首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate-limiting step in the uptake and metabolism of Dglucose by insulin target cells is thought to be glucose transport mediated by glucose transporters (primarily the GLUT4 isoform) localized to the plasma membrane. However, subcellular fractionation, photolabelling and immunocytochemical studies have shown that the pool of GLUT4 present in the plasma membrane is only one of many subcellular pools of this protein. GLUT4 has been found in occluded vesicles at the plasma membrane, clathrin-coated pits and vesicles, early endosomes, and tubulo-vesicular structures; the latter are analogous to known specialized secretory compartments. Tracking the movement of GLUT4 through these compartments, and defining the mechanism and site of action of insulin in stimulating this subcellular trafficking, are major topics of current investigation. Recent evidence focuses attention on the exocytosis of GLUT4 as the major site of insulin action. Increased exocytosis may be due to decreased retention of glucose transporters in an intracellular pool, or possibly to increased assembly of a vesicle docking and fusion complex. Although details are unknown, the presence in GLUT4 vesicles of a synaptobrevin homologue leads us to propose that a process analogous to that occurring in synaptic vesicle trafficking is involved in the assembly of GLUT4 vesicles into a form suitable for fusion with the plasma membrane. Evidence that the pathways of signalling from the insulin receptor and of GLUT4 vesicle exocytosis may converge at the level of the key signalling enzyme, phosphatidylinositol 3-kinase, is discussed.  相似文献   

2.
In adipose cells, insulin induces the translocation of GLUT4 by stimulating their exocytosis from a basal intracellular compartment to the plasma membrane. Increasing overexpression of a hemagglutinin (HA) epitope-tagged GLUT4 in rat adipose cells results in a roughly proportional increase in cell surface HA-GLUT4 levels in the basal state, accompanied by a marked reduction of the fold HA-GLUT4 translocation in response to insulin. Using biochemical methods and cotransfection experiments with differently epitope-tagged GLUT4, we show that overexpression of GLUT4 does not affect the intracellular sequestration of GLUT4 in the absence of insulin, but rather reduces the relative insulin-stimulated GLUT4 translocation to the plasma membrane. In contrast, overexpression of GLUT1 does not interfere with the targeting of GLUT4 and vice versa. These results suggest that the mechanism involved in the intracellular sequestration of GLUT4 has a high capacity whereas the mechanism for GLUT4 translocation is readily saturated by overexpression of GLUT4, implicating an active translocation machinery in the exocytosis of GLUT4.  相似文献   

3.
The mechanism of modulation of insulin-stimulated glucose transport activity in isolated rat adipose cells by lipolytic and antilipolytic agents has been examined. We have measured glucose transport activity in intact cells with 3-O-methylglucose and in plasma membranes with D-glucose, and the concentration of glucose transporters in plasma membranes using a cytochalasin B binding assay. In intact cells, isoproterenol reduced insulin-stimulated transport activity by 60%. This effect was lost after cooling and washing the cells with homogenization buffer, and neither the concentration of glucose transporters nor transport activity in the plasma membranes differed from control. However, treatment of cells with KCN prior to homogenization preserved the isoproterenol effect through the fractionation procedure. Plasma membranes from these cells contained an unchanged number of transporters (31 +/- 7, mean +/- S.E., versus 31 +/- 4 pmol/mg of protein in controls) but transported glucose at a reduced rate (19 +/- 6 versus 48 +/- 9 pmol/mg of protein/s). Conversely, incubation of intact cells in the presence of adenosine stimulated plasma membrane glucose transport activity compared to that in the absence of adenosine (44 +/- 6 versus 36 +/- 6 pmol/mg of protein/s). Kinetic studies of isoproterenol-inhibited glucose transport in plasma membranes revealed a 60% decrease in Vmax (2900 +/- 350 versus 7200 +/- 1000 pmol/mg of protein/s) and a small increase in Km (15.1 +/- 1 versus 13.0 +/- 0.6 mM). These data indicate that modifications of glucose transport activity produced by lipolytic and antilipolytic agents in intact adipose cells can be fully retained in plasma membranes isolated under appropriate conditions. Furthermore, the effects of these agents occur through a modification of the glucose transporter intrinsic activity.  相似文献   

