首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Embryo specific (emb) mutants exhibit aberrant embryo development without deleterious effects on endosperm development. We have analyzed five emb mutants of maize, which, based on their developmental profiles can be divided into two groups: mutants arrested at early stages and mutants with novel phenotypes. The members of the first group resemble wild-type proembryos and never reach other developmental stages. In the second group the tube-shaped mutants emb*-8522 and emb*-8535 completely lack apical-basal differentiation, while in mutant emb*-8516 a second embryo-like structure arises from the suspensor. The five emb mutations analyzed are non-allelic and two of the mutations are very likely caused by insertion of the transposon mutator, opening the door for their molecular analysis. Received: 10 February 1999 / Accepted: 7 July 1999  相似文献   

2.
3.
A plant embryo consists of an embryonic axis, which eventually grows into the adult body, and one or two nutritive structures, the cotyledons. In the grasses embryo morphogenesis can be divided into three periods: during the first the embryo is regionalized into an embryo proper and suspensor, during the second the embryonic axis is established, and during the third vegetative structures are elaborated. Maize, with its well-characterized embryo-genesis, powerful genetics, and transposon tagging stocks, offers an attractive system for mutational analysis of these events. We have isolated 51 embryo-specific (emb) mutations from active Robertson's Mutator maize stocks. These are single-gene recessive lethals that represent at least 45 independent mutation events. Each of the 25 mutations was located to a chromosome arm using a B-A translocation set that uncovers approximately 40% of the genome; the same test failed to locate 20 others. The embryo phenotype of 27 mutations was characterized by examining mature mutant embryos in fresh dissection: the various emb mutations differ in phenotype and each is consistent in its expression. All 27 mutations result in retarded embryos that are morphologically abnormal. Nine mutants are blocked during the first period; 10 mutants are blocked during the second period; and eight mutants are blocked during the third period. Based on both the genetic and developmental data, it is likely that there are many loci that can mutate to give the emb phenotype and that these genes are crucial to the morphogenesis of the embryo.  相似文献   

4.
5.
Recessive mutations in the maize dsc1 locus prevent normal kernel development. Solidification of the endosperm in homozygous dsc1– mutant kernels was undetectable 12 days after pollination, at which time the tissue was apparently completely solidified in wild-type kernels. At later times endosperm did solidify in homozygous dsc1– mutant kernels, but there was a marked reduction in the volume of the tissue. Embryo growth in homozygous dsc1– kernels was delayed compared to wild-type kernels, but proceeded to an apparently normal stage 1 in which the scutellum, coleoptile, and shoot apex were clearly defined. Embryo growth then ceased and the embryonic tissues degraded. Late in kernel development no tissue distinctions were obvious in dsc1– mutant embryos. Immature mutant embryos germinated when transplanted from kernels to tissue culture medium prior to embryonic degeneration, but only coleoptile proliferation was observed. The dsc1 gene was isolated by transposon tagging. Analysis of the two different dsc1– mutations confirmed that transposon insertion into the cloned genomic locus was responsible for the observed phenotype. Dsc1 mRNA was detected specifically in kernels 5–7 days after pollination. These data indicate Dsc1 function is required for progression of embryo development beyond a specific stage, and also is required for endosperm development.  相似文献   

6.
Clark JK  Sheridan WF 《Genetics》1988,120(1):279-290
We have examined the effects on embryonic and gametophytic development of two nonallelic defective-kernel mutants of maize. Earlier studies indicated that both mutants are abnormal in embryonic morphogenesis as well as in the formation of their endosperm. Mutant rgh*-1210 embryos depart from the normal embryogenic pathway at the proembryo and transition stage, by developing meristematic lobes and losing bilateral symmetry. They continue growth as irregular cell masses that enlarge and become necrotic. Somatic embryos arising in rgh*-1210 callus cultures display the rgh*-1210 mutant phenotype. Mutant fl*-1253B embryos are variably blocked from the coleoptilar stage through stage 2. Following formation of the shoot apex in the mutant embryos the leaf primordia and tissues surrounding the embryonic axis continue growth and cell division, while the scutellum ceases development and becomes hypertrophied. Mutant fl*-1253B embryos are unable to germinate, either in mutant kernels or as immature embryos in culture, and the mutant scutellar tissue does not produce regenerable callus. Expression of the fl*-1253B locus during male gametophytic development is revealed by a marked reduction in pollen transmission as a result of mutant expression during the interval between meiosis and the initiation of pollen tube growth. In both mutants, there is considerable proliferation of the aleurone cells of the endosperm. Mutant expression of rgh*-1210 in the female gametophyte is revealed by the abnormal antipodal cells of the embryo sac. These results show that these two gene loci play unique and crucial roles in normal morphogenesis of the embryo. In addition, it is evident that both mutants are pleiotropic in affecting the development of the endosperm and gametophyte as well as the embryo. These pleiotropisms suggest some commonality in the gene regulation of development in these three tissues.  相似文献   

