首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mouse and rat isolated pancreatic acini, the C-terminal tetrapeptide amide of CCK (CCK4) fully mimicked the actions of the physiological octapeptide hormone (CCK8) although CCK4 was 10–100 thousand fold less potent than CCK8. Parallelism was observed for stimulation of both amylase secretion (including the submaximal secretion observed at supramaximal concentrations of agonist), and stimulation of glucose transport. Furthermore, CCK4 and CCK8 were able to comletely inhibit the binding of radioiodinated CCK33 to CCK receptors on acini. Therefore, the CCK4 sequence appears to be the minimal functional unit which possesses all of the information required to elicit the actions of CCK on the pancreas. The additional 4 amino acids present in CCK8 increase the affinity of the CCK molecule for pancreatic CCK receptors and thus enhance target organ specificity and sensitivity.  相似文献   

2.
The anthranilic acid diamides represent the more recent class of nonpeptide CCK1 receptor antagonists. This class is characterized by the presence of anthranilic acid, used as a molecular scaffold, and two pharmacophores selected from the C-terminal tetrapeptide of CCK. The lead compound coded VL-0395, endowed with sub-micromolar affinity towards CCK1 receptors, was characterized by the presence of Phe and 2-indole moiety at the C- and N-termini of anthranilic acid, respectively. Herein we describe the first step of the anthranilic acid C-terminal optimization using, instead of Phe, aminoacids belonging to the primary structure of CCK-8 and other not coded residues. Thus we demonstrate that the CCK1 receptor affinity depends on the nature of the aminoacidic side chain as well as that the free carboxy group of the alpha-aminoacids is crucial for the binding. The R enantiomers of the most active compounds represent the eutomers of this class of antagonists confirming thus the stereo preference of the receptor. Moreover this SAR study demonstrates that the receptor binding pocket, that host the aminoacidic side chain, results much more tolerant respect to that accommodating the indole ring. As a result, an appropriate variation of the aminoacidic side chain could provide a better CCK1 receptor affinity diorthosis.  相似文献   

3.
Preliminary results on the binding of [3H]Boc[Nle28,31]CCK27?33, designated [3H]Boc[diNle]CCK7, on mouse brain and rat pancreas membranes are presented. This new ligand for CCK receptors possesses a high specific activity (144 Ci/mmole), and binds in a saturable manner to mouse brain (Kd = 0.49 nM, Bmax = 49 fmoles/mg protein) and rat pancreas (Kd = 4.4 nM, Bmax = 696 fmoles/mg protein). Unlabelled Boc[diNle]CCK7 displaces [125I]CCK8 from its binding sites on mouse brain membranes with a high affinity, slightly superior to that of CCK8. The order of potencies to displace [3H]Boc[diNle]CCK7 from its binding sites was the same on mouse brain and rat pancreas: [3HBoc[diNle]CCK7>CCK8, Boc-CCK7> non-sulfated CCK8, the pancreas binding sites being more discriminative than the brain binding sites. Thus, [3H]Boc[diNle]CCK7 is a very promising new probe for the characterization of CCK receptors and their interaction with different CCK fragments.  相似文献   

4.
The binding of cholecystokinin (CCK) to its receptors on guinea pig gastric chief cell membranes were characterized by the use of 125I-CCK-octapeptide (CCK8). At 30 degrees C optimal binding was obtained at acidic pH in the presence of Mg2+, while Na+ reduced the binding. In contrast to reports on pancreatic and brain CCK receptors, scatchard analysis of CCK binding to chief cell membranes revealed two classes of binding sites. Whereas, in the presence of a non-hydrolyzable GTP analog, GTP gamma S, only a low affinity site of CCK binding was observed. Chief cell receptors recognized CCK analogs, with an order of potency of: CCK8 greater than gastrin-I greater than CCK4. Although all CCK receptor antagonists tested (dibutyryl cyclic GMP, L-364718 and CR1409) inhibited labeled CCK binding to chief cell membranes, the relative potencies of these antagonists in terms of inhibiting labeled CCK binding were different from those observed in either pancreatic membranes or brain membranes. The results indicate, therefore, that on gastric chief cell membranes there exist specific CCK receptors, which are coupled to G protein. Furthermore, chief cell CCK receptors may be distinct from pancreatic or brain type CCK receptors.  相似文献   