4.
We have recently described a monoclonal antibody (1F8) that recognizes a form of glucose transporter unique to fat and muscle (James, D. E., Brown, R., Navarro, J., and Pilch, P. F. (1988) Nature 333, 183-185), tissues that respond acutely to insulin by markedly increasing their glucose uptake. Here, we report that rat adipocytes possess two immunologically distinct glucose-transporters: one recognized by 1F8, and one reactive with antibodies raised against the human erythrocyte glucose transporter. Immunoadsorption experiments indicate that these glucose transporters reside in different vesicle populations and that both transporter isoforms translocate from intracellular sites to the plasma membrane in response to insulin. The insulin-regulatable transporter resides in a unique vesicle that comprises 3% or less of the low density microsomes of fat cells and has a limited protein composition that does not include the bulk of another translocatable protein, the insulin-like growth factor II receptor. Immunoprecipitation with 1F8 of microsomal glucose transporters photoaffinity labeled with [3H]cytochalasin B brings down 90% of the label. Similarly, immunoprecipitation with 1F8 of glucose transporters from insulin-stimulated plasma membranes photolabeled with 3-[125I]iodo-4-azidophenethylamido-7-O-succinyldeacetyl-f ors kolin, another transporter-selective reagent, results in 75% of the labeled transporter localized in the immunoprecipitate. Thus, insulin action involves the combined effect of translocation from at least two vesicle pools each containing different glucose transporters. The 1F8-reactive transporter comprises the majority of the total transporter pool that is responsible for the insulin-induced increase in glucose transporter number.  相似文献   

5.
Analysis of glucose transporter mRNA levels in adipose tissue from streptozotocin (STZ)-induced diabetic rats demonstrated a specific decrease (10-fold) in adipose tissue GLUT-4 mRNA with no significant effect on GLUT-1 mRNA levels. Treatment of STZ-diabetic rats with twice daily injections of insulin for 1-3 days resulted in a 16-fold increase in the relative amount of GLUT-4 mRNA to levels approximately 2-fold greater than those in control animals. However, after 7 days of insulin therapy the amount of GLUT-4 mRNA decreased approximately 2-fold back to the levels in the control animals. Normalization of the STZ-induced serum hyperglycemia by phlorizin treatment, which inhibits renal tubular reabsorption of glucose, had no effect on GLUT-4 mRNA in the absence of insulin. Similar to STZ-diabetes, fasting for 48 h also reduced adipose GLUT-4 mRNA levels. Parenteral administration of insulin with glucose over 7.5 h, but not glucose alone, increased the levels of the GLUT-4 mRNA 3- to 4-fold. These studies demonstrate that the relative glycemic state does not influence GLUT-4 glucose transporter mRNA expression in vivo and strongly suggests that insulin is a major factor regulating the levels of GLUT-4 mRNA in adipose tissue.  相似文献   

6.
7.
Antibodies specific for the insulin-regulatable glucose transporter (GLUT 4) were used to immunolocalize this protein in brown adipose tissue from basal- and insulin-treated rats. Cryosections of fixed tissue were incubated with antibodies, which were subsequently labeled with Protein A/gold and examined by EM. Antibodies against albumin and cathepsin D were also used with gold particles of different sizes to identify early and late endosomes, respectively. Under basal conditions 99% of the GLUT 4 labeling was located within the cell. Labeling was predominantly in the trans-Golgi reticulum and tubulo-vesicular structures elsewhere in the cytoplasm. In insulin-stimulated cells approximately 40% of the GLUT 4 labeling was at the cell surface, where it was randomly distributed, except for occasional clustering in coated pits. Moreover, after insulin treatment, GLUT 4 was also enriched in early endosomes. We conclude that translocation of GLUT 4 to the cell surface is the major mechanism by which insulin increases glucose transport. In addition, these results suggest that in the presence of insulin GLUT 4 recycles from the cell surface, probably via the coated pit-endosome pathway that has been characterized for cell surface receptors, and also that insulin causes the redistribution of GLUT 4 by stimulating exocytosis from GLUT 4-containing tubulo-vesicular structures, rather than by slowing endocytosis of GLUT 4.  相似文献   

