首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaerobic biodegradation of phenolic compounds in digested sludge.   总被引:8,自引:27,他引:8       下载免费PDF全文
We examined the anaerobic degradation of phenol and the ortho, meta, and para isomers of chlorophenol, methoxyphenol, methylphenol (cresol), and nitrophenol in anaerobic sewage sludge diluted to 10% in a mineral salts medium. Of the 12 monosubstituted phenols studied, only p-chlorophenol and o-cresol were not significantly degraded during an 8-week incubation period. The phenol compounds degraded and the time required for complete substrate disappearance (in weeks) were: phenol (2), o-chlorophenol (3), m-chlorophenol (7), o-methoxyphenol (2), m- and p-methoxyphenol (1), m-cresol (7), p-cresol (3), and o-, m-, and p-nitrophenol (1). Complete mineralization of phenol, o-chlorophenol, m-cresol, p-cresol, o-nitrophenol, p-nitrophenol, and o-, m-, and p-methoxyphenol was observed. In general, the presence of Cl and NO2 groups on phenols inhibited methane production. Elimination or transformation of these substituents was accompanied by increased methane production, o-Chlorophenol was metabolized to phenol, which indicated that dechlorination was the initial degradation step. The methoxyphenols were transformed to the corresponding dihydroxybenzene compounds, which were subsequently mineralized.  相似文献   

2.
The biodegradability of phenol and six other phenolic compounds (o-, m-, and p-cresol, 2-, 3-, and 4-ethylphenol) was examined in batch methanogenic cultures. The effect of concentration of these alkyl phenols on the anaerobic biodegradation of phenol was also evaluated. The inoculum used in this study was cultivated in a continuous flow laboratory fermenter with phenol as the primary substrate. Phenol, at initial concentrations as high to 1400 mg/L was completely degraded to methane and carbondioxide after 350 hours incubation. Complete degradation of m- and p-cresol was also observed while the ethylphenols and o-cresol were not significantly degraded.At initial concentrations exceeding 600 mg/L, phenol inhibited the phenol-degrading microorganisms but not the methanogens. At about 600 mg/L, cresols reduced the rate of phenol degradation to 50% of that observed in a control culture containing only 200 mg/L phenol. Ethylphenols were more inhibitory than cresols. Phenol degrading microorganisms were more susceptible to inhibition by cresols and ethylphenols than were the methanogens. The inhibitory effects of the three isomers of cresol and ethylphenol did not vary with the isomer but rather with the substituted functional group.  相似文献   

3.
The effects of six phenolic compounds (o-, m-, and p-cresol and 2-, 3-, and 4-ethylphenol) on the anaerobic biodegradation of phenol was examined in batch methanogenic cultures. Results showed that ethylphenols were more inhibitory of phenol degradation than were cresols. The inhibitory effects of the three isomers of cresol and ethylphenol did not vary with the isomer but rather with the substituted functional group.  相似文献   

4.
The effects of six phenolic compounds (o-, m-, and p-cresol and 2-, 3-, and 4-ethylphenol) on the anaerobic biodegradation of phenol was examined in batch methanogenic cultures. Results showed that ethylphenols were more inhibitory of phenol degradation than were cresols. The inhibitory effects of the three isomers of cresol and ethylphenol did not vary with the isomer but rather with the substituted functional group.  相似文献   

5.
Pseudomonas sp. CP4, a potent phenol-degrading laboratory isolate could mineralize all three isomers of cresol. This strain readily utilized up to 1.4, 1.1 and 2.2 g/l of o- m- and p-cresol, respectively as the sole sources of carbon and energy. These are the highest concentrations of cresols reported to be degraded by a bacterial strain. The rates of degradation of the three isomers were in the order: o- > p- > m-cresol. All the isomers of cresol were catabolized through a meta-cleavage pathway. Fairly high catechol 2,3-dioxygenase (C230) activity against catechol was observed in the cell-free extracts of the culture grown on these compounds and were in the order: m- > o- > p-cresol.  相似文献   