7.
Glutathione (GSH) has been implicated in maintaining the cell cycle within plant meristems and protecting proteins during seed dehydration. To assess the role of GSH during development of Arabidopsis (Arabidopsis thaliana [L.] Heynh.) embryos, we characterized T-DNA insertion mutants of GSH1, encoding the first enzyme of GSH biosynthesis, gamma-glutamyl-cysteine synthetase. These gsh1 mutants confer a recessive embryo-lethal phenotype, in contrast to the previously described GSH1 mutant, root meristemless 1(rml1), which is able to germinate, but is deficient in postembryonic root development. Homozygous mutant embryos show normal morphogenesis until the seed maturation stage. The only visible phenotype in comparison to wild type was progressive bleaching of the mutant embryos from the torpedo stage onward. Confocal imaging of GSH in isolated mutant and wild-type embryos after fluorescent labeling with monochlorobimane detected residual amounts of GSH in rml1 embryos. In contrast, gsh1 T-DNA insertion mutant embryos could not be labeled with monochlorobimane from the torpedo stage onward, indicating the absence of GSH. By using high-performance liquid chromatography, however, GSH was detected in extracts of mutant ovules and imaging of intact ovules revealed a high concentration of GSH in the funiculus, within the phloem unloading zone, and in the outer integument. The observation of high GSH in the funiculus is consistent with a high GSH1-promoterbeta-glucuronidase reporter activity in this tissue. Development of mutant embryos could be partially rescued by exogenous GSH in vitro. These data show that at least a small amount of GSH synthesized autonomously within the developing embryo is essential for embryo development and proper seed maturation.  相似文献   

8.
The maize seed comprises two major compartments, the embryo and the endosperm, both originating from the double fertilization event. The embryogenetic process allows the formation of a well-differentiated embryonic axis, surrounded by a single massive cotyledon, the scutellum. The mature endosperm constitutes the bulk of the seed and comprises specific regions containing reserve proteins, complex carbohydrates, and oils. To gain more insight into molecular events that underlie seed development, three monogenic mutants were characterized, referred to as emp (empty pericarp) on the basis of their extreme endosperm reduction, first recognizable at about 12 d after pollination. Their histological analysis reveals a partial development of the endosperm domains as well as loss of adhesion between pedicel tissues and the basal transfer layer. In the endosperm, programmed cell death (PCD) is delayed. The embryo appears retarded in its growth, but not impaired in its morphogenesis. The mutants can be rescued by culturing immature embryos, even though the seedlings appear retarded in their growth. The analysis of seeds with discordant embryo-endosperm phenotype (mutant embryo, normal endosperm and vice-versa), obtained using B-A translocations, suggests that emp expression in the embryo is necessary, but not sufficient, for proper seed development. In all three mutants the picture emerging is one of a general delay in processes related to growth, as a result of a mutation affecting endosperm development as a primary event.  相似文献   

9.
Seeds of the longcell mutant in maize (Zea mays L) have a defective-kernel phenotype: the embryo aborts at the early coleoptilar stage and the endosperm is reduced in size. Mutant embryos have severe alterations in morphogenesis. They have a suspensor-, an embryo axis- and a scutellum-like structure, but the shoot apical meristem (SAM) is not formed. Scanning electron microscopy showed that most of the cells in longcell embryos are tubular and abnormally enlarged. The level of expression of several genes involved in basic metabolism is not severely affected during early and mid embryogenesis, but storage molecule accumulation is reduced. Genes which in normal conditions are only expressed after germination, are expressed during kernel development in the longcell seeds. Mutant embryos undergo cell death in late embryogenesis. Nuclei in dying embryos are TUNEL positive, and different genes coding for hydrolytic enzymes are up-regulated. The expression of genes related to oxidative stress is also altered in longcell embryos. These results lead us to suggest that the longcell mutant may be cytokinesis-defective.  相似文献   