8.
Insulin increases glucose transport into cells of target tissues, primarily striated muscle and adipose. This is accomplished via the insulin-dependent translocation of the facilitative glucose transporter 4 (GLUT4) from intracellular storage sites to the plasma membrane. Insulin binds to the cell-surface insulin receptor and activates its intrinsic tyrosine kinase activity. The subsequent activation of phosphatidylinositol 3-kinase (PI 3-K) is well known to be necessary for the recruitment of GLUT4 to the cell surface. Both protein kinase B (PKB) and the atypical protein kinase C(lambda/zeta) (PKClambda/zeta) appear to function downstream of PI 3-K, but how these effectors influence GLUT4 translocation remains unknown. In addition, emerging evidence suggests that a second signaling cascade that functions independently of the PI 3-K pathway is also required for the insulin-dependent translocation of GLUT4. This second pathway involves the Rho-family GTP binding protein TC10, which functions within the specialized environment of lipid raft microdomains at the plasma membrane. Future work is necessary to identify the downstream effectors that link TC10, PKB, and PKClambda/zeta to GLUT4 translocation. Progress in this area will come from a better understanding of the compartmentalization of GLUT4 within the cell and of the mechanisms responsible for targeting the transporter to specialized insulin-responsive storage compartments. Furthermore, an understanding of how GLUT4 is retained within and released from these compartments will facilitate the identification of downstream signaling molecules that function proximal to the GLUT4 storage sites.  相似文献   

9.
A new impermeant photoaffinity label has been used for identifying cell surface glucose transporters in isolated rat adipose cells. This compound is 2-N-4(1-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis(D-mannos-4- yloxy)-2- propylamine. We have used this reagent in combination with immunoprecipitation by specific antibodies against the GLUT4 and GLUT1 glucose transporter isoforms to estimate the relative abundance of these two transporters on the surface of the intact adipose cell following stimulation by insulin and phorbol 12-myristate 13-acetate (PMA). In the basal state, GLUT4 and GLUT1 are both present at the cell surface but GLUT4 is more abundant than GLUT1. In response to insulin, GLUT4 increases 15-20-fold and GLUT1 increases approximately 5-fold while 3-O-methyl-D-glucose transport is stimulated 20-30-fold. By contrast, PMA only induces a approximately 4-fold increase in GLUT4 while GLUT1 increases approximately 5-fold to the same level as seen with insulin. In addition, PMA stimulates 3-O-methyl-D-glucose transport approximately 3-fold to only 13% of the insulin-stimulated state. Thus GLUT4 is the major glucose transporter isoform under all conditions, and it is selectively and markedly enriched in response to insulin but not PMA which increases GLUT1 and GLUT4 equally. Furthermore, stimulation of glucose transport activity correlates closely with the appearance of GLUT4 on the cell surface in response to both insulin and PMA but does not correlate with the sum of GLUT1 and GLUT4 appearance. These results suggest that GLUT4 may be inherently more active than GLUT1 due to a higher TK (turnover/Km).  相似文献   