6.
Nitrate, sulfate, and carbonate were used as electron acceptors to examine the anaerobic biodegradability of chlorinated aromatic compounds in estuarine and freshwater sediments. The respective denitrifying, sulfidogenic, and methanogenic enrichment cultures were established on each of the monochlorinated phenol and monochlorinated benzoic acid isomers, using sediment from the upper (freshwater) and lower (estuarine) Hudson River and the East River (estuarine) as source materials. Utilization of each chlorophenol and chlorobenzoate isomer was observed under at least one reducing condition; however, no single reducing condition permitted the metabolism of all six compounds tested. The anaerobic biodegradation of the chlorophenols and chlorobenzoates depended on the electron acceptor available and on the position of the chlorine substituent. In general, similar activities were observed under the different reducing conditions in both the freshwater and estuarine sediments. Under denitrifying conditions, degradation of 3- and 4-chlorobenzoate was accompanied by nitrate loss corresponding reasonably to the stoichiometric values expected for complete oxidation of the chlorobenzoate to CO2. Under sulfidogenic conditions, 3- and 4-chlorobenzoate, but not 2-chlorobenzoate, and all three monochlorophenol isomers were utilized, while under methanogenic conditions all compounds except 4-chlorobenzoate were metabolized. Given that the pattern of activity appears different for these chlorinated compounds under each reducing condition, their biodegradability appears to be more a function of the presence of competent microbial populations than one of inherent molecular structure.  相似文献   

7.
 The utilization of monochlorobenzoate isomers (2-, 3- and 4-chlorobenzoate) by anaerobic microbial consortia in River Nile sediments was systematically evaluated under denitrifying, Fe-reducing, sulfidogenic and methanogenic conditions. Loss of all three chlorobenzoates was noted in denitrifying cultures; furthermore, the initial utilization of chlorobenzoates was fastest under denitrifying conditions. Loss of 3-chlorobenzoate was seen under all four reducing conditions and the degradation of chlorobenzoates was coupled stoichiometrically to NO- 3 loss, Fe2+ production, SO2- 4 loss or CH4 production, indicating that the chlorobenzoates were oxidized to CO2. To our knowledge, this is the first observation of halogenated aromatic degradation coupled to Fe reduction. Received: 29 July 1994/Received revision: 22 November 1994/Accepted 16 December 1994  相似文献   

8.
Four methanogenic consortia which degraded 2-chlorophenol, 3-chlorophenol, 2-chlorobenzoate, and 3-chlorobenzoate, respectively, and one nitrate-reducing consortium which degraded 3-chlorobenzoate were characterized. Degradative activity in these consortia was maintained by laboratory transfer for over 2 years. In the methanogenic consortia, the aromatic ring was dechlorinated before mineralization to methane and carbon dioxide. After dechlorination, the chlorophenol consortia converted phenol to benzoate before mineralization. All methanogenic consortia degraded both phenol and benzoate. The 3-chlorophenol and 3-chlorobenzoate consortia also degraded 2-chlorophenol. No other cross-acclimation to monochlorophenols or monochlorobenzoates was detected in the methanogenic consortia. The consortium which required nitrate for the degradation of 3-chlorobenzoate degraded benzoate and 4-chlorobenzoate anaerobically in the presence of KNO3, but not in its absence. This consortium also degraded benzoate, but not 3-chlorobenzoate, aerobically.  相似文献   

9.
A study of the degradation of phenol, p-cresol, and m- and p-toluate by Alcaligenes eutrophus 345 has provided evidence that these compounds are metabolized via separate catechol meta-cleavage pathways. Analysis of the enzymes synthesized by wild-type and mutant strains and by strains cured of the plasmid pRA1000, which encodes m- and p-toluate degradation, indicated that two or more isofunctional enzymes mediated several steps in the pathway. The formation of three catechol 2,3-oxygenases and two 2-hydroxymuconic semialdehyde hydrolases was indicated from an examination of the ratio of the specific activities of these enzymes against various substrates. Evidence for two 2-hydroxymuconic semialdehyde dehydrogenases, two 4-oxalocrotonate isomerases and decarboxylases, and three 2-ketopent-4-enoate hydratases was derived from the induction of these enzymes under different growth conditions. Each activity was detected when the wild type was grown in the presence of m-toluate, but not when grown with phenol (except for a hydratase) or p-cresol, whereas in strains cured of pRA1000, growth with phenol or p-cresol, but not with m-toluate, induced these enzymes. Hydroxylation of phenol and p-cresol appears to be mediated by the same enzyme.  相似文献   