5.
It has recently been shown that—after chronic cholecystokinin (CCK) treatment—an adaptation of pancreatic secretory but not gastric motor function does occur. Recent studies indicate that the CCK1-receptor exists in two (i.e. high and low) affinity states, which could be distinguished by the CCK-analogue JMV-180. CCK occupancy of high and low affinity sites is thought to be related to the initiation of different intracellular events and consequent biological responses. Affinity states of CCK1-receptors on pancreas and gastrointestinal (GI) smooth muscle could be different and this can offer an explanation for the different effects of CCK on pancreatic and gastric growth. We therefore studied the affinity states of CCK1-receptors on isolated rat pancreatic acini and gastric smooth muscle preparations. When acini were incubated with increasing concentrations of CCK-8, a biphasic (i.e. stimulation followed by inhibition) effect on amylase release was observed. JMV-180 caused only stimulation of enzyme release and combined JMV-180 and CCK stimulation (at submaximal doses) resulted in an additive secretory response. CCK-8 induced contractions of pyloric, antral and fundic muscle in a concentration-dependent manner. The response was monophasic, reaching a plateau. JMV-180 had only a very weak effect on these preparations. On the contrary, it inhibited CCK-induced contractions in a competitive manner, the concentration–response curve to CCK being shifted to the right by the CCK analogue. Our data suggest that the affinity states of CCK1-receptors on rat pancreatic and gastric tissue are different. On pancreatic acini CCK1-receptors exist in both high- and low-affinity states whose occupation is followed by the sequence of intracellular events leading to growth. In contrast, occupation of low affinity receptors (the only ones present in the GI smooth muscle) does not lead to cell proliferation. This difference therefore explains the different adaptive response of the pancreas and the stomach to chronic CCK administration. Furthermore, different affinity states of CCK1-receptors may mediate different functions of the digestive tract.  相似文献   

6.
Abstract: This study was directed at the issue of whether or not subpopulations of cholecystokinin (CCK) receptors exist within the CNS. This was achieved through the use of two radiolabelled probes, namely [125I] Bolton-Hunter (BH) CCK 8 and [3H]pentagastrin (Boc-β-Ala CCK 4), in comparative studies under identical conditions. Both probes bound with high affinity to the mouse cerebral cortical CCK receptor binding site with apparent equilibrium dissociation constants (KD) of 1.9 nM and 1.4 nM for [3H]pentagastrin and [125I]BH CCK 8, respectively. The maximal binding capacity was 1.05 and 1.15 pmol/g weight for the tritium and iodinated probes, respectively. Hill analysis yielded Hill numbers close to unity, suggesting the absence of more than one binding site and the lack of cooperativity of CCK receptor binding. Kinetic studies revealed binding site homogeneity in that no evidence of multiphasic dissociation curves was seen. Computerised analysis of displacement binding data using LIGAND established that both radiolabelled probes bound to a single site, with the one-site model providing the best fit of the data. Similar rank orders of potency were obtained for various fragments of CCK 8 in competing for the CCK receptor, labelled with either probe. Both CCK 8 and CCK 4 bound with roughly equinanomolar affinity. These studies demonstrate that both CCK 8 and its shorter C-terminal fragment CCK 4 bind to a single class of high-affinity binding site, with as yet no evidence of CNS CCK receptor multiplicity.  相似文献   

