首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Constitutive IL-18 expression is detected from many different cells, including macrophages, keratinocytes, and osteoblasts. It has been known that IL-18 gene expression is regulated by two different promoters (p1 promoter and p2 promoter). When RAW 264.7 macrophages were treated with IFN-gamma, IL-18 gene expression was increased in a dose- and time-dependent manner. IFN-gamma activated the inducible promoter 1, but not the constitutive promoter 2. Mutagenesis studies indicated that an IFN consensus sequence-binding protein (ICSBP) binding site between -39 and -22 was critical for the IFN-gamma inducibility. EMSA using an ICSBP oligonucleotide probe showed that IFN-gamma treatment increased the formation of DNA-binding complex, which was supershifted with anti-IFN regulatory factor-1 Ab and anti-ICSBP Ab. Another element, an AP-1 site between -1120 and -1083, was important. EMSA using an AP-1-specific oligonucleotide demonstrated that IFN-gamma or LPS treatment increased the AP-1-binding activity. The addition of anti-c-Jun Ab or anti-c-Fos Ab to IFN-gamma- or LPS-treated nuclear extracts resulted in the reduction of AP-1 complex or the formation of a supershifted complex. Taken together, these results indicate that IFN-gamma increased IL-18 gene expression via ICSBP and AP-1 elements.  相似文献   

2.
3.
4.
SCC antigen (SCCA) has been used as a tumor marker for squamous cell carcinoma. Analyses of the SCCA1 and SCCA2 genes, which are almost identical, and their promoters have been reported. Recently it was found that both SCCAs were stimulated by interleukin (IL)-4 and IL-13. Here we analyzed the promoter activity of both SCCAs in the 5'-flanking region, exon 1, and intron 1 to evaluate a putative STAT6 binding site. The addition of intron 1 to the luciferase assay constructs including the 5'-flanking region significantly augmented the promoter activity of both SCCA1 and SCCA2. Furthermore, deletion analyses of intron 1 revealed that a 50-bp fragment of intron 1 that includes putative STAT6 binding site was responsible for the increased promoter activity. Although the sequences of SCCA1 and SCCA2 are very similar in the 5'-flanking region, the analysis of the -337 single nucleotide polymorphism of SCCA2 indicated that this polymorphism may underlie the difference in promoter activity between SCCA1 and SCCA2.  相似文献   

5.
6.
IL-12, pivotal to the development of Th1 cells and formed by association of p35 and p40 subunits, is made by macrophages and the macrophage cell line RAW264.7. In this study, the promoter for p35 was cloned and analyzed. The murine IL-12 p35 gene has promoters upstream from each of the first two exons. The exon 1 and exon 2 promoters, cloned into a reporter vector, were responsive to LPS or IFN-gamma/CD40 ligation in transfected RAW264.7 cells. The exon 2 promoter containing bp -809 to +1 has significant homology to the human p35 promoter. Thus, deletion analysis was performed to determine the regions required for responsiveness to LPS, CD40, and/or IFN-gamma. Base pairs -809 to -740 influenced responsiveness to LPS. In contrast, bp -740to -444 and bp -122 to -100 were required for responses to IFN-gamma, IFN-gamma/LPS, or IFN-gamma/CD40 ligation. Removal of bp -444 to -392 increased the response of the exon 2 promoter to each stimulant. IFN regulatory factor (IRF)-1 is involved in the activity of this promoter at bp -108 to -103 because levels of nuclear IRF-1 correlated with exon 2 promoter activity in response to IFN-gamma and IRF-1 overexpression stimulated and enhanced exon 2 promoter activity. Also, site or deletion mutation of the IRF-1 element at bp -108 to -103 reduced the responsiveness of the promoter and IRF-1 bound to an oligonucleotide containing bp -108 to -103. The data suggest that the response of the p35 promoter to IFN-gamma requires a distinct IRF-1 positive regulatory element at bp -108 to -103.  相似文献   

7.
Interleukin (IL)-12 is a heterodimeric cytokine that is critical for the development of a T-helper-1 immune response and immunity against intracellular pathogens. The IL-12 p40 gene product, expressed specifically in macrophages and dendritic cells, heterodimerizes with p35 to form bioactive IL-12, and heterodimerizes with p19 to comprise the cytokine IL-23. Regulation of the murine IL-12 p40 promoter is complex. Multiple cis-acting elements have been characterized that are involved in activation by bacterial products. However, molecular mechanisms through which interferon (IFN)-gamma and bacterial products synergistically activate IL-12 p40 gene expression are less clear. In this study, a composite NFAT/ICSBP binding site at -68 to -54 is identified that is functionally important for p40 promoter activation by lipopolysaccharide (LPS) and LPS plus IFN-gamma. DNA binding of NFAT and ICSBP is demonstrated on the endogenous promoter by chromatin immunoprecipitation. NFAT is required for ICSBP binding to this region. Overexpression of NFAT and ICSBP synergistically activates the p40 promoter. A dominant negative NFAT molecule attenuates LPS- and IFN-gamma-activated endogenous IL-12 p40 mRNA expression. A physical association between NFAT and ICSBP in the absence of DNA is detected by co-immunoprecipitation of endogenous proteins. Three NFAT domains are required for ICSBP interaction. Finally, in LPS- and IFN-gamma-activated RAW-264.7 cells, the association between NFAT and ICSBP is abrogated by IL-10 priming.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号