首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gas Chromatographic Analysis of Acidic Indole Auxins in Nicotiana   总被引:6,自引:5,他引:1       下载免费PDF全文
Acidic indole auxins have been extracted from N. glauca, N. langsdorffii and their 2 tumor-prone 4n- and 2n-hybrids. After purification of the extracts and thin-layer chromatography, acidic indoles were subjected to esterification and gas chromatography. The esters of 4 indole acids were detected and determined: indole-3-acetic acid, indole-3-carboxylic acid, indole-3-propionic acid and indole-3-butyric acid. The indolic nature of fractionated samples was confirmed by spectrophotofluorometry and the physiological significance of the indole esters proven in a biotest. A substantial increase in extractable indole-3-butyric acid in the tumor-prone hybrids suggests an additional pathway of auxin synthesis in these tissues.  相似文献   

2.
The mutagenicities of 8 indole compounds (indole-3-acetonitrile, indole-3-carbinol, indole-3-acetamide, indole-3-acetic acid, 3-methylindole, indole-3-aldehyde, indole-3-carboxylic acid and indole) derived from indole glucosinolate were studied by mutation tests on Salmonella typhimurium TA98 and TA100 and Escherichia coli WP2 uvrA/pKM101 with and without S9 mix. None of the 8 indole compounds were mutagenic, but they became mutagenic on these 3 tester strains when treated with nitrite at pH 3. The nitrite-treated indole compounds were mutagenic without metabolic activation system (S9 mix), and their mutagenicities were decreased by the addition of S9 mix.  相似文献   

3.
Indole reacts with sodium nitrite and glycine-HCl buffer, pH 2.6, to form a red color that is stable for more than 1 week. The reaction is reproducible and is linear over a wide range of indole concentrations (0.05–1.00 μmol). Twelve indole derivatives, including tryptophan, and 17 protein amine acids do not interfere. Indole-3-acetic acid, indole-3-acrylic acid, indole-3-pyruvic acid, 5-indole carboxylic acid, and 5-hydroxyindole-3-acetic acid interfere to varying extents (16–27%). Free indole was determined in biological material containing tryptophan by the present method. The method is also applicable to the assay of tryptophanase activity without prior indole extraction.  相似文献   

4.
The system suspended with phagocytosing leukocytes and related system produce weak light which could be greatly amplified by indole analogs with plain fatty acids at 3 position. Main emitting species in indole-3-acetic acid or indole-3-propionic acid-sensitized system was analyzed spectrometrically in the dark and ascribed to the transition of an excited indole compound in triplet state to its ground state. Such an excited species would be generated by the oxidative way of the indole analogs but not through the dioxetane structure of 2 and 3 positions on indole ring.  相似文献   

5.
Rubrivivax benzoatilyticus JA2 produces indoles with simultaneous utilization of L-tryptophan. Fifteen chromatographically distinct indole derivatives were detected from the L-tryptophan-supplemented cultures of R. benzoatilyticus JA2. Nine of these were identified as, indole 3-acetamide, Methoxyindole-3-aldehyde, indole 3-aldehyde, methoxyindole-3-acetic acid, indole 3-acetic acid, indole-3-carboxylic acid, indole-3-acetonitrile, indole, and trisindoline. Tryptophan stable isotope feeding confirmed the indoles produced are from the supplemented L-tryptophan. Indole 3-acetic acid is one of the major products of L-tryptophan catabolism by R. benzoatilyticus JA2 and its production was influenced by growth conditions. Identification of indole 3-acetamide and tryptophan monooxygenase activity suggests indole 3-acetamide routed IAA biosynthesis in R. benzoatilyticus JA2. The study also indicated the possible multiple pathways of IAA biosynthesis in R. benzoatilyticus JA2.  相似文献   