10.
Conditions are described which allow the isolation of rat adipose-cell plasma membranes retaining a large part of the stimulatory effect of insulin in intact cells. In these membranes, the magnitude of glucose-transport stimulation in response to insulin was compared with the concentration of transporters as measured with the cytochalasin-B-binding assay or by immunoblotting with an antiserum against the human erythrocyte glucose transporter. Further, the substrate- and temperature-dependencies of the basal and insulin-stimulated states were compared. Under carefully controlled homogenization conditions, insulin-treated adipose cells yielded plasma membranes with a glucose transport activity 10-15-fold higher than that in membranes from basal cells. Insulin increased the transport Vmax. (from 1,400 +/- 300 to 15,300 +/- 3,400 pmol/s per mg of protein; means +/- S.E.M.; assayed at 22 degrees C) without any significant change in Km (from 17.8 +/- 4.4 to 18.9 +/- 1.4 nM). Arrhenius plots of plasma-membrane transport exhibited a break at 21 degrees C, with a higher activation energy over the lower temperature range. The activation energy over the higher temperature range was significantly lower in membranes from basal than from insulin-stimulated cells [27.7 +/- 5.0 kJ/mol (6.6 +/- 1.2 kcal/mol) and 45.3 +/- 2.1 kJ/mol (10.8 +/- 0.5 kcal/mol) respectively], giving rise to a larger relative response to insulin when transport was assayed at 37 degrees C as compared with 22 degrees C. The stimulation of transport activity at 22 degrees C was fully accounted for by an increase in the concentration of transporters measured by cytochalasin B binding, if a 5% contamination of plasma membranes with low-density microsomes was assumed. However, this 10-fold stimulation of transport activity contrasted with an only 2-fold increase in transporter immunoreactivity in membranes from insulin-stimulated cells. These data suggest that, in addition to stimulating the translocation of glucose transporters to the plasma membrane, insulin appears to induce a structural or conformational change in the transporter, manifested in an altered activation energy for plasma-membrane transport and possibly in an altered immunoreactivity as assessed by Western blotting.  相似文献   

11.
The facilitative glucose transporter GLUT4 plays a key role in regulating whole body glucose homeostasis. GLUT4 dramatically changes its distribution upon insulin stimulation, and insulin-resistant diabetes is often linked with compromised translocation of GLUT4 under insulin stimulation. To elucidate the functional significance of the sole N-glycan chain on GLUT4, wild-type GLUT4 and a GLUT4 glycosylation mutant conjugated with enhanced GFP were stably expressed in HeLa cells. The N-glycan contributed to the overall stability of newly synthesized GLUT4. Moreover, cell surface expression of wild-type GLUT4 in HeLa cells was elevated upon insulin treatment, whereas the glycosylation mutant lost the ability to respond to insulin. Subcellular distribution of the mutant was distinct from that of wild-type GLUT4, implying that the subcellular localization required for insulin-mediated translocation was impaired in the mutant protein. Interestingly, kifunensine-treated cells also lost sensitivity to insulin, suggesting the functional importance of the N-glycan structure for GLUT4 trafficking. The K(m) or turnover rates of wild-type and mutant GLUT4, however, were similar, suggesting that the N-glycan had little effect on transporter activity. These findings underscore the critical roles of the N-glycan chain in quality control as well as intracellular trafficking of GLUT4.  相似文献   

12.
Cycloheximide, a potent inhibitor of protein synthesis, has been used to examine the relationship between recruitment of hexose carriers and the activation of glucose transport by insulin in rat adipocytes. Adipocytes were preincubated +/- cycloheximide for 90 min then +/- insulin for a further 30 min. We measured 3-O-methylglucose uptake in intact cells and in isolated plasma membrane vesicles. The concentration of glucose transporters in plasma membranes and low density microsomes was measured using a cytochalasin B binding assay. Cycloheximide had no affect on basal or insulin-stimulated 3-O-methylglucose uptake in intact cells or in plasma membrane vesicles. However, the number of glucose carriers in plasma membranes prepared from cells incubated with cycloheximide and insulin was markedly reduced compared to that from cells incubated with insulin alone (14 and 34 pmol/mg protein, respectively). Incubation of cells with cycloheximide alone did not change the concentration of glucose carriers in either plasma membranes or in low density microsomes compared to control cells. When isolated membranes were analyzed with an antiserum prepared against human erythrocyte glucose transporter, decreased cross-reactivity was observed in plasma membranes prepared from cycloheximide/insulin-treated cells compared to those from insulin cells. The present findings indicate that incubation of adipocytes with cycloheximide greatly reduces the number of hexose carriers in the plasma membrane of insulin-stimulated cells. Despite this reduction, insulin is still able to maximally stimulate glucose uptake. Thus, these data suggest an apparent dissociation between insulin stimulation of glucose transport activity and the recruitment of glucose carriers by the hormone.  相似文献   

