首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The splicing machinery which positions a protein export complex near the exon-exon junction mediates nuclear export of mRNAs generated from intron-containing genes. Many Epstein-Barr virus (EBV) early and late genes are intronless, and an alternative pathway, independent of splicing, must export the corresponding mRNAs. Since the EBV EB2 protein induces the cytoplasmic accumulation of intronless mRNA, it is tempting to speculate that EB2 is a viral adapter involved in the export of intronless viral mRNA. If this is true, then the EB2 protein is essential for the production of EBV infectious virions. To test this hypothesis, we generated an EBV mutant in which the BMLF1 gene, encoding the EB2 protein, has been deleted (EBV(BMLF1-KO)). Our studies show that EB2 is necessary for the production of infectious EBV and that its function cannot be transcomplemented by a cellular factor. In the EBV(BMLF1-KO) 293 cells, oriLyt-dependent DNA replication was greatly enhanced by EB2. Accordingly, EB2 induced the cytoplasmic accumulation of a subset of EBV early mRNAs coding for essential proteins implicated in EBV DNA replication during the productive cycle. Two herpesvirus homologs of the EB2 protein, the herpes simplex virus type 1 protein ICP27 and, the human cytomegalovirus protein UL69, only partly rescued the phenotype of the EBV(BMLF1-KO) mutant, indicating that some EB2 functions in virus production cannot be transcomplemented by ICP27 and UL69.  相似文献   

2.
The Epstein–Barr virus protein (EB2) allows the nuclear export of a particular subset of early and late viral RNAs derived from intronless genes. EB2 is conserved among most herpesvirus members and its presence is essential for the production of infectious particles. Here we show that, besides its role as a nuclear export factor, EB2 strongly stimulates translation of unspliced mRNAs without affecting overall cellular translation. Interestingly, this effect can be reversed by the addition of an intron within the gene. The spliced mRNA is then efficiently exported and translated even in the absence of EB2. Moreover, we show that EB2 associates with translating ribosomes and increases the proportion of its target RNA in the polyribosomal fraction. Finally, testing of EB2 homolog proteins derived from EBV-related herpesviruses, shows that, even if they play similar roles within the replication cycle of their respective virus, their mechanisms of action are different.  相似文献   

3.
4.
5.
6.
7.
The human cytomegalovirus protein pUL69 belongs to a family of regulatory factors that is conserved within the Herpesviridae and includes the proteins ICP27 of herpes simplex virus type 1 and EB2 of Epstein–Barr virus. ICP27 and EB2 have been shown to facilitate the nuclear export of viral mRNAs via interacting with the cellular mRNA export factor REF. Furthermore, direct RNA-binding of these proteins was found to be essential for their stimulating effects on mRNA export. Recently, we demonstrated that pUL69 shares common features with ICP27 and EB2 such as (i) nucleocytoplasmic shuttling and (ii) stimulation of nuclear RNA export via binding to the cellular mRNA export machinery. Here, we demonstrate that pUL69 can also interact with RNA both in vivo and in vitro via a complex N-terminal RNA-binding domain consisting of three arginine-rich motifs. Interestingly, the RNA-binding domain of pUL69 overlaps with both the NLS and the binding site of the cellular mRNA export factors UAP56 and URH49. While the deletion of the UAP56/URH49-binding site abolished pUL69-mediated RNA export, an RNA-binding deficient pUL69 mutant which still interacts with UAP56/URH49 retained its RNA export activity. This surprising finding suggests that, in contrast to its homologues, RNA-binding is not a prerequisite for pUL69-mediated nuclear RNA export.  相似文献   

8.
9.
The Epstein-Barr Virus (EBV) early protein EB2 (also called BMLF1, Mta, or SM) promotes the nuclear export of a subset of early and late viral mRNAs and is essential for the production of infectious virions. We show here that in vitro, protein kinase CK2alpha and -beta subunits bind both individually and, more efficiently, as a complex to the EB2 N terminus and that the CK2beta regulatory subunit also interacts with the EB2 C terminus. Immunoprecipitated EB2 has CK2 activity that phosphorylates several sites within the 80 N-terminal amino acids of EB2, including Ser-55, -56, and -57, which are localized next to the nuclear export signal. EB2S3E, the phosphorylation-mimicking mutant of EB2 at these three serines, but not the phosphorylation ablation mutant EB2S3A, efficiently rescued the production of infectious EBV particles by HEK293(BMLF1-KO) cells harboring an EB2-defective EBV genome. The defect of EB2S3A in transcomplementing 293(BMLF1-KO) cells was not due to impaired nucleocytoplasmic shuttling of the mutated protein but was associated with a decrease in the cytoplasmic accumulation of several late viral mRNAs. Thus, EB2-mediated production of infectious EBV virions is regulated by CK2 phosphorylation at one or more of the serine residues Ser-55, -56, and -57.  相似文献   

10.
The binding of the viral major glycoprotein BLLF1 (gp350/220) to the CD21 cellular receptor is thought to play an essential role during infection of B lymphocytes by the Epstein-Barr virus (EBV). However, since CD21-negative cells have been reported to be infectible with EBV, additional interactions between viral and cellular molecules seem to be probable. Based on a recombinant genomic EBV plasmid, we deleted the gene that encodes the viral glycoprotein BLLF1. We tested the ability of the viral mutant to infect different lymphoid and epithelial cell lines. Primary human B cells, lymphoid cell lines, and nearly all of the epithelial cell lines that are susceptible to wild-type EBV infection could also be successfully infected with the viral mutant in vitro, although the efficiency of infection with BLLF1-negative virus was clearly lower than the one observed with wild-type EBV. Our studies show that the interaction between BLLF1 and CD21 is not absolutely required for the infection of lymphocytes and epithelial cells, indicating that viral molecules other than BLLF1 can mediate the binding of EBV to its target cells. In this context, our results further suggest the hypothesis that additional cellular molecules, apart from CD21, allow virus entry into these cells.  相似文献   