6.
High specific activity [3H]indole-3-acetic acid (IAA) was applied directly to root nodules of intact pea plants. After 24 h, radioactivity was detected in all plant tissues. In nodule and root tissue, only 2–3% of3H remained as IAA, and analysis by thin layer chromatography suggested that indole-3-acetyl-L-aspartic acid (IAAsp) was a major metabolite. The occurrence of IAAsp in pea root and nodule tissue was confirmed unequivocally by gas chromatography-mass spectrometry (GC-MS). The following endogenous indole compounds were also unequivocally identified in pea root nodules by GC-MS: IAA, indole-3-pyruvic acid, indole-3-lactic acid, indole-3-propionic acid, indole-3-butyric acid, and indole-3-carboxylic acid. Evidence of the occurrence of indole-3-methanol was also obtained. With the exception of IAA and indole-3-propionic acid, these compounds have not previously been unequivocally identified in a higher plant tissue.  相似文献   

7.
《Phytochemistry》1987,26(3):619-620
Caulerpin, a green algal pigment possessing a unique bis-indole structure, has been shown to be a plant growth regulator. Root growth assays were conducted with caulerpin and its hydrolysis product, and the results were compared with data obtained with indole-3-acetic acid (IAA), indole-3-pyruvic acid (IPA) and indole-3-acrylic acid (IAcA). This study has indicated that caulerpin, in essence a dimer of indole-3-acrylic acid, behaves much like the indole auxins.  相似文献   

8.
Quantum chemical methods AM1 and PM3 and chromatographic methods were used to qualitatively characterize pathways of bacterial production of indole-3-acetic acid (IAA). The standard free energy changes (delta G(o)'sum) for the synthesis of tryptophan (Trp) from chorismic acid via anthranilic acid and indole were calculated, as were those for several possible pathways for the synthesis of IAA from Trp, namely via indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and indole-3-acetonitrile (IAN). The delta G(o)'sum for Trp synthesis from chorismic acid was -402 (-434) kJ.mol-1 (values in parentheses were calculated by PM3). The delta G(o)'sum for IAA synthesis from Trp were -565 (-548) kJ.mol-1 for the IAN pathway, -481 (-506) kJ.mol-1 for the IAM pathway, and -289 (-306) kJ.mol-1 for the IPyA pathway. By HPLC analysis, the possibility was assessed that indole, anthranilic acid, and Trp might be utilized as precursors for IAA synthesis by Azospirillum brasilense strain Sp 245. The results indicate that there is a high motive force for Trp synthesis from chorismic acid and for IAA synthesis from Trp, and make it unlikely that anthranilic acid and indole act as the precursors to IAA in a Trp-independent pathway.  相似文献   

9.
The plant growth-regulating activity of a number of new indole derivatives is reported. It is shown that indole-3-acetonitrile (IAN) is converted to indole-3-carboxylic acid by metabolism within wheat and pea tissues, and the mechanism of this a-oxidation reaction has been studied. The relevant indole compounds were synthesized and their metabolism investigated by T.L.C. techniques. N -Methylindole-3-acetonitrile was also shown to be degraded by a-oxidation in wheat and pea tissues and this was separately investigated. While no definite conclusions can be drawn, the evidence indicates that conversion of indole- and Af-methylindole-3-acetonitriles to the corresponding indole-3-aldehyde-cyanohydrins can occur. These compounds then become metabolized to the aldehydes and then to the respective indole-3-carboxylic acids. Indole- and A7-methylindole-3-glyoxylic acids do not appear to be involved in the a-oxidation reaction to any significant extent. Relevant studies on the metabolism of indole-3-acetaldehyde-cyanohydrin are also described.  相似文献   

10.
The oxidation of indole-3-acetic acid by horseradish peroxidase was studied using the spin traps t-nitrosobutane and 5,5-dimethyl-1-pyrroline N-oxide to trap free radical intermediates. The major free radical metabolite of indole acetic acid was unambiguously determined by the use of indole-3-[2,2-2H2]acetic acid to be the skatole carbon-centered free radical. In the presence of oxygen, superoxide was also trapped.  相似文献   

