首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
采用0.5%TritonX 100破碎细胞,15%Percoll分离盐藻细胞核,25mM二碘水杨酸锂(lithiumdi iodosalicylate,LIS)抽提核蛋白,限制酶消化除去结合松弛的DNA,蛋白酶K SDS处理,酚/氯仿抽提,乙醇 沉淀提取核基质附着DNA,限制酶酶切连至pUC18载体上构建MARs文库。随机挑选6个克隆进行体外结 合实验筛选,筛选出一能与核基质结合的克隆,测序分析结果表明该序列具明显的MAR序列特征。  相似文献   

3.
Early in female mammalian embryogenesis, one of the two X chromosomes is inactivated to compensate the gene dosage between males and females. One of the features of X chromosome inactivation (XCI) is the late replication of the inactivated X chromosome. This study reports the identification, by competitive PCR of nascent DNA, of a replication origin in intron 2 of the human X-linked HPRT gene, that is functional only on the inactive X. Features frequently associated with replication origins, including a peak of enhanced DNA flexibility, a perfect match to the yeast ACS sequence, a 14/15 match to the Drosophila topoisomerase II consensus, and a 20/21 match to an initiation region consensus sequence, were identified close to the replication origin. The origin is located approximately 2 kb upstream of a matrix attachment region (MAR) and also contains two A:T-rich elements, thought to facilitate DNA unwinding.  相似文献   

4.
5.
6.
Previous work has shown that the MAR (matrix attachment region) could increase transgene expression in stably transfected CHO (Chinese‐hamster ovary) cells. To study the positional effect of MAR on transgene expression, three expression vectors were constructed which contained the human β‐globin MAR in different sites, including the vector with two MARs flanking the CAT (chloramphenicol acetyltransferase) expression cassette, one MAR at the 5′ or 3′ site. These vectors were transfected into CHO cells. The level of CAT gene expression was most effectively increased by two MARs flanking the CAT expression cassette. This increase was also seen when MAR was inserted at the 5′ site upstream of the expression cassette, whereas the transgene expression level decreased when MAR was inserted at the 3′ site downstream of the expression cassette. We have also shown that the transgene expression level is not directly proportional to the gene copy number, and gene copy number dependency does not exist.  相似文献   

7.
The recent discovery of DNA sequences responsible for the specific attachment of chromosomal DNA to the nuclear skeleton (MARs/SARs) was an important step towards our understanding of the functional and structural organization of eukaryotic chromatin [Mirkovitch et al.: Cell 44:273-282, 1984; Cockerill and Garrard: Cell 44:273-282, 1986]. A most important question, however, remains the nature of the matrix proteins involved in the specific binding of the MARs. It has been shown that topoisomerase II and histone H1 were capable of a specific interaction with SARs by the formation of precipitable complexes [Adachi et al.: EMBO J8:3997-4006, 1989; Izaurralde et al.: J Mol Biol 210:573-585, 1989]. Here, applying a different approach, we were able to "visualize" some of the skeletal proteins recognizing and specifically binding MAR-sequences. It is shown that the major matrix proteins are practically the same in both salt- and LIS-extracted matrices. However, the relative MAR-binding activity of the individual protein components may be different, depending on the method of matrix preparation. The immunological approach applied here allowed us to identify some of the individual MAR-binding matrix proteins. Histone H1 and nuclear actin are shown to be not only important components of the matrix, but to be involved in a highly efficient interaction with MAR-sequences as well. Evidence is presented that proteins recognized by the anti-HMG antibodies also participate in MAR-interactions.  相似文献   

8.
9.
A large variety of DNA sequences have been described in nuclear matrix attachment regions. It could be most likely a result of the different methods used for their isolation. The idea about how different types of known DNA sequences (strongly attached to the nuclear matrix, weakly attached, or not attached) directly participate in anchoring DNA loops to the nuclear matrices isolated by different experimental procedures was tested in this study. Matrix-attached (M) and matrix-independent or loop (L) fractions as well as nuclear matrices were isolated using extractions of nuclei with 25 mM lithium 3,5-diiodosalicylate (LIS), 2 M NaCl, 0.65 M ammonium sulphate containing buffers followed by DNase I/RNase A digestion, or according to so designated conventional method. Using PCR-based and in vitro binding assays it was established that LIS and ammonium sulphate extractions gave similar results for the type of attachment of sequences investigated. The harsh extraction with 2 M NaCl or the conventional procedure led to some rearrangements in the attachment of DNA loops. As a result a big part of matrix attached sequences were found detached in the loop fractions. However, the in vitro binding abilities of the MARs to the nuclear matrices isolated by different methods did not change.  相似文献   

10.
Scaffold or matrix-attachment regions (S/MARs) are thought to be involved in the organization of eukaryotic chromosomes and in the regulation of several DNA functions. Their characteristics are conserved between plants and humans, and a variety of biological activities have been associated with them. The identification of S/MARs within genomic sequences has proved to be unexpectedly difficult, as they do not appear to have consensus sequences or sequence motifs associated with them. We have shown that S/MARs do share a characteristic structural property, they have a markedly high predicted propensity to undergo strand separation when placed under negative superhelical tension. This result agrees with experimental observations, that S/MARs contain base-unpairing regions (BURs). Here, we perform a quantitative evaluation of the association between the ease of stress-induced DNA duplex destabilization (SIDD) and S/MAR binding activity. We first use synthetic oligomers to investigate how the arrangement of localized unpairing elements within a base-unpairing region affects S/MAR binding. The organizational properties found in this way are applied to the investigation of correlations between specific measures of stress-induced duplex destabilization and the binding properties of naturally occurring S/MARs. For this purpose, we analyze S/MAR and non-S/MAR elements that have been derived from the human genome or from the tobacco genome. We find that S/MARs exhibit long regions of extensive destabilization. Moreover, quantitative measures of the SIDD attributes of these fragments calculated under uniform conditions are found to correlate very highly (r2>0.8) with their experimentally measured S/MAR-binding strengths. These results suggest that duplex destabilization may be involved in the mechanisms by which S/MARs function. They suggest also that SIDD properties may be incorporated into an improved computational strategy to search genomic DNA sequences for sites having the necessary attributes to function as S/MARs, and even to estimate their relative binding strengths.  相似文献   

11.
A DNA fragment containing consensus sequence of matrix attachment region (MAR) has been isolated from pea genome. Compared with original DNA sequence, one 115 bp-long repeat sequence is deleted in the obtained DNA sequence. DNA fragments located upstream and downstream of repeat DNA sequence respectively share 84% and 93% homology to the corresponding original sequence, and contain A-box or T-box and TATAA sequence, which is characteristics short sequence of MARs. To test the function of the DNA sequence, the plant expression vectors in which β-glucuronidase gene (GUS, uidA) was used as reporter gene were constructed and transferred into tobaccos via Agrobacterium-mediated transformation procedure. Quantitative GUS assay showed that the average level of uidA expression was increased twofold for the presence of MAR, and the highest level of GUS activity of transgenic plants could be increased six times. The results cited above suggest that the isolated DNA sequence contains consensus sequence of MARs and  相似文献   

12.
Scaffold or matrix attachment region (S/MAR) genetic elements have previously been proposed to insulate transgenes from repressive effects linked to their site of integration within the host cell genome. We have evaluated their use in various stable transfection settings to increase the production of recombinant proteins such as monoclonal antibodies from Chinese hamster ovary (CHO) cell lines. Using the green fluorescent protein coding sequence, we show that S/MAR elements mediate a dual effect on the population of transfected cells. First, S/MAR elements almost fully abolish the occurrence of cell clones that express little transgene that may result from transgene integration in an unfavorable chromosomal environment. Second, they increase the overall expression of the transgene over the whole range of expression levels, allowing the detection of cells with significantly higher levels of transgene expression. An optimal setting was identified as the addition of a S/MAR element both in cis (on the transgene expression vector) and in trans (co-transfected on a separate plasmid). When used to express immunoglobulins, the S/MAR element enabled cell clones with high and stable levels of expression to be isolated following the analysis of a few cell lines generated without transgene amplification procedures.  相似文献   

13.
14.
We have isolated and characterized the genomic clone CHN50 corresponding to tobacco basic endochitinase (E.C.3.2.1.14). DNA sequence and blotting analysis reveal that the coding sequence of the gene present on CHN50 is identical to that of the cDNA clone pCHN50 and, moreover, the CHN50 gene has its origin in the progenitor of tobacco, Nicotiana sylvestris. Tobacco basic chitinases are encoded by a small gene family that consists of at least two members, the CHN50 gene and a closely related CHN17 gene which was characterized previously. By northern blot analysis, it is shown that the CHN50 gene is highly expressed in suspension-cultured tobacco cells and the mRNA accumulates at late logarithmic growth phase. To identify cis-DNA elements involved in the expression of the CHN50 gene in suspensioncultured cells, the chimeric gene consisting of 1.1 kb CHN50 5 upstream region fused to the coding sequence of -glucuronidase (GUS) was introduced by electroporation into protoplasts isolated from suspension-cultured tobacco cells. Transient GUS activity was found to be dependent on the growth phase of the cultured cells, from which protoplasts had been prepared. Functional analysis of 5 deletions suggests that the distal region between -788 and -345 contains sequences that potentiate the high-level expression in tobacco protoplasts and the region (-68 to -47) proximal to the TATA box functions as a putative silencer.  相似文献   

15.
The nuclear matrix (NM) contains a number of proteins that have been found to be associated with transformation. We have previously identified changes in the NM associated with prostate cancer. In this study, we examine the molecular changes that are associated with prostate cancer development in transgenic adenocarcinoma of mouse prostate (TRAMP) model by studying the differences in the NM proteins (NMPs). We collected prostates from the TRAMP males at six critical time points: 6 weeks (puberty), 11 and 19 weeks (development of mild hyperplasia), 25 weeks (development of severe hyperplasia), 31 and 37 weeks (development of neoplasia). The nuclear matrices from the prostates collected at these time points were then isolated and the NMPs were characterized by high-resolution two-dimensional gel electrophoresis. We found three NMPs (E1A, E1B, and E1C) that were present in the 6-week-old prostate and two NMPs (E2A and E2B) that were present in the 11-week-old prostate. These NMPs were absent in the 31- and 37-week-old prostate. We also found five NMPs (E3A-E3E) that were present in the 31-week-old prostate, but absent in the earlier time points. In addition, three NMPs (Le1, Le2, Le3) were present at higher expression in the 6-, 11-, 19-, and 25-weeks old TRAMP prostates, but they were expressed lower during the development of neoplasia at 31- and 37-weeks old. Identification of these NMPs permits the development of novel markers that can characterize various stages of prostate cancer development as well as potentially therapeutic targets.  相似文献   

16.
A complex of three proteins (of 80, 70, 58 kDa-p80, p70, and p58, respectively) with the ability to bind alphoid DNA (alpha-satDNA) was revealed by gel mobility shift assay (GMSA) in human nuclear matrix. The probes of the alpha-satDNA bound in the GMSA with the greatest specificity, but the complex was capable of binding human satellite 3 fragment. According to ion exchange and affinity chromatography, the complex includes two DNA-binding proteins, p70 and p80, and a non-DNA-binding one, p58, which enhances the specificity of binding to the alpha-satDNA. GMSA, SDS-PAGE and immunoblotting showed that the lamins, as well as constitutive centromeric proteins (CENP-A, CENP-B, CENP-C, CENP-G), were not incorporated into the complex. It was demonstrated by immunoprecipitation assay that p70 and, probably p58, share a common antigen determinant with the rod domain of intermediate filaments (IF) proteins. The results obtained indicate that the nuclear matrix contains at least one IF-related protein that is able to bind specifically to alpha-satDNA in vitro and that this protein is distinct from the lamins.  相似文献   

