首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of water deficit on carbohydrate status and enzymes of carbohydrate metabolism (alpha and beta amylases, sucrose phosphate synthase, sucrose synthase, acid and alkaline invertases) in wheat (Triticum aestivum L.) was investigated in the seedlings of drought-sensitive (PBW 343) and drought-tolerant (C 306) cultivars. The water deficit was induced by adding 6% mannitol (water potential -0.815 Mpa) in the growth medium. The water deficit reduced starch content in the shoots of tolerant seedlings as compared to the sensitive ones, but increased sucrose content in the shoots and roots of tolerant seedlings, indicating their protective role during stress conditions. It also decreased the alpha-amylase activity in the endosperm of seedlings of both the cultivars, but increased alpha and beta amylase activities in the shoots of tolerant ones. Sucrose phosphate synthase (SPS) activity showed a significant increase at 6 days of seedling growth (DSG) in the shoots of stressed seedlings of tolerant cultivar. However, SPS activity in the roots of stressed seedlings of sensitive cultivar was very low at 4 DSG and appeared significantly only at day 6. Sucrose synthase (SS) activity was lower in the shoots and roots of stressed seedlings of tolerant cultivar than sensitive ones at early stage of seedling growth. Higher acid invertase activity in the shoots of seedlings of tolerant cultivar appeared to be a unique characteristic of this cultivar for stress tolerance. Alkaline invertase activity, although affected under water deficit conditions, but was too low as compared to acid invertase activity to cause any significant affect on sucrose hydrolysis. In conclusion, higher sucrose content with high SPS and low acid invertase and SS activities in the roots under water deficit conditions could be responsible for drought tolerance of C 306.  相似文献   

2.
A simple method of growing plants in agar was exploited to investigate the effect of long-term nitrogen (N) and phosphorus (P) deficiencies on respiratory metabolism and growth in shoots and roots of Nicotiana tabacum seedlings, and their interaction with exogenously supplied sucrose. Levels of hexose phosphates and 3-phosphoglyceric acid (3-PGA) were low in P-deficient shoots and roots and high in N-deficient shoots and roots. The ratio of hexose phosphates to 3-PGA and levels of fructose-2,6-bisphosphate were high in P-deficient plants and low in N-deficient plants. These data reflect differences in the way metabolism was perturbed, yet both deficiencies were associated with increased root growth relative to shoot growth, starch accumulation in the shoots, and soluble carbohydrate accumulation, especially hexoses, in the roots. Enzymes for sucrose degradation (sucrose synthase, acid and alkaline invertase) and glycolysis (phosphofructokinase, pyrophosphate-dependent phospho-fructokinase and pyruvate kinase) remained unaltered or declined in the shoots and roots. The accumulation of hexoses in roots of N- and P-deficient plants may result from maintenance of high invertase activities relative to sucrose synthase and glycolytic enzymes in the roots. The possibility that hexose accumulation may drive preferential root growth osmotically in N and P deficiencies is discussed. The addition of sucrose to roots to further investigate the interaction of carbohydrates with growth and allocation in low N and low P produced clear effects even though endogenous levels of soluble carbohydrate were already high in the nutrient-deficient plants. In complete nutrition, growth was stimulated, protein content particularly of the roots was increased and there was a preferential increase in activity of sucrose synthase in roots. At low P, enzyme activities in roots were increased, including sucrose synthase, and protein content increased, particularly in the roots, but there was no increase in growth. In N-deficient plants, exogenous sucrose led to decreased protein, Rubisco and chlorophyll content in shoots, in contrast to the other conditions, and a higher protein content and a general increase of catabolic enzyme activities and growth in the roots.  相似文献   