7.
beta-Casomorphin-(5) and some analogs modified by the introduction of some D-amino acids and D-pipecolic acid as well as by C-terminal amidation were tested for their affinities to mu- and delta-binding sites in rat brain membranes. The binding affinities of these compounds are compared with the known activities in the guinea pig ileum (GPI) and mouse vas deferens (MVD) test and their antinociceptive potencies in rats. The substitution of D-proline for proline in position 4 in beta-casomorphin-(5) and beta-casomorphin-(4)amide (morphiceptin) results in derivatives with very high mu-binding affinity and mu-selectivity. These affinities correspond to the respective analgesic potencies. Both binding to mu-receptors and analgesic potency are also enhanced by the introduction of D-Phe in position 3. Testing D-Ala2 substituted derivatives with respect to their ability to compete for 3H-naloxone, we observed apparent differences between the pentapeptide amides (biphasic displacement curves) and the tetrapeptide amides (monophasic displacement curves). The substitution of L-Pro2 by D-pipecolic acid yields an analog with preferential delta-receptor affinity in the organ preparations (MVD) but preferential mu-receptor affinity in brain membranes. This finding suggests a possible difference between peripheral and central mu-binding sites.  相似文献   

8.
Direct analysis of mode of peptide docking using intrinsic photoaffinity labeling has provided detailed insights for the molecular basis of cholecystokinin (CCK) interaction with the type 1 CCK receptor. In the current work, this technique has been applied to the closely related type 2 CCK receptor that also binds the natural full agonist peptide, CCK, with high affinity. A series of photolabile CCK analog probes with sites of covalent attachment extending from position 26 through 32 were characterized, with the highest affinity analogs that possessed full biological activity utilized in photoaffinity labeling. The position 29 probe, incorporating a photolabile benzoyl-phenylalanine in that position, was shown to bind with high affinity and to be a full agonist, with potency not different from that of natural CCK, and to covalently label the type 2 CCK receptor in a saturable, specific and efficient manner. Using proteolytic peptide mapping, mutagenesis, and radiochemical Edman degradation sequencing, this probe was shown to establish a covalent bond with type 2 CCK receptor residue Phe120 in the first extracellular loop. This was in contrast to its covalent attachment to Glu345 in the third extracellular loop of the type 1 CCK receptor, directly documenting differences in mode of docking this peptide to these receptors.  相似文献   

9.
Morphiceptin (Tyr-Pro-Phe-Pro-NH2), a tetrapeptide amide, is a selective ligand of the μ-opioid receptor (MOR). This study reports the synthesis and biological evaluation of a series of novel morphiceptin analogs modified in positions 2 or/and 4 by introduction of 4,4-difluoroproline (F2Pro) in l or d configuration. Depending on the fluorinated amino acid configuration and its position in the sequence, new analogs behaved as selective full MOR agonists showing high, moderate, or relatively low potency. The most potent analog, Tyr-F2Pro-Phe-d-F2Pro-NH2, was also able to activate the κ-opioid receptor (KOR), although with low potency. Docking studies and the comparison of results with the high resolution crystallographic structure of a MOR-agonist complex revealed possible structure–activity relationships of this compound family.  相似文献   

10.
Summary RES-701-1 is an endothelin B receptor (ETB) selective peptidic antagonist, which has a novel cyclic structure of microbial origin. Modification at the C-terminal free carboxyl group of RES-701-1 by a methyl ester results in an ETA/ETB dual selective analog, which showed relatively high affinity for ETA receptor subtype, while retaining the affinity for ETB. The carboxyl-group-deleted analog with tryptamine as the C-terminal residue also showed relatively weak affinity for ETA; however, benzyl ester or amide analogs did not show remarkable affinity for ETA. It is suggested that the binding mode of RES-701-1 and its analogs is different from those of known ligands for ET receptors.  相似文献   

11.
RES-701-1 is an endothelin B receptor (ETB) selective peptidic antagonist, which has a novel cyclic structure of microbial origin. Modification at the C-terminal free carboxyl group of RES-701-1 by a methyl ester results in an ETA/ETB dual selective analog, which showed relatively high affinity for ETA receptor subtype, while retaining the affinity for ETB. The carboxyl-group-deleted analog with tryptamine as the C-terminal residue also showed relatively weak affinity for ETA; however, benzyl ester or amide analogs did not show remarkable affinity for ETA. It is suggested that the binding mode of RES-701-1 and its analogs is different from those of known ligands for ET receptors.  相似文献   

