice. The amount of solvent spectral shift was probably limited by the short lifetime of free dye emission, which was estimated to be of the order of picoseconds. Auramine O was bound by yeast alcohol dehydrogenase and serum albumins of different species. Fluorescence enhancement and equilibrium dialysis measurements showed the number of dyes bound per molecule of protein and the association constants to be 2 and 1.2 × 104m?1 for yeast alcohol dehydrogenase and 1 and 0.23–1.9 × 104m?1 for the albumins. The Auramine O complex with liver alcohol dehydrogenase, described by Conrad et al. [Biochemistry9, 1540–1546 (1970)], had peak emission at 520 nm, further to the red than any of the other complexes studied, suggesting a relatively polarizable binding environment. NaCl did not displace the dye, but enhanced its fluorescence in the complex. The fluorescence was sensitive to protein conformational changes brought about by urea. A literature survey suggests that cationic organic ligands bind strongly to the active site of only those enzymes which have cationic substrates, and bind only weakly to noncatalytic sites in other enzymes. The significance and advantages of cationic fluorescent probes of proteins are discussed.  相似文献   

14.
Circular dichroism spectra and circular dichroism difference spectra, generated when porcine heart mitochondrial and supernatant malate dehydrogenase bind coenzymes or when enzyme dihydroincotinamide nucleotide binary complexes bind substrate analogs, are presented. No significant changes are observed in protein chromophores in the 200- to 240-nm spectral range indicating that there is apparently little or no perturbation of the alpha helix or peptide backbone when binary or ternary complexes are formed. Quite different spectral perturbances occur in the two enzymes with reduced coenzyme binding as well as with substrate-analog binding by enzyme-reduced coenzyme binding. Comparison of spectral perturbations in both enzymes with oxidized or reduced coenzyme binding suggests that the dihydronicotinamide moiety of the coenzyme interacts with or perturbs indirectly the environment of aromatic amino acid residues. Reduced coenzyme binding apparently perturbs tyrosine residues in both mitochondrial malate dehydrogenase and lactic dehydrogenase. Reduced coenzyme binding perturbs tyrosine and tryptophan residues in supernatant malate dehydrogenase. The number of reduced coenzyme binding sites was determined to be two per 70,000 daltons in the mitochondrial enzyme, and the reduced coenzyme dissociation constants, determined through the change in ellipticity at 260 nm, with dihydronicotinamide adenine dinucleotide binding, were found to be good agreement with published values (Holbrook, J. J., and Wolfe, R. G. (1972) Biochemistry 11, 2499-2502) obtained through fluorescence-binding studies and indicate no apparent extra coenzyme binding sites. When D-malate forms a ternary complex with malate dehydrogenase-reduced coenzyme complexes, perturbation of both adenine and dihydronicotinamide chromophores is evident. L-Malate binding, however, apparently produces only a perturbation of the adenine chromophore in such complexes. Since the coenzyme has been found to bind in an open conformation on the surface of the enzyme and the substrate analogs bind at or very near the dihydronicotinamide moiety binding site, protein conformational changes are implicated during ternary complex formation with D-malate which can effect the adenine chromophore at some distance from the substrate binding site.  相似文献   

15.
Three crystal structures have been determined of active site specific substituted Cd(II) horse liver alcohol dehydrogenase and its complexes. Intensities were collected for the free, orthorhombic enzyme to 2.4-A resolution and for a triclinic binary complex with NADH to 2.7-A resolution. A ternary complex was crystallized from an equilibrium mixture of NAD+ and p-bromobenzyl alcohol. The microspectrophotometric analysis of these single crystals showed the protein-bound coenzyme to be largely NADH, which proves the complex to consist of CdII-LADH, NADH, and p-bromobenzyl alcohol. Intensity data for this abortive ternary complex were collected to 2.9-A resolution. The coordination geometry in the free Cd(II)-substituted enzyme is highly similar to that of the native enzyme. Cd(II) is bound to Cys-46, Cys-174, His-67, and a water molecule in a distorted tetrahedral geometry. Binding of coenzymes induces a conformational change similar to that in the native enzyme. The interactions between the coenzyme and the protein in the binary and ternary complexes are highly similar to those in the native ternary complexes. The substrate binds directly to the cadmium ion in a distorted tetrahedral geometry. No large, significant structural changes compared to the native ternary complex with coenzyme and p-bromobenzyl alcohol were found. The implications of these results for the use of active site specific Cd(II)-substituted horse liver alcohol dehydrogenase as a model system for the native enzyme are discussed.  相似文献   

16.
Bovine liver glutamate dehydrogenase has been studied by analytical affinity chromatography on two immobilized AMP analogs, i.e., N6-(6-aminohexyl)-AMP and 8-(6-aminohexyl)-amino-AMP. The existence of various enzyme-coenzyme and enzyme-effector complexes has been verified. Also the cooperative formation of two ternary complexes, i.e., glutamic dehydrogenase (GHD)-NADP-glutamate and GDH-ADP-leucine, has been shown. The results of this study have been rationalized by the “ligand exclusion theory.” which has been proposed for the regulation of the glutamic dehydrogenase. It has been shown that the active site and the ADP-binding effector site are oriented close to each other on the enzyme. Furthermore, the data suggest that the adenylic site is not identical to the nonactive coenzyme binding site. A mechanism based on electrostatic interactions is suggested for the cooperative binding of oxidized coenzyme and substrate. Dissociation constants for complexes between the enzyme and two coenzyme fragments (P-ADPR and 2′,5′-ADP) have been estimated.  相似文献   