3.
Hydroponic experiments were carried out using seedlings of the wetland halophyte species Kosteletzkya virginica (L.) Presl. exposed to 10???M Cd or 100???M Zn in the absence or presence of 50?mM NaCl. Interaction between salinity and heavy metals was analysed in relation to plant growth, water status and tissue ion contents (Na, K and Ca). Results showed a strong inhibition effect of Cd on leaf emergence, lateral branch development and leaf expansion. Heavy metals induced a significant decrease in plant dry weight, water content, osmotic potential (?? S) and leaf water potential (?? w). Cadmium and Zn accumulated to higher extent in the roots than in the shoots. Cadmium increased the leaf K concentration while Zn had an opposite effect. Salinity strongly reduced Cd uptake and translocation from roots to shoots: it mitigated the Cd impact on lateral branch emergence but had no effects on plant dry weight and water status. Cadmium drastically reduced Na translocation in salt-treated plants while Zn increased it. It is concluded that complex interactions exist between heavy metals and monovalent cations in salt conditions and that Cd and Zn display contrasting behaviour in this respect. Stress-induced modification of ion content did not fully explain growth inhibition in Kosteletzkya virginica.  相似文献   

4.
Plasma membrane-enriched preparations from fibrous roots of three citrus genotypes differing in their abilities for chloride exclusion, and grown in the presence of 0,50 or 100 mM NaCl for 4 weeks, were analysed for phospholipid and free sterol content and vanadate-sensitive adenosine triphosphatase (ATPase) activity over a range of temperatures. The best chloride excluder, Rangpur lime (Citrus reticulaia Blanco var. austera hyb.?), had significantly higher maximal ATPase activity than both the moderate chloride excluder. Kharna khatta (Citrus kharna Raf.), and the worst chloride excluder, Etrog citron (Citrus medico L.), at all assay temperatures below 28°C. Salt treatment had no effect on maximal ATPase activity of either Rangpur lime or Etrog citron but resulted in increased activity of the enzyme in Kharna khatta at temperatures below 28°C. Arrhenius plots of ATPase activity from the three citrus genotypes showed that, in controls, the activation energy (E.,) of Rangpur lime ATPase was significantly lower than that of both Kharna khatta and Etrog citron. The thermotropic phase transition temperature (Tf) for Rangpur lime (27°C) was also lower than for the other citrus genotypes (31°C). Salt treatment resulted in increases in both Ea and T, for Rangpur lime, decreases in both parameters for Kharna khatta and no change of either parameter for Etrog citron. An inverse relationship between Ea and the phospholipid to free sterol ratio was evident for plasma membrane preparations from all three citrus genotypes in the presence and absence of salt treatment suggesting that changes in membrane fluidity, particularly those induced by free sterols, have the potential to influence active as well as passive ion transport processes and thus may play a significant role in the chloride exclusion mechanism.  相似文献   

5.
  • Being the principal product of photosynthesis, sucrose is involved in many metabolic processes in plants. As magnesium (Mg) is phloem mobile, an inverse relationship between Mg shortage and sugar accumulation in leaves is often observed.
  • Mg deficiency effects on carbohydrate contents and invertase activities were determined in Sulla carnosa Desf. Plants were grown hydroponically at different Mg concentrations (0.00, 0.01, 0.05 and 1.50 mM Mg) for one month.
  • Mineral analysis showed that Mg contents were drastically diminished in shoots and roots mainly at 0.01 and 0.00 mM Mg. This decline was adversely associated with a significant increase of sucrose, fructose and mainly glucose in shoots of plants exposed to severe deficiency. By contrast, sugar contents were severely reduced in roots of these plants indicating an alteration of carbohydrate partitioning between shoots and roots of Mg‐deficient plants. Cell wall invertase activity was highly enhanced in roots of Mg‐deficient plants, while the vacuolar invertase activity was reduced at 0.00 mM Mg. This decrease of vacuolar invertase activity may indicate the sensibility of roots to Mg starvation resulting from sucrose transport inhibition. 14CO2 labeling experiments were in accordance with these findings showing an inhibition of sucrose transport from source leaves to sink tissues (roots) under Mg depletion.
  • The obtained results confirm previous findings about Mg involvement in photosynthate loading into phloem and add new insights into mechanisms evolved by S. carnosa to cope with Mg shortage in particular the increase of the activity of cell wall invertase.
  相似文献   