13.
14.
Endothelin-1 (ET-1) disrupts insulin-regulated glucose transporter GLUT4 trafficking. Since the negative consequence of chronic ET-1 exposure appears to be independent of signal disturbance along the insulin receptor substrate-1/phosphatidylinositol (PI) 3-kinase (PI3K)/Akt-2 pathway of insulin action, we tested if ET-1 altered GLUT4 regulation engaged by osmotic shock, a PI3K-independent stimulus that mimics insulin action. Regulation of GLUT4 by hyperosmotic stress was impaired by ET-1. Because of the mutual disruption of both insulin- and hyperosmolarity-stimulated GLUT4 translocation, we tested whether shared signaling and/or key phosphatidylinositol 4,5-bisphosphate (PIP2)-regulated cytoskeletal events of GLUT4 trafficking were targets of ET-1. Both insulin and hyperosmotic stress signaling to Cbl were impaired by ET-1. Also, plasma membrane PIP2 and cortical actin levels were reduced in cells exposed to ET-1. Exogenous PIP2, but not PI 3,4,5-bisphosphate, restored actin structure, Cbl activation, and GLUT4 translocation. These data show that ET-1-induced PIP2/actin disruption impairs GLUT4 trafficking elicited by insulin and hyperosmolarity. In addition to showing for the first time the important role of PIP2-regulated cytoskeletal events in GLUT4 regulation by stimuli other than insulin, these studies reveal a novel function of PIP2/actin structure in signal transduction.  相似文献   

15.
Glucose transport across the plasma membrane is mediated by a family of glucose transporter proteins (GLUTs), several of which have been identified in mammalian, avian, and, more recently, in fish species. Here, we report on the cloning of a salmon GLUT from adipose tissue with a high sequence homology to mammalian GLUT4 that has been named okGLUT4. Kinetic analysis of glucose transport following expression in Xenopus laevis oocytes demonstrated a 7.6 +/- 1.4 mM K(m) for 2-deoxyglucose (2-DG) transport measured under zero-trans conditions and 14.4 +/- 1.5 mM by equilibrium exchange of 3-O-methylglucose. Transport of 2-DG by okGLUT4-injected oocytes was stereospecific and was competed by D-glucose, D-mannose, and, to a lesser extent, D-galactose and D-fructose. In addition, 2-DG uptake was inhibited by cytochalasin B and ethylidene glucose. Moreover, insulin stimulated glucose uptake in Xenopus oocytes expressing okGLUT4 and in isolated trout adipocytes, which contain the native form of okGLUT4. Despite differences in protein motifs important for insulin-stimulated translocation of mammalian GLUT4, okGLUT4 was able to translocate to the plasma membrane from intracellular localization sites in response to insulin when expressed in 3T3-L1 adipocytes. These data demonstrate that okGLUT4 is a structural and functional fish homolog of mammalian GLUT4 but with a lower affinity for glucose, which could in part explain the lower ability of fish to clear a glucose load.  相似文献   