12.
The binding of biologically active 125I-Bolton-Hunter-CCK-33 to bullfrog brain and pancreatic membrane particles was characterized. Both tissues exhibited time-dependent, saturable, reversible, and high affinity binding without evidence for cooperative interaction. Both bullfrog CCK receptors resembled their mammalian counterparts in having acidic pH optima for tracer binding and a Kd of about 0.5 nM. However, the receptors differed from their mammalian counterparts in that (1) the bullfrog brain membranes bound more tracer per mg protein than did the pancreatic membranes, (2) both bullfrog CCK receptors were relatively insensitive to dibutyryl cGMP, and (3) both bullfrog brain and pancreatic CCK receptors exhibited the same general specificity toward a variety of CCK and gastrin peptides. For both tissues, the relative order of receptor binding potency was CCK-8 greater than caerulein = CCK-33 greater than gastrin-17-II greater than CCK-8-ns = gastrin-17-I greater than caerulein-ns greater than gastrin-4 with the sulfated CCK peptides being 1000-fold more potent than their nonsulfated analogs. Sulfated gastrin was also relatively potent, being only 10-fold weaker than CCK-8. Gastrin-4 was 20 000-fold weaker than CCK-8 in interacting with the brain CCK receptor. The latter finding is in sharp contrast to the mammalian brain CCK receptor. We conclude that the bullfrog brain and pancreas contain similar CCK receptors of probable physiological significance and may represent an ancestral condition from which the two distinct CCK receptors present in mammalian brain and pancreas have evolved.  相似文献   

13.
The cholecystokinin (CCK1) receptor is a G protein-coupled receptor important for nutrient homeostasis. The molecular basis of CCK-receptor binding has been debated, with one prominent model suggesting occupation of the same region of the intramembranous helical bundle as benzodiazepines. Here, we used a specific assay of allosteric ligand interaction to probe the mode of binding of devazepide, a prototypic benzodiazepine ligand. Devazepide elicited marked slowing of dissociation of pre-bound CCK, only possible through binding to a topographically distinct allosteric site. This effect was disrupted by chemical modification of a cysteine in the benzodiazepine-binding pocket. Application of an allosteric model to the equilibrium interaction between a series of benzodiazepine ligands and CCK yielded quantitative estimates of each modulator’s affinity for the allosteric site, as well as the degree of negative cooperativity for the interaction between occupied orthosteric and allosteric sites. The allosteric nature of benzodiazepine binding to the CCK1 receptor provides new opportunities for small molecule drug development.  相似文献   

14.
To improve the targeting to tumors expressing the cholecystokinin receptor subtype 2 (CCK2R) with limited kidney uptake, we synthesized a novel cholecystokinin C-terminal tetrapeptide (CCK4)-based derivative conjugated to an original bipyridine-chelator (BPCA), 111In-BPCA-(Ahx)2-CCK4. To our knowledge this is the first CCK4-based radioligand that presents a high affinity for the CCK2R, a high and specific tumor uptake, a low renal accumulation and a very good visualization of tumors in vivo compared with an internal control, 111Indium-trans-cyclohexyldiethylenetriaminepenta-acetic acid-cholecystokinin octapeptide (111In-CHX-A″-DTPA-CCK8). These properties make 111In-BPCA-(Ahx)2-CCK4, a promising candidate for imaging and peptide receptor radionuclide therapy of CCK2R positive tumors.  相似文献   