11.
In this study we investigated the role of indole-3-acetonitrile, indole-3-carbinol, indole and tryptophan in the formation of N-nitroso compounds in green cabbage extracts. Green cabbage extracts were separated by gel permeation chromatography. Fractions were treated with nitrite, tested for mutagenicity and analysed for total N-nitroso content. Fractions in which spiked indole-3-acetonitrile, indole-3-carbinol, indole and tryptophan eluted appeared to be low in mutagenic activity and contained relatively small amounts of N-nitroso compounds. To detect indole compounds other than the ones used in the gel permeation chromatography experiments, high-performance liquid chromatography and gas chromatography-mass spectrometry analyses were performed of green cabbage extracts. Indole-3-carboxaldehyde was found to be the most commonly occurring indole compound, but it did not show direct mutagenic activity upon nitrite treatment. Indole-3-acetonitrile was the second most common compound; although it was mutagenic after nitrite treatment, its contribution to the mutagenicity of nitrite-treated green cabbage was roughly estimated to be only 2%. No other indole compounds were detected. From this study we conclude that neither the tested indole compounds nor indole-3-carboxaldehyde play a significant role in the formation of direct mutagenic N-nitroso compounds in nitrite-treated green cabbage extracts.  相似文献   

12.
Model systems for the study of photoreactivation have been developed that utilize a variety of indole derivatives. These systems can split uracil cis-syn cyclobutadipyrimidine, either free or in RNA, when irradiated at wave-lengths absorbed only by the indole moiety. The ability of indole compounds to split dimers is closely related to their electronic properties. Those of high electron-donor capacity such as indole, 3-methylindole, indole-3-acetic acid, 5-hydroxytryptophan and tryptophan are good photosensitizers, with efficacy in that order. Indoles with electron-withdrawing substituents such as indole-3-carboxylic acid, indole-3-aldehyde and oxindole are inactive in the monomerization reaction. These findings support the proposed mechanism that the photosensitized monomerization occurs as a result of electron transfer from the excited indole molecules to the pyrimidine bases.Proteins containing fully exposed tryptophan residues (chicken egg white lysozyme and bovine diisopropylphosphoryltrypsin) also cause the splitting of the 14C-labeled dimers under the same conditions. In the case of lysozyme the quantum yield of monomerization is similar to that of free tryptophan. Much of the monomerization ability of lysozyme was lost after the solvent-available tryptophan had been oxidized by treatment with N-bromosuccinimide. Bovine pancreatic ribonuclease A, a protein devoid of tryptophan, failed to exhibit photosensitized monomerization of uracil dimers. The biological implication of these reactions involving a protein with an exposed tryptophan residue is discussed.Although indoles are able to split the dimers in RNA, they fail to photo-reactivate u.v.-damaged TMV-RNA. Indole-3-acetic acid, 3-methylindole and 5-hydroxytryptophan rapidly inactivate viral RNA when irradiated at 313 nm, possibly because of side reactions.  相似文献   

13.
After enrichment culture with indole-3-carboxylate in static culture, a novel reversible decarboxylase, indole-3-carboxylate decarboxylase, was found in Arthrobacter nicotianae FI1612 and several molds. The enzyme reaction was examined in resting-cell reactions with A. nicotianae FI1612. The enzyme activity was induced specifically by indole-3-carboxylate, but not by indole. The indole-3-carboxylate decarboxylase of A. nicotianae FI1612 catalyzed the nonoxidative decarboxylation of indole-3-carboxylate into indole, and efficiently carboxylated indole and 2-methylindole by the reverse reaction. In the presence of 1 mM dithiothreitol, 50 mM Na2 S2O3, and 20% (v/v) glycerol, indole-3-carboxylate decarboxylase was partially purified from A. nicotianae FI1612. The purified enzyme had a molecular mass of approximately 258 kDa. The enzyme did not need any cofactor for the decarboxylating and carboxylating reactions.  相似文献   