10.
Biodegradation of cresol isomers in anoxic aquifers   总被引:1,自引:0,他引:1  
The biodegradation of o-, m-, and p-cresol was examined in material obtained from a shallow anaerobic alluvial sand aquifer. The cresol isomers were preferentially metabolized, with p-cresol being the most easily degraded. m-Cresol was more persistent than the para-isomer, and o-cresol persisted for over 90 days. Biodegradation of cresol isomers was favored under sulfate-reducing conditions (SRC) compared with that under methanogenic conditions (MC). Slurries that were acclimated to p-cresol metabolism transformed this substrate at 18 and 330 nmol/h per g (dry weight) for MC and SRC, respectively. Inhibition of electron flow to sulfate reduction with 2.0 mM molybdate reduced p-cresol metabolism in incubations containing sulfate. When methanogenesis was blocked with 5 mM bromoethanesulfonic acid in incubations lacking sulfate, p-cresol catabolism was retarded. Under SRC 3.4 mol of sulfate was consumed per mol of p-cresol metabolized. The addition of sulfate to methanogenic incubations stimulated p-cresol degradation. Simultaneous adaptation studies in combination with spectrophotometric and chromatographic analysis of metabolites indicated that p-cresol was oxidized under SRC to p-hydroxybenzoate via the corresponding alcohol and aldehyde. This series of reactions was inhibited under sulfate-limited or aerobic conditions. Therefore, the primary catabolic event for p-cresol decomposition under SRC appears to involve the hydroxylation of the aryl methyl group.  相似文献   

11.
Biodegradation of cresol isomers in anoxic aquifers.   总被引:10,自引:7,他引:3       下载免费PDF全文
The biodegradation of o-, m-, and p-cresol was examined in material obtained from a shallow anaerobic alluvial sand aquifer. The cresol isomers were preferentially metabolized, with p-cresol being the most easily degraded. m-Cresol was more persistent than the para-isomer, and o-cresol persisted for over 90 days. Biodegradation of cresol isomers was favored under sulfate-reducing conditions (SRC) compared with that under methanogenic conditions (MC). Slurries that were acclimated to p-cresol metabolism transformed this substrate at 18 and 330 nmol/h per g (dry weight) for MC and SRC, respectively. Inhibition of electron flow to sulfate reduction with 2.0 mM molybdate reduced p-cresol metabolism in incubations containing sulfate. When methanogenesis was blocked with 5 mM bromoethanesulfonic acid in incubations lacking sulfate, p-cresol catabolism was retarded. Under SRC 3.4 mol of sulfate was consumed per mol of p-cresol metabolized. The addition of sulfate to methanogenic incubations stimulated p-cresol degradation. Simultaneous adaptation studies in combination with spectrophotometric and chromatographic analysis of metabolites indicated that p-cresol was oxidized under SRC to p-hydroxybenzoate via the corresponding alcohol and aldehyde. This series of reactions was inhibited under sulfate-limited or aerobic conditions. Therefore, the primary catabolic event for p-cresol decomposition under SRC appears to involve the hydroxylation of the aryl methyl group.  相似文献   

12.
Chlorinated benzoates enter the environment through their use as herbicides or as metabolites of other halogenated compounds. Ample evidence is available indicating biodegradation of chlorinated benzoates to CO2 and chloride in the environment under aerobic as well as anaerobic conditions. Under aerobic conditions, lower chlorinated benzoates can serve as sole electron and carbon sources supporting growth of a large list of taxonomically diverse bacterial strains. These bacteria utilize a variety of pathways ranging from those involving an initial degradative attack by dioxygenases to those initiated by hydrolytic dehalogenases. In addition to monochlorinated benzoates, several bacterial strains have been isolated that can grow on dichloro-, and trichloro- isomers of chlorobenzoates. Some aerobic bacteria are capable of cometabolizing chlorinated benzoates with simple primary substrates such as benzoate. Under anaerobic conditions, chlorinated benzoates are subject to reductive dechlorination when suitable electron-donating substrates are available. Several halorespiring bacteria are known which can use chlorobenzoates as electron acceptors to support growth. For example, Desulfomonile tiedjei catalyzes the reductive dechlorination of 3-chlorobenzoate to benzoate. The benzoate skeleton is mineralized by other microorganisms in the anaerobic environment. Various dichloro- and trichlorobenzoates are also known to be dechlorinated in anaerobic sediments.  相似文献   

13.
The metabolism of cresols under sulfate-reducing conditions was investigated in Desulfotomaculum sp. strain Groll. This strain grows on a variety of aromatic compounds, including para- and meta- but not ortho-cresol. Degradation of p-cresol proceeded by oxidation reactions of the methyl group to yield p-hydroxybenzoate, which was then dehydroxylated to benzoate. The aromatic intermediates expected for this pathway, p-hydroxybenzyl alcohol, p-hydroxybenzaldehyde, p-hydroxybenzoate, and benzoate, were readily metabolized by strain Groll. Utilization of these intermediates generally preceded and inhibited the degradation of p-cresol. p-Hydroxybenzoate and benzoate were detected in culture fluid as metabolites of p-cresol. p-Hydroxybenzaldehyde and p-hydroxybenzoate were detected in cultures degrading p-hydroxybenzyl alcohol. Enzyme activities responsible for utilization of p- and m-cresol, induced by growth on the respective cresol, were detected in cell-free extracts of strain Groll. The compounds detected in culture fluids and the enzyme activities detected in cell-free extracts indicate that the pathways for the degradation of p- and m-cresol converge on benzoate, followed by metabolism to benzoyl-coenzyme A (CoA). Strain Groll can utilize both cresol isomers under sulfate-reducing conditions by similar reactions, but the enzyme activities catalyzing these transformations of the two isomers appear distinct.  相似文献   