15.
Previous work indicates that both the C-terminal phenylalanine amide and the tryptophan moieties of cholecystokinin (CCK) are critical pharmacophores for interaction with either the A or B receptor subtypes. We have examined a series of analogs of Ac-CCK-7 [Ac-Tyr(SO3H)-Met-Gly-Trp-Met-Asp-Phe33-NH2] (2) in which the phenyl ring of the C-terminal Phe-NH2 has been modified. Compounds were assessed in binding assays using homogenated rat pancreatic membranes and bovine striatum as the source of CCK-A and CCK-B receptors respectively and for anorectic activity after intraperitoneal administration to rats. Substitution of a number of cycloalkyl or bicyclic aryl moieties for the phenyl ring of phenylalanine33 including cyclopentyl (20), cyclohexyl (21), cyclooctyl (23), 2-(5,6,7,8-tetrahydro)naphthyl (26), 2-naphthyl (27), and 1-naphthyl (29) led to analogs with 10-70 times the anorectic potency of 2. The anorectic activity of 21 was blocked by the specific CCK-A receptor antagonist MK-329. Other bulky aliphatic groups in place of the phenylalanine33 aromatic ring such as isopropyl, 2-adamantyl and cyclohexylmethyl gave derivatives similar to 2 in potency. While most of the new compounds were comparable to CCK in binding assays, 23, 26, 27 and 29 were exceptionally potent with IC50s 10(-11)-10(-14) M in the pancreas. Compounds 23 and 29 were further evaluated for their ability to stimulate amylase secretion and found to have potencies similar to that of CCK. The dissociation between potency in the binding and amylase secretion assays suggests that they may interact with a high affinity binding site which is not coupled to amylase secretion. We conclude that CCK receptors possess a generous hydrophobic pocket capable of accommodating large alkyl groups in place of the side chain of phenylalanine33 and that the pharmacological profile of CCK analogs can be tailored by appropriate exploitation of this finding.  相似文献   

16.
Summary Since the biochemical and pharmacological profile of BC 197 and BC 264, two CCK8-derived agonists with high specificity for CCK-B receptors, suggests their potential interaction with two CCK-B receptor subsites, it appeared essential to design new series of compounds that would be able to discriminate between these two subsites. As CCK4 is the shortest fragment of CCK which interacts selectively with CCK-B receptors, compounds derived from the C-terminal tetrapeptide domain of BC 264, Boc-Trp-(NMe)Nle-Asp-Phe-NH2, and of the cyclic compound BC 197, were prepared. While RB 360 (N-(cycloamido)-α-Me(R)Trp-[(2S)-2-amino-9-((cycloamido)carbonyl)nonanoyl]-Asp-Phe-NH2), like BC 197, has a CCK-B1 profile with anxiogenic-like effects in the elevated plus-maze test, RB 400 (HOOC-CH2-CO-Trp-(NMe)Nle-Asp-Phe-NH2), like BC 264, seems to be a specific CCK-B2 agonist, able to increase attention and/or memory processes in the Y-maze test.  相似文献   

17.
Summary As a first step in the study of hormone interaction with gastrin receptor-expressing cells, three fluorescent derivatives of heptagastrin were synthesized, characterized and tested for specificity and affinity towards gastrin/CCKB receptor by means of confocal laser scanning microscopy (CLSM). Cyanine dye Cy3.29 and borfluoropyrromethene (BODIPY) derivatives of the hormone were found to be absorbed into the cells and concentrated in perinuclear organelles by a non-receptor mediated process. The BODIPY derivative turned out to be chemically unstable and was bleached by the laser beam very rapidly. Rhodamine Green-heptagastrin retained a high affinity toward the gastrin receptor (Kd=45 nm in displacement of 125I-labeled cholecystokinin-8) and showed specific binding to NIH/3T3 cells stably transfected with human gastrin/CCKB receptor cDNA, but not to nontransfected 3T3 cells. The fluorescent signal of all three dyes was sufficiently intense for localization of the compounds in cells by means of CLSM. Rhodamine Green derivative was found to be a useful tool for the study of endocytosis of the hormone. It can also be utilized for quantitative estimation of binding and determination of Kd instead of the traditionally used radiolabeled derivatives of gastrin.Abbreviations BODIPY borfluoropyrromethene - CCK cholecystokinin - CCK-8 CCK octapeptide - RG-7G Rhodamine Green heptagastrin - BSA bovine serum albumin - DMEM Dulbecco's modified Eagle's medium - TFA trifluoroacetic acid - DMSO dimethylsulfoxide - EDTA ethylenediamino tetraacetic acid - CLSM confocal laser scanning microscopy  相似文献   