10.
A T-DNA-tagged, embryo-defective Arabidopsis thaliana mutant, fist, was identified and shown to exhibit defects in nuclear positioning and cell division orientation beginning at the four-cell stage of the embryo proper. Cell division orientation was randomised, with each embryo exhibiting a different pattern. Periclinal divisions did not occur after the eight-cell embryo proper stage and fist embryos lacked a histologically distinct protoderm layer. Terminal embryos resembled globular-stage embryos, but were a disorganised mass containing 30–100 cells. Some terminal embryos (5%) developed xylem-like elements in outer surface cells, indicating that the fist mutation affects radial pattern. A soybean β-conglycinin seed storage protein gene promoter, active in wild-type embryos from heart stage to maturity, was also active in terminal fist embryos despite their disorganised globular state. This indicated that some pathways of cellular differentiation in fist embryos proceed independently of both organised division plane orientation and normal morphogenesis. Endosperm morphogenesis in seeds containing terminal fist embryos was arrested at one of three distinct developmental stages and appeared unlinked to fist embryo morphogenesis. The β-conglycinin seed storage protein gene promoter, normally active in cellularised wild-type endosperm, was inactive in fist endosperm, indicating abnormal development of fist endosperm at the biochemical level. These data indicate that the fist mutation, either directly or indirectly, results in defects in cell division orientation during the early stages of Arabidopsis embryo development. Other aspects of the fist phenotype, such as defects in endosperm development and radial pattern formation, may be related to abnormal cell division orientation or may occur as pleiotropic effects of the fist mutation. Received: 15 July 1997 / Accepted: 9 September 1997  相似文献   

11.
Summary The recessive embryo-lethal mutantdek-1 of maize, showing arrest of embryo development at the proembryo stage, lack of carotenoids and anthocyanins and absence in the endosperm of the aleurone layer, was characterized at a cytological level. Cytofluorimetric analysis excluded endoreduplication or polyploidization events in mutant embryonic cells, in spite of an evident increase in nucleolus and nucleus diameters.The data seem to point to an involvement ofDek-1 in the progression of the embryo toward specific developmental steps and in the differentiation of the aleurone layer in the endosperm. Cellular proliferation is not affected by the mutation, as is shown by DNA replication even after the arrest in development and by the possibility of inducing callus from mutant embryos.Abbreviation DAP days after pollination  相似文献   

12.
A mutation (Acc1-S2) in the structural gene for maize (Zea mays L.) acetyl-coenzyme A carboxylase (ACCase) that significantly reduces sethoxydim inhibition of leaf ACCase activity was used to investigate the gene-enzyme relationship regulating ACCase activity during oil deposition in developing kernels. Mutant embryo and endosperm ACCase activities were more than 600-fold less sensitive to sethoxydim inhibition than ACCase in wild-type kernel tissues. Moreover, in vitro cultured mutant kernels developed normally in the presence of sethoxydim concentrations that inhibited wild-type kernel development. The results indicate that the Acc1-encoded ACCase accounts for the majority of ACCase activity in developing maize kernels, suggesting that Acc1-encoded ACCase functions not only during membrane biogenesis in leaves but is also the predominant form of ACCase involved in storage lipid biosynthesis in maize embryos.  相似文献   

13.
14.
The maize cob presents an excellent opportunity to screen visually for mutations affecting assimilate partitioning in the developing kernel. We have identified a defective kernel mutant termed rgf1, reduced grain filling, with a final grain weight 30% of the wild type. In contrast with most defective endosperm mutants, rgf1 shows gene dosage-dependent expression in the endosperm. rgf1 kernels possess a small endosperm incompletely filling the papery pericarp, but embryo development is unaffected and the seeds are viable. The mutation conditions defective pedicel development and greatly reduces expression of endosperm transfer layer-specific markers. rgf1 exhibits striking morphological similarities to the mn1 mutant, but maps to a locus approximately 4 cM away from mn1 on chromosome 2 of maize. Despite reduced starch accumulation in the mutant, no obvious lesion in starch biosynthesis has been detected. Free sugar levels are unaltered in rgf1 endosperm. Rates of sugar uptake, measured over short (8 h) periods in cultured kernels, are increased in rgf1 compared to the wild type. rgf1 and wild-type kernels, excised at 5 DAP and cultured in vitro also develop differently in response to variations in sugar regime: glucose concentrations above 1% arrest placentochalazal development of rgf1 kernels, but have no effect on cultured wild-type kernels. These findings suggest that either uptake or perception of sugar(s) in endosperm cells at 5-10 DAP determines the rgf1 kernel phenotype.  相似文献   

15.
Embryo‐specific mutants in maize define a unique class of genetic loci that affect embryogenesis without a significant deleterious impact on endosperm development. Here we report the characterization of an embryo specific12 (emb12) mutant in maize. Embryogenesis in the emb12 mutants is arrested at or before transition stage. The mutant embryo at an early stage exhibits abnormal cell structure with increased vacuoles and dramatically reduced internal membrane organelles. In contrast, the mutant endosperm appears normal in morphology, cell structure, starch, lipid and protein accumulation. The Emb12 locus was cloned by transposon tagging and predicts a protein with a high similarity to prokaryotic translation initiation factor 3 (IF3). EMB12–GFP fusion analysis indicates that EMB12 is localized in plastids. The RNA in situ hybridization and protein immunohistochemical analyses indicate that a high level of Emb12 expression localizes in the embryo proper at early developmental stages and in the embryo axis at later stages. Western analysis indicates that plastid protein synthesis is impaired. These results indicate that Emb12 encodes the plastid IF3 which is essential for embryogenesis but not for endosperm development in maize.  相似文献   