14.
The metabolism of the cruciferous phytoalexins brassinin and cyclobrassinin, and the related compounds indole-3-carboxaldehyde, glucobrassicin, and indole-3-acetaldoxime was investigated in various plant tissues of Brassica juncea and B. rapa. Metabolic studies with brassinin showed that stems of B. juncea metabolized radiolabeled brassinin to indole-3-acetic acid, via indole-3-carboxaldehyde, a detoxification pathway similar to that followed by the "blackleg" fungus (Phoma lingam/Leptosphaeria maculans). In addition, it was established that tetradeuterated brassinin was incorporated into the phytoalexin brassilexin in B. juncea and B. rapa. On the other hand, the tetradeuterated indole glucosinolate glucobrassicin was not incorporated into brassinin, although the chemical structures of brassinins and indole glucosinolates suggest an interconnected biogenesis. Importantly, tetradeuterated indole-3-acetaldoxime was an efficient precursor of phytoalexins brassinin, brassilexin, and spirobrassinin. Elicitation experiments in tissues of Brassica juncea and B. rapa showed that indole-3-acetonitrile was an inducible metabolite produced in leaves and stems of B. juncea but not in B. rapa. Indole-3-acetonitrile displayed antifungal activity similar to that of brassilexin, was metabolized by the blackleg fungus at slower rates than brassinin, cyclobrassinin, or brassilexin, and appeared to be involved in defense responses of B. juncea.  相似文献   

15.
【目的】吲哚-3-乙酸是调控植物生长发育和生理活动的重要激素,吲哚-3-乙酸N-乙酰转移酶YsnE在吲哚-3-乙酸合成中发挥重要作用,本研究拟解析解淀粉芽胞杆菌中YsnE参与吲哚-3-乙酸合成的代谢途径。【方法】通过基因ysnE缺失和强化表达,分析ysnE对吲哚-3-乙酸合成影响,结合吲哚-3-乙酸合成中间物(吲哚丙酮酸、吲哚乙酰胺、色胺和吲哚乙腈)添加和体外酶转化实验,解析ysnE参与吲哚-3-乙酸合成的代谢途径。【结果】明确了YsnE在解淀粉芽胞杆菌HZ-12吲哚-3-乙酸合成中发挥重要作用。发现ysnE缺失菌株中的吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈利用显著降低,揭示了YsnE主要发挥吲哚丙酮酸脱羧酶YclB和吲哚乙酰胺水解酶/腈水解酶/腈水合酶YhcX的功能,并通过参与吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈途径来影响吲哚-3-乙酸合成。【结论】初步揭示了YsnE通过影响吲哚丙酮酸、吲哚乙酰胺和吲哚乙腈途径参与吲哚-3-乙酸合成的代谢机理,为吲哚-3-乙酸合成途径解析和代谢工程育种构建吲哚-3-乙酸高产菌株奠定了基础。  相似文献   

16.
High specific activity [3H]indole-3-acetic acid (IAA) was applied directly to root nodules of intact pea plants. After 24 h, radioactivity was detected in all plant tissues. In nodule and root tissue, only 2–3% of3H remained as IAA, and analysis by thin layer chromatography suggested that indole-3-acetyl-L-aspartic acid (IAAsp) was a major metabolite. The occurrence of IAAsp in pea root and nodule tissue was confirmed unequivocally by gas chromatography-mass spectrometry (GC-MS). The following endogenous indole compounds were also unequivocally identified in pea root nodules by GC-MS: IAA, indole-3-pyruvic acid, indole-3-lactic acid, indole-3-propionic acid, indole-3-butyric acid, and indole-3-carboxylic acid. Evidence of the occurrence of indole-3-methanol was also obtained. With the exception of IAA and indole-3-propionic acid, these compounds have not previously been unequivocally identified in a higher plant tissue.  相似文献   