14.
Anaerobic degradation of monochlorophenols and monochlorobenzoates in a variety of aquatic sediments was compared under four enrichment conditions. A broader range of compounds was degraded in enrichments inoculated with sediment exposed to industrial effluents. Degradation of chloroaromatic compounds was observed most often in methanogenic enrichments and in enrichments amended with 1 mM bromoethane sulfonic acid. Degradation was observed least often in enrichments with added nitrate or sulfate. The presence of 10 mM bromoethane sulfonic acid prevented or inhibited degradation of most compounds tested. Primary enrichments in which KNO(3) was periodically replenished to maintain enrichment characteristics degraded chlorobenzoates, but not chlorophenols. In contrast, primary enrichments in which Na(2)SO(4) was periodically replenished failed to degrade any chloroaromatic compounds. Upon transfer to fresh medium, none of the sulfate enrichments required the presence of Na(2)SO(4) for degradation, while only two nitrate enrichments required the presence of KNO(3) for degradation. As a class of compounds, chlorophenols were degraded more readily than chlorobenzoates. However, as individual compounds 3-chlorobenzoate, 2-chlorophenol, and 3-chlorophenol degradation was observed most often and with an equal frequency. Within the chlorophenol class, the relative order of degradability was ortho > meta > para, while that of chlorobenzoates was meta > ortho > para, In laboratory transfers, 2-chlorobenzoate, 3-chlorobenzoate, and 2-chlorophenol degradation was most easily maintained, while degradation of para-chlorinated compounds was very difficult to maintain.  相似文献   

15.
Biotransformation of 2-chlorophenol by a methanogenic sediment community resulted in the transient accumulation of phenol and benzoate. 3-Chlorobenzoate was a more persistent product of 2-chlorophenol metabolism. The anaerobic biotransformation of phenol to benzoate presumably occurred via para-carboxylation and dehydroxylation reactions, which may also explain the observed conversion of 2-chlorophenol to 3-chlorobenzoate.  相似文献   

16.
The initial reactions involved in anaerobic aniline degradation by the sulfate-reducing Desulfobacterium anilini were studied. Experiments for substrate induction indicated the presence of a common pathway for aniline and 4-aminobenzoate, different from that for degradation of 2-aminobenzoate, 2-hydroxybenzoate, 4-hydroxybenzoate, or phenol. Degradation of aniline by dense cell suspensions depended on CO2 whereas 4-aminobenzoate degradation did not. If acetyl-CoA oxidation was inhibited by cyanide, benzoate accumulated during degradation of aniline or 4-aminobenzoate, indicating an initial carboxylation of aniline to 4-aminobenzoate, and further degradation via benzoate of both substrates. Extracts of alinine or 4-aminobenzoategrown cells activated 4-aminobenzoate to 4-aminobenzoyl-CoA in the presence of CoA, ATP and Mg2+. 4-Aminobenzoyl-CoA-synthetase showed a K m for 4-aminobenzoate lower than 10 M and an activity of 15.8 nmol · min-1 · mg-1. 4-Aminobenzoyl-CoA was reductively deaminated to benzoyl-CoA by cell extracts in the presence of low-potential electron donors such as titanium citrate or cobalt sepulchrate (2.1 nmol · min-1 · mg-1). Lower activities for the reductive deamination were measured with NADH or NADPH. Reductive deamination was also indicated by benzoate accumulation during 4-aminobenzoate degradation in cell suspensions under sulfate limitation. The results provide evidence that aniline is degraded via carboxylation to 4-aminobenzoate, which is activated to 4-aminobenzoyl-CoA and further metabolized by reductive deamination to benzoyl-CoA.  相似文献   