17.
A pCW vector harboring rat liver serine dehydratase cDNA was expressed in Escherichia coli. The expressed level was about 5-fold higher in E. coli BL21 than in JM109 cell extract; the former lacked two kinds of proteases. Immunoblot analysis revealed the occurrence of a derivative other than serine dehydratase in the JM109 cell extract. The recombinant enzyme was purified to homogeneity. Staphylococcus aureus V8 protease and trypsin cleaved the enzyme at Glu-206 and Lys-220, respectively, with a concomitant loss of enzyme activity. Spectrophotometrically, the nicked enzyme showed a approximately 50% reduced capacity for binding of the coenzyme pyridoxal phosphate and no spectral change of circular dichroism in the region at 300-480 nm, whereas circular dichroism spectra of both enzymes in the far-UV region were similar, suggesting that proteolysis impairs the coenzyme binding without an accompanying gross change of the secondary structure. Whereas the nicked enzyme behaved like the intact enzyme on Sephadex G-75 column chromatography, it was dissociated into two fragments on the column containing 6 M urea. Upon the removal of urea, both fragments spontaneously refolded. These results suggest that serine dehydratase consists of two folding domains connected by a region that is very susceptible to proteases.  相似文献   

18.
ADP and ATP with a spin-label linked to the terminal phosphate are activators of glutamate dehydrogenase and bind to the same site as the activator ADP. There is hardly any interaction with the coenzyme site. Glutamate dehydrogenase can be modified with a ketone spin-label at a site in the active centre[Andree and Zantema, (1978) Biochemistry, 17, 778--783]. The spin-labelled activators interact with ketone spin-labelled glutamate dehydrogenase in the same way as with native glutamate dehydrogenase relative to the activator site, but show a stronger binding to the coenzyme site. Upon binding to the coenzyme site a spin-spin interaction between the ketone spin-label and the spin-labelled activators is observed. Nuclear magnetic resonance studies of the linewidth of 2-oxoglutarate and NADP+ bound to their functional sites on glutamate dehydrogenase without and with spin-labels result in distances between the ligand nuclei and the spin-labels. The results show that NADP+ binds in an open conformation consistent with the conformation in other dehydrogenases. The activator ADP binds in the neighbourhood of the active centre, but with very little or no overlap with the coenzyme site.  相似文献   

19.
The fluorescence of the cation auramine O was substantially enhanced by the presence of actin monomer. Titrations of this fluorescence enhancement indicated that actin monomer had two auramine O binding sites, each with a dissociation constant of approx. 20 microM. Calcium ions had no effect on the number of actin monomer-bound auramine O molecules or on the dissociation constant for that interaction. However, calcium ions increased the maximum change of fluorescence that occurs when actin monomer was fully saturated with auramine O. This effect of calcium was saturable and yielded a Ca2+ dissociation constant of 1.6 mM. It was concluded that auramine O bound to sites on actin monomer and independently monitored the binding of Ca2+ ion(s) to other site(s) on actin monomer. Further, the magnitude of the Ca2+ dissociation constant suggested that this Ca2+-binding site may be representative of the multiple bivalent cation-binding sites on actin monomer which are thought to be directly involved in actin polymerization. However, the exact relationship between these sites remains unclear.  相似文献   

20.
The techniques of fluorescence enhancement, fluorescence quenching, fluorescence polarization, and equilibrium dialysis are utilized to study the binding properties of coenzyme to horse liver alcohol dehydrogenase. Polarization of fluorescence and equilibrium dialysis show that NADH binds to alcohol dehydrogenase with a stoichiometry of 6 mol per mol of enzyme, in contrast to the value of 2 determined from fluorescence enhancement measurements. NAD+ also binds with a stoichiometry of six as was determined by equilibrium dialysis. The two NADH sites which bind coenzyme more tightly and which are revealed by fluorescence enhancement measurements are designated the catalytic sites. Binding of coenzyme to the four ancillary sites does not alter the quantum yield of NADH but results in a 20% contribution to quenching of enzyme's tryptophan fluorescence. From the emission anisotropy of bound NADH of 24.0% for the additional sites and 28.1% for the catalytic sites and their relative fluorescence lifetimes at the same wavelengths of excitation and emmision, we conclude that the nicotinamide ring of NADH bound to the additional sites exhibits a freedom of motion independent of the macromolecule, while that bound to the catalytic sites is more rigidly held. Polarization of fluorescence yields negative intrinsic free energies of 9.2 and 7.5 Cal M-1 for NADH interaction with the catalytic and additional sites, respectively. Although these values are 1.3 to 2.0 Cal higher than those determined by fluorescence quenching and equilibrium dialysis, the mean Hill coefficient of 1.76 plus or minus 0.06, the titration span of 2.4 logarithmic units and coupling free energies (in magnitude and sign) are the same for all these techniques. The above difference in the intrinsic free energies are attributed largely to the different modes of interaction of excited and unexcited NADH molecules with alcohol dehydrogenase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号