18.
Oxytocin (OT) is an exciting potential therapeutic agent, but it is highly sensitive to modification and suffers extensive degradation at elevated temperature and in vivo. Here we report studies towards OT analogs with favorable selectivity, affinity and potency towards the oxytocin receptor (OTR), in addition to improving stability of the peptide by bridging the disulfide region with substituted dibromo-xylene analogs. We found a sensitive structure-activity relationship in which meta-cyclized analogs (dOTmeta) gave highest affinity (50?nM Ki), selectivity (34-fold), and agonist potency (34?nM EC50, 87-fold selectivity) towards OTR. Surprisingly, ortho-cyclized analogs demonstrated OTR and vasopressin V1a receptor subtype affinity (220?nM and 69?nM, respectively) and pharmacological activity (294?nM and 35?nM, respectively). V1a binding and selectivity for ortho-cyclized peptides could be improved 6-fold by substituting a neutral residue at position 8 with a basic amino acid, providing potent antagonists (14?nM IC50) that displayed no activation of the OTR. Furthermore, xylene-bridged analogs demonstrated increased stability compared to OT at elevated temperature, demonstrating promising therapeutic potential for these analogs which warrants further study.  相似文献   

19.
Digital-imaging microscopy of Fura-2-loaded pancreatic acinar cells revealed that the C-terminal octapeptide of cholecystokinin (CCK8) dose-dependently recruited 94% of freshly isolated acinar cells in terms of receptor-evoked Ca2+ mobilization. Maximal and half-maximal cell-recruitment were reached with 0.1 nM and 16.8 pM CCK8, respectively. The upstroke of the dose-recruitment curve consisted of cells displaying oscillatory changes in free cytosolic Ca2+ concentration ([Ca2+]i). After having reached its maximum, the percentage oscillating cells dose-dependently decreased upon further increasing of the CCK8 concentration. Pretreatment of the acinar cells with 0.1 μM TPA caused a rightward shift of the dose-recruitment curve but did not change the maximal effect of CCK8 on the recruitment of oscillating cells. Half-maximal recruitment was obtained with 287 pM CCK8. This observation demonstrates that high levels of protein kinase C activation do not inhibit Ca2+ oscillations at a level downstream to receptor activation. Moreover, this observation demonstrates that protein kinase C-mediated inhibition of Ca2+ oscillations evoked by submaximal CCK8 concentrations occurs at the receptor level, converting it from a high-affinity state into a low-affinity state. This conclusion is supported by the observation that TPA completely inhibited the recruitment of acinar cells in response to the high-affinity receptor agonist JMV-180. The inhibitory action of TPA on CCK8-evoked cell-recruitment was paralleled by an inhibitory effect of the phorbol ester on the CCK8-evoked peak increase in average inositol trisphosphate concentration in a population of acinar cells. This observation indicates that low concentrations of CCK8 interact with the high-affinity CCK receptor to increase [Ca2+]i through the intermediation of inositol trisphosphate.  相似文献   

20.
Structural requirements for dermorphin opioid receptor binding   总被引:2,自引:0,他引:2  
Structural features influencing binding activity of dermorphin to opioid receptors have been investigated in the rat brain through the synthesis and evaluation of binding affinity of a series of synthetic dermorphin analogs. Tritiated dermorphin was used as primary ligand. The single population of high affinity dermorphin binding sites present in the rat brain is clearly of an opioid nature since bound radiolabeled dermorphin was fully displaced with high affinity either by morphine or naloxone. Displacement of tritiated dermorphin by all alkaloid opiates or dermorphin related peptides tested was monophasic, consistent with simple competitive inhibition at a single population of binding sites. Dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2) was the most potent competitor in all experiments. The D-configuration of the amino acid residue in position 2 was found to be of crucial importance for binding. Replacement of D-Ala2 with L-Ala led to a deleterious effect, this analog being 1/5000th as potent as dermorphin in displacing bound tritiated dermorphin from its receptor. Shorter dermorphin homologs, dermorphin-(1-4)-NH2 and dermorphin-(1-3)-NH2, were found to be 20 and 40-fold less potent, respectively, than dermorphin. The C-terminal carboxamide function is of significant importance for manifestation of the full intrinsic binding potency of dermorphin. Deamidated dermorphin had 1/5th the potency of the parent peptide. This suggests that while the whole dermorphin sequence is required for the expression of the full intrinsic binding activity of the molecule, the N-terminal tripeptide is a key structure as it contains the features which allow receptor recognition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号