17.
The kinetic parameters associated with the microbial dehalogenation of 3-chlorobenzoate, 3,5-dichlorobenzoate, and 4-amino-3,5-dichlorobenzoate were measured in anoxic sediment slurries and in an enriched methanogenic culture grown on 3-chlorobenzoate. The initial dehalogenation of the substrates exhibited Michaelis-Menten kinetics. The apparent Km values for the above substrates ranged from 30 to 67 μM. The pattern of degradation, however, was unusual. The enrichment culture accumulated partially dehalogenated intermediates to 72 and 98% of that possible when incubated with either 3,5-dichloro- or 4-amino-3,5-dichlorobenzoate, respectively, but did not accumulate significant amounts of benzoate when 3-chlorobenzoate was the sole carbon and energy source. The accumulated intermediates were rapidly metabolized only after the parent substrate concentrations were nearly depleted (<5 μM). A sequential Michaelis-Menten model was developed to account for the observed pattern of biodegradation. Using this model, we found that relative differences in the Km and Vmax parameters for substrate and intermediate dehalogenations alone were insufficient to explain the transitory accumulation of intermediates. However, by inserting a competitive inhibition term, with the primary substrate as the inhibitor, the observed pattern of degradation was simulated. Apparently, the dichlorinated substrates competitively inhibit the dehalogenation of the monochlorinated substrates. Similar kinetic patterns were noted for sediments, although the rates were slower than in the enrichment culture.  相似文献   

18.
Thermophilic bacteria capable of degrading phenol as the sole carbon source were isolated from sewage effluent. The isolates were aerobic, sporulating, motile rod-shaped bacteria characterized as Bacillus species with growth temperature optima of 50–60°C. The enzyme catalyzing the second step in the phenol degradation meta-cleavage pathway, catechol-2,3-dioxygenase, was detected in all isolates grown in the presence of phenol. One strain, designated Bacillus strain Cro3.2, was capable of degrading phenol, o-, m-, and p-cresol via the meta-pathway and tolerated phenol at concentrations up to 0.1% (w/v) without apparent inhibition of growth. Phenol degradation activities in strain Cro3.2 were induced 3–5 h after supplementation by phenol, orcinol, and the cresols but not by halo- or nitro-substituted phenols. Maximal rates of phenol degradation in stirred bioreactors (10 μmol/min−1/g−1 cells) were achieved at an O2 delivery rate of 1.0 vvm and temperatures of 45–60°C; however, catechol-2,3-dioxygenase (but not 2-hydroxymuconic semialdehyde dehydrogenase) was rapidly inactivated at high oxygen concentrations. Whole cells of Bacillus strain Cro3.2 entrapped in calcium alginate, polyacrylamide, and agarose gels showed widely different rates of phenol degradation. In calcium alginate gels, rapid loss of phenol-degrading activity was attributed to calcium-induced inactivation of catechol-2,3-dioxygenase. No stabilization with respect to oxygen-induced inactivation was observed under any of the immobilization conditions. It is concluded that the counteractive effects of oxygen limitation at low dO2 and inactivation of catechol-2,3-dioxygenase at high dO2 levels pose a significant impediment to the use of resting thermophile cells in the treatment of phenolic waste streams.  相似文献   

19.
Biotransformation of 2-chlorophenol by a methanogenic sediment community resulted in the transient accumulation of phenol and benzoate. 3-Chlorobenzoate was a more persistent product of 2-chlorophenol metabolism. The anaerobic biotransformation of phenol to benzoate presumably occurred via para-carboxylation and dehydroxylation reactions, which may also explain the observed conversion of 2-chlorophenol to 3-chlorobenzoate.  相似文献   

20.
Geobacter metallireducens is a Fe(III)-respiring deltaproteobacterium and serves as a model organism for aromatic compound-degrading, obligately anaerobic bacteria. In this study, a genetic system was established for G. metallireducens using nitrate as an alternative electron acceptor. Surprisingly, disruption of the benzoate-induced bamY gene, encoding a benzoate coenzyme A (CoA) ligase, reproducibly showed an increased biomass yield in comparison to the wild type during growth with benzoate but not during growth with acetate. Complementation of bamY in trans converted the biomass yield back to the wild-type level. Growth of the bamY mutant with benzoate can be rationalized by the identification of a previously unknown succinyl-CoA:benzoate CoA transferase activity; it represents an additional, energetically less demanding mode of benzoate activation. The activity was highly enriched from extracts of cells grown on benzoate, yielding a 50-kDa protein band; mass spectrometric analysis identified the corresponding benzoate-induced gene annotated as a CoA transferase. It was heterologously expressed in Escherichia coli and characterized as a specific succinyl-CoA:benzoate CoA transferase. The newly identified enzyme in conjunction with a benzoate-induced succinyl-CoA synthetase links the tricarboxylic acid cycle to the upper benzoyl-CoA degradation pathway during growth on aromatic growth substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号