17.
ABSTRACT. Trypanosoma brucei gambiense , which causes human African trypanosomiasis, catabolizes the aromatic amino acid tryptophan via an initial aminotransferase catalyzed reaction to form several indole end products, which have been suggested to contribute to the pathogenesis of trypanosomiasis. To determine if this same pathway exists in T. evansi , the closely related trypanosome pathogen of domestic animals, tryptophan catabolism was examined in vitro and in vivo. As is the case with human African trypanosomes, T. evansi catabolized tryptophan to form indole-3-pyruvic acid and smaller amounts of indole-3-acetic acid and indole-3-lactic acid. Large concentrations of indole-3-pyruvic acid are excreted in urine of trypanosome-infected mice. However, indole-3-ethanol could not be detected in incubates of T. evansi or T. b. gambiense , even though the latter species had previously been reported to form this neutral metabolite. A new, previously unreported tryptophan metabolite was isolated and partially characterized from incubates of T. evansi and T. b. gambiense. Although the functional significance of tryptophan catabolism to trypanosomatids remains obscure, the pathway is quantitatively significant in all species examined thus far.  相似文献   

18.
Glucosinolates are natural plant products known as flavor compounds, cancer-preventing agents, and biopesticides. We report cloning and characterization of the cytochrome P450 CYP79B2 from Arabidopsis. Heterologous expression of CYP79B2 in Escherichia coli shows that CYP79B2 catalyzes the conversion of tryptophan to indole-3-acetaldoxime. Recombinant CYP79B2 has a K(m) of 21 microm and a V(max) of 7.78 nmol/h/ml culture. Inhibitor studies show that CYP79B2 is different from a previously described enzyme activity that converts tryptophan to indole-3-acetaldoxime (Ludwig-Müller, J. , and Hilgenberg, W. (1990) Phytochemistry, 29, 1397-1400). CYP79B2 is wound-inducible and expressed in leaves, stem, flowers, and roots, with the highest expression in roots. Arabidopsis overexpressing CYP79B2 has increased levels of indole glucosinolates, which strongly indicates that CYP79B2 is involved in indole glucosinolate biosynthesis. Our data show that oxime production by CYP79s is not restricted to those amino acids that are precursors for cyanogenic glucosides. Our data are consistent with the hypothesis that indole glucosinolates have evolved from cyanogenesis. Indole-3-acetaldoxime is a precursor of the plant hormone indole-3-acetic acid, which suggests that CYP79B2 might function in biosynthesis of indole-3-acetic acid. Identification of CYP79B2 provides an important tool for modification of the indole glucosinolate content to improve nutritional value and pest resistance.  相似文献   

19.
Pig fecal slurries converted added L-tryptophan either to indole without detectable intermediates or to 3-methylindole (skatole) via indole-3-acetate. The initial rate of production of 3-methylindole was greatest at pH 6.5 and less at pH 5.0 and 8.0; the initial rates of indole production were similar at pH 6.5 and 8.0. More than 80% of the tryptophan added was converted to 3-methylindole at pH 5.0; at pH 8.0 85% was converted to indole. Both pathways had similar Km values for tryptophan and similar maximum rates. Indole-3-carbinol and indole-3-acetonitrile completely inhibited the production of 3-methylindole from indole-3-acetate but had no effect on the reactions involving L-tryptophan.  相似文献   

20.
Disruption of ipdC, a gene involved in indole-3-acetic acid (IAA) production by the indole pyruvate pathway in Azospirillum brasilense Sp7, resulted in a mutant strain that was not impaired in IAA production with lactate or pyruvate as the carbon source. A tryptophan auxotroph that is unable to convert indole to tryptophan produced IAA if tryptophan was present but did not synthesise IAA from indole. Similar results were obtained for a mutant strain with additional mutations in the genes ipdC and trpD. This suggests the existence of an alternative Trp-dependent route for IAA synthesis. On gluconate as a carbon source, IAA production by the ipdC mutant was inhibited, suggesting that the alternative route is regulated by catabolite repression. Using permeabilised cells we observed the enzymatic conversion of tryptamine and indole-3-acetonitrile to IAA, both in the wild-type and in the ipdC mutant. IAA production from tryptamine was strongly decreased when gluconate was the carbon source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号