16.
The EMB 506 gene of Arabidopsis, required for the normal development of the embryo beyond the globular stage, has been cloned. The gene encodes a protein of predicted size 35 kDa that contains five ankyrin (ANK) repeats within the C terminal moiety. ANK repeats are conserved domains of 33 amino acids involved in specific recognition of protein partners. The EMB 506 protein was detected at different stages of silique development but accumulated preferentially in the mature cauline leaves. The rescue of homozygous emb 506 embryos by complementation with the wild-type sequence cDNA demonstrated that the emb mutation is a consequence of the T-DNA insertion and that integration and expression of the transgene occurred during gametogenesis and/or early embryo development. In addition to the drastic effect of the emb 506 mutation during embryo development, complementation experiments revealed another effect of the gene: emb 506 plants transformed with the wild-type EMB 506 sequence were able to produce viable seeds but showed a reduction of apical dominance and the presence of adventitious buds or bracts along the stem. This result supports the idea that genes essential for embryogenesis may also be required at other stages of the plant life cycle.  相似文献   

17.
The purpose of this study was to examine the extent of cellular differentiation in arrested embryos from lethal mutants of Arabidopsis thaliana. The question to be addressed was whether arrested embryos in heterozygous siliques resembled mature wild-type embryos at the cellular level. Protein bodies were chosen as developmental markers because they appear only during the final stages of embryogenesis. Both the hypocotyl and cotyledons of wild-type embryos contained protein bodies that became filled with storage protein during the cotyledonary stages of development. Some mutant embryos (emb30) contained normal protein bodies and resembled mature wild-type embryos at the cellular level. Other mutant embryos (emb22) contained only immature protein bodies and were therefore blocked in both morphogenesis and cellular differentiation. The formation of protein bodies in emb31 was normal in the hypocotyl but delayed in the cotyledons. In this case the mutant gene appears to disrupt the timing of both morphogenesis and differentiation. This ultrastructural view of arrested embryos has provided additional information on the nature of developmental arrest that should facilitate the classification of embryonic lethals and the identification of mutants with defects in developmental rather than housekeeping functions.  相似文献   

18.
Plastid gene expression is essential to embryogenesis in higher plants, but the underlying mechanism is obscure. Through molecular characterization of an embryo defective 16 (emb16) locus, here we report that the requirement of plastid translation for embryogenesis is dependent on the genetic background in maize (Zea mays). The emb16 mutation arrests embryogenesis at transition stage and allows the endosperm to develop largely normally. Molecular cloning reveals that Emb16 encodes WHIRLY1 (WHY1), a DNA/RNA binding protein that is required for genome stability and ribosome formation in plastids. Interestingly, the previous why1 mutant alleles (why1-1 and why1-2) do not affect embryogenesis, only conditions albino seedlings. The emb16 allele of why1 mutation is in the W22 genetic background. Crosses between emb16 and why1-1 heterozygotes resulted in both defective embryos and albino seedlings in the F1 progeny. Introgression of the emb16 allele from W22 into A188, B73, Mo17, Oh51a and the why1-1 genetic backgrounds yielded both defective embryos and albino seedlings. Similar results were obtained with two other emb mutants (emb12 and emb14) that are impaired in plastid protein translation process. These results indicate that the requirement of plastid translation for embryogenesis is dependent on genetic backgrounds, implying a mechanism of embryo lethality suppression in maize.  相似文献   

19.
The cellulose synthase-like proteins are a large family of proteins in plants thought to be processive polysaccharide beta-glycosyltransferases. We have characterized an Arabidopsis mutant with a transposon insertion in the gene encoding AtCSLA7 of the CSLA subfamily. Analysis of the transmission efficiency of the insertion indicated that AtCSLA7 is important for pollen tube growth. Moreover, the homozygous insertion was embryo lethal. A detailed analysis of seed developmental progression revealed that mutant embryos developed more slowly than wild-type siblings. The mutant embryos also showed abnormal cell patterning and they arrested at a globular stage. The defective embryonic development was associated with reduced proliferation and failed cellularization of the endosperm. AtCSLA7 is widely expressed, and is likely to be required for synthesis of a cell wall polysaccharide found throughout the plant. Our results suggest that this polysaccharide is essential for cell wall structure or for signaling during plant embryo development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号