16.
The GLUT4 glucose transporter   总被引:5,自引:0,他引:5  
Huang S  Czech MP 《Cell metabolism》2007,5(4):237-252
Few physiological parameters are more tightly and acutely regulated in humans than blood glucose concentration. The major cellular mechanism that diminishes blood glucose when carbohydrates are ingested is insulin-stimulated glucose transport into skeletal muscle. Skeletal muscle both stores glucose as glycogen and oxidizes it to produce energy following the transport step. The principal glucose transporter protein that mediates this uptake is GLUT4, which plays a key role in regulating whole body glucose homeostasis. This review focuses on recent advances on the biology of GLUT4.  相似文献   

17.
When rats were exposed to a cold environment (4 degrees C) for 10 days, tissue glucose utilization was increased in brown adipose tissue (BAT), a tissue specified for non-shivering thermogenesis, but not in skeletal muscle. Cold exposure also caused an increase in the amount of GLUT4, an isoform of glucose transporters expressed in insulin-sensitive tissues, in parallel with an increased cellular level of GLUT4 mRNA. In contrast to BAT, no significant effect of cold exposure was found in skeletal muscle. The results suggest the cold-induced increase in glucose utilization by BAT is attributable, at least in part, to the increased expression of GLUT4.  相似文献   

18.
19.
Insulin's rapid action to increase glucose transport is believed to occur primarily through the translocation of glucose transporters from an intracellular pool to the plasma membrane. To better understand the mechanism involved, we studied the role of protein synthesis in glucose transporter translocation by using the protein synthesis inhibitor, cycloheximide. Isolated rat epididymal adipose cells were incubated in the presence or absence of cycloheximide (10 micrograms/ml) for a total of 120 min. Insulin (7 nM) was added to half of the cells from both groups for the final 30 min. Protein synthesis was inhibited by approximately 90%, as measured by [14C]leucine incorporation, in the cells exposed to cycloheximide. The 3-O-methylglucose uptake in intact cells was slightly increased in the basal state with cycloheximide treatment, but the insulin-stimulated 3-O-methylglucose uptake was unchanged by cycloheximide. The distribution of glucose transporters in the different subcellular membrane fractions, as measured by the cytochalasin B binding assay, was unchanged by cycloheximide. These results suggest that insulin's stimulation of glucose transport and translocation of glucose transporters can occur without acute protein synthesis.  相似文献   

20.
Evidence suggests that chromium supplementation may alleviate symptoms associated with diabetes, such as high blood glucose and lipid abnormalities, yet a molecular mechanism remains unclear. Here, we report that trivalent chromium in the chloride (CrCl3) or picolinate (CrPic) salt forms mobilize the glucose transporter, GLUT4, to the plasma membrane in 3T3-L1 adipocytes. Concomitant with an increase in GLUT4 at the plasma membrane, insulin-stimulated glucose transport was enhanced by chromium treatment. In contrast, the chromium-mobilized pool of transporters was not active in the absence of insulin. Microscopic analysis of an exofacially Myc-tagged enhanced green fluorescent protein-GLUT4 construct revealed that the chromium-induced accumulation of GLUT4-containing vesicles occurred adjacent to the inner cell surface membrane. With insulin these transporters physically incorporated into the plasma membrane. Regulation of GLUT4 translocation by chromium did not involve known insulin signaling proteins such as the insulin receptor, insulin receptor substrate-1, phosphatidylinositol 3-kinase, and Akt. Consistent with a reported effect of chromium on increasing membrane fluidity, we found that chromium treatment decreased plasma membrane cholesterol. Interestingly, cholesterol add-back to the plasma membrane prevented the beneficial effect of chromium on both GLUT4 mobilization and insulin-stimulated glucose transport. Furthermore, chromium action was absent in methyl-beta-cyclodextrin-pretreated cells already displaying reduced plasma membrane cholesterol and increased GLUT4 translocation. Together, these data reveal a novel mechanism by which chromium may enhance GLUT4 trafficking and insulin-stimulated glucose transport. Moreover, these findings at the level of the cell are consistent with in vivo observations of improved glucose tolerance and decreased circulating cholesterol levels after chromium supplementation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号