6.
The effects of Cd have been investigated in tomato (Lycopersicon esculentum) plants grown in a controlled environment in hydroponics, using Cd concentrations of 10 and 100 μM. Cadmium treatment led to major effects in shoots and roots of tomato. Plant growth was reduced in both Cd treatments, leaves showed chlorosis symptoms when grown at 10 μM Cd and necrotic spots when grown at 100 μM Cd, and root browning was observed in both treatments. An increase in the activity of phosphoenolpyruvate carboxylase, involved in anaplerotic fixation of CO2 into organic acids, was measured in root extracts of Cd-exposed plants. Also, significant increases in the activities of several enzymes from the Krebs cycle were measured in root extracts of tomato plants grown with Cd. In leaf extracts, significant increases in citrate synthase, isocitrate dehydrogenase and malate dehydrogenase activities were also found at 100 μM Cd, whereas fumarase activity decreased. These data suggest that at low Cd supply (10 μM) tomato plants accumulate Cd in roots and this mechanism may be associated to an increased activity in the PEPC–MDH–CS metabolic pathway involved in citric acid synthesis in roots. Also, at low Cd supply some symptoms associated with a moderate Fe deficiency could be observed, whereas at high Cd supply (100 μM) effects on growth overrule any nutrient interaction caused by excess Cd. Cadmium excess also caused alterations on photosynthetic rates, photosynthetic pigment concentrations and chlorophyll fluorescence, as well as in nutrient homeostasis.  相似文献   

7.
The effect of addition of indole acetic acid (3 M) andNaCl (75 mM) on growth and enzymes of carbohydrate metabolism inchickpea seedlings was compared. In comparison with control seedlings, theseedlings growing in the presence of indole acetic acid (IAA) had reducedamylase activity in cotyledons and enhanced sucrose synthase (SS) and sucrosephosphate synthase (SPS) activities in cotyledons and shoots at all days ofseedling growth. Compared with control seedlings, sucrose content was higher incotyledons, shoots and roots and reducing sugar content was lower in shoots ofIAA treated seedlings. A low invertase (acid and alkaline) activity in shoots ofIAA treated seedlings could lead to reduced sink strength and hence decreasedgrowth of seedlings. Effects of NaCl stress on growth and activities of amylase,SS and SPS in cotyledons and invertase, SS and SPS in shoots were similar tothose observed with addition of IAA.  相似文献   

8.
Hydroponic culture was used to comparatively investigate the copper (Cu)-induced alteration to sucrose metabolism and biomass allocation in two Elsholtzia haichowensis Sun populations with one from a Cu-contaminated site (CS) and the other from a non-contaminated site (NCS). Experimental results revealed that biomass allocation preferred roots over shoots in CS population, and shoots over roots in NCS population under Cu exposure. The difference in biomass allocation was correlated with the difference in sucrose partitioning between the two populations. Cu treatment (45 μM) significantly decreased leaf sucrose content and increased root sucrose content in CS population as a result of the increased activities of leaf sucrose synthesis enzymes (sucrose phosphate synthetase and sucrose synthase) and root sucrose cleavage enzyme (vacuolar invertase), which led to increased sucrose transport from leaves to roots. In contrast, higher Cu treatment increased sucrose content in leaves and decreased sucrose content in roots in NCS population as a result of the decreased activities of root sucrose cleavage enzymes (vacuolar and cell wall invertases) that led to less sucrose transport from leaves to roots. These results provide important insights into carbon resource partitioning and biomass allocation strategies in metallophytes and are beneficial for the implementation of phytoremediation techniques.  相似文献   

9.
The incorporation of sucrose into the thermophilic fungus,Thermomyces lanuginosus, occurred only in mycelia previously exposed to sucrose or raffinose. Sucrose uptake and invertase were inducible. Both activities appeared in sucrose-induced mycelia at about the same time. Both activities declined almost simultaneously following the exhaustion of sucrose in the medium. The sucrose-induced uptake system was specific for -fructofuranosides as revealed by competition with various sugars. The induction of sucrose uptake system was blocked by cycloheximide, showing that it was dependent on new protein synthesis. Transport of sucrose did not seem to be dependent on ATP. Rather, uptake of this sugar seemed