17.
Chromatin insulators have been shown to stabilize transgene expression. Although insulators have been suggested to regulate the subcellular localization of chromosomes, it is still unclear whether this property is important for their anti-silencing activity. To investigate the underlying mechanisms governing the anti-silencing function of insulators, we studied the association of sea urchin arylsulfatase insulator (ArsI) with the nuclear matrix, which is a key component of the subnuclear localization of the genome. ArsI did not potentiate the nuclear matrix association with the transgene, even though it showed strong anti-silencing activity. This observation was in clear contrast to the results of the experiment using a human interferon-beta scaffold attachment region, in which the anti-silencing effect coincided with the enhanced matrix association. Chromatin immunoprecipitation analyses suggested that the absence of the matrix binding by ArsI was due to a lack of its binding to CCCTC-binding factor (CTCF), a protein known to be associated with matrix binding by chicken beta-globin insulator. Furthermore, ArsI maintained the nucleosome occupancy within the transgene at a constant level during long-term culture, although ArsI itself was not a nucleosome-excluding sequence. Taken together, these results suggest that this insulator exerts its anti-silencing activity by counteracting silencing-associated factors to maintain local chromatin environment, rather than by remodeling the subnuclear localization of the transgene locus.  相似文献   

18.
Nuclear DNA of metazoans is organized in supercoiled loops anchored to a proteinaceous substructure known as the nuclear matrix (NM). DNA is anchored to the NM by non-coding sequences known as matrix attachment regions (MARs). There are no consensus sequences for identification of MARs and not all potential MARs are actually bound to the NM constituting loop attachment regions (LARs). Fundamental processes of nuclear physiology occur at macromolecular complexes organized on the NM; thus, the topological organization of DNA loops must be important. Here, we describe a general method for determining the structural DNA loop organization in any large genomic region with a known sequence. The method exploits the topological properties of loop DNA attached to the NM and elementary topological principles such as that points in a deformable string (DNA) can be positionally mapped relative to a position-reference invariant (NM), and from such mapping, the configuration of the string in third dimension can be deduced. Therefore, it is possible to determine the specific DNA loop configuration without previous characterization of the LARs involved. We determined in hepatocytes and B-lymphocytes of the rat the DNA loop organization of a genomic region that contains four members of the albumin gene family.  相似文献   

19.
We have reinvestigated the association of DNA primase activity with the nuclear matrix prepared from exponentially growing HeLa S3 cells. We have found that 25–30 per cent of the nuclear primase activity resists extraction with 2 M NaCl and digestion with Dnase I. Unlike previous investigations, done with the same cell line, the results showed that nuclear matrix-bound DNA primase activity represented less than 10 per cent of the total cell activity. Association of high levels of primase activity with the nuclear matrix was strictly dependent on a 37°C incubation of isolated nuclei prior to subfractionation. Evidence was obtained that the method used for preparing nuclei can have a dramatic effect on the amount of primase activity which is recovered both in the postnuclear supernatant and in isolated nuclei, thus seriously affecting the interpretation of the results about the quantity of DNA primase activity bound to the nuclear matrix.  相似文献   

20.
The mammalian sperm nucleus provides an excellent model for studying the relationship between the formation of nuclear structure and the initiation of DNA replication. We previously demonstrated that mammalian sperm nuclei contain a nuclear matrix that organizes the DNA into loop domains in a manner similar to that of somatic cells. In this study, we tested the minimal components of the sperm nucleus that are necessary for the formation of the male pronucleus and for the initiation of DNA synthesis. We extracted mouse sperm nuclei with high salt and dithiothreitol to remove the protamines in order to form nuclear halos. These were then treated with either restriction endonucleases to release the DNA not directly associated with the nuclear matrix or with DNAse I to digest all the DNA. The treated sperm nuclei were injected into oocytes, and the paternal pronuclear formation and DNA synthesis was monitored. We found that restriction digested sperm nuclear halos were capable of forming paternal pronuclei and initiating DNA synthesis. However, when isolated mouse sperm DNA or sperm DNA reconstituted with the nuclear matrices were injected into oocytes, no paternal pronuclear formation or DNA synthesis was observed. These data suggest that the in situ nuclear matrix attachment organization of sperm DNA is required for mouse paternal pronuclear DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号