11.
12.
13.
A striking characteristic of mRNA export factors is that they shuttle continuously between the cytoplasm and the nucleus. This shuttling is mediated by specific factors interacting with peptide motifs called nuclear export signals (NES) and nuclear localization signals. We have identified a novel CRM-1-independent transferable NES and two nuclear localization signals in the Epstein-Barr virus mRNA export factor EB2 (also called BMLF1, Mta, or SM) localized at the N terminus of the protein between amino acids 61 and 146. We have also found that a previously described double NES (amino acids 213-236) does not mediate the nuclear shuttling of EB2, but is an interaction domain with the cellular export factor REF in vitro. This newly characterized REF interaction domain is essential for EB2-mediated mRNA export. Accordingly, in vivo, EB2 is found in complexes containing REF as well as the cellular factor TAP. However, these interactions are RNase-sensitive, suggesting that the RNA is an essential component of these complexes.  相似文献   

14.
15.
The Epstein-Barr virus (EBV) protein EB2 (also called Mta, SM, or BMLF1) has properties in common with mRNA export factors and is essential for the production of EBV infectious virions. However, to date no RNA-binding motif essential for EB2-mediated mRNA export has been located in the protein. We show here by Northwestern blot analysis that the EB2 protein purified from mammalian cells binds directly to RNA. Furthermore, using overlapping glutathione S-transferase (GST)-EB2 peptides, we have, by RNA electrophoretic mobility shift assays (REMSAs) and Northwestern blotting, located an RNA-binding motif in a 33-amino acid segment of EB2 that has structural features of the arginine-rich RNA-binding motifs (ARMs) also found in many RNA-binding proteins. A synthetic peptide (called Da), which contains this EB2 ARM, bound RNA in REMSA. A GST-Da fusion protein also bound RNA in REMSA without apparent RNA sequence specificity, because approximately 10 GST-Da molecules bound at multiple sites on a 180-nucleotide RNA fragment. Importantly, a short deletion in the ARM region impaired both EB2 binding to RNA in vivo and in vitro and EB2-mediated mRNA export without affecting the shuttling of EB2 between the nucleus and the cytoplasm. Moreover, ectopic expression of ARM-deleted EB2 did not rescue the production of infectious virions by 293 cells carrying an EBVDeltaEB2 genome, which suggests that the binding of EB2 to RNA plays an essential role in the EBV productive cycle.  相似文献   

16.
The role of herpes simplex virus ICP27 protein in mRNA export is investigated by microinjection into Xenopus laevis oocytes. ICP27 dramatically stimulates the export of intronless viral mRNAs, but has no effect on the export of cellular mRNAs, U snRNAs or tRNA. Use of inhibitors shows, in contrast to previous suggestions, that ICP27 neither shuttles nor exports viral mRNA via the CRM1 pathway. Instead, ICP27-mediated viral RNA export requires REF and TAP/NXF1, factors involved in cellular mRNA export. ICP27 binds directly to REF and complexes containing ICP27, REF and TAP are found in vitro and in virally infected cells. A mutant ICP27 that does not interact with REF is inactive in viral mRNA export. We propose that ICP27 associates with viral mRNAs and recruits TAP/NXF1 via its interaction with REF proteins, allowing the otherwise inefficiently exported viral mRNAs to access the TAP-mediated export pathway. This represents a novel mechanism for export of viral mRNAs.  相似文献   

17.
Cellular pre-mRNA splicing is inhibited by ICP27, a herpes simplex virus regulatory protein, resulting in the shutoff of host protein synthesis. Here we reveal that ICP27 also mediates the export of some virus RNAs via a Crm1-dependent pathway and present evidence that independent domains are required for these functions. Sorting of some viral mRNAs for nuclear export requires Crm1, while other virus mRNAs are exported via another pathway.  相似文献   

18.
19.
Localization of HIV-1 RNA in mammalian nuclei   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

20.
Productive infection and successful replication of human immunodeficiency virus 1 (HIV-1) requires the balanced expression of all viral genes. This is achieved by a combination of alternative splicing events and regulated nuclear export of viral RNA. Because viral splicing is incomplete and intron-containing RNAs must be exported from the nucleus where they are normally retained, it must be ensured that the unspliced HIV-1 RNA is actively exported from the nucleus and protected from degradation by processes such as nonsense-mediated decay. Here we report the identification of a novel 178-nt-long exon located in the gag-pol gene of HIV-1 and its inclusion in at least two different mRNA species. Although efficiently spliced in vitro, this exon appears to be tightly repressed and infrequently used in vivo. The splicing is activated or repressed in vitro by the splicing factors ASF/SF2 and heterogeneous nuclear ribonucleoprotein A1, respectively, suggesting that splicing is controlled by these factors. Interestingly, mutations in the 5'-splice site resulted in a dramatic reduction in the steady-state level of HIV-1 RNA, and this effect was partially reversed by expression of U1 small nuclear RNA harboring the compensatory mutation. This implies that U1 small nuclear RNA binding to optimal but non-functional splice sites might have a role in protecting unspliced HIV-1 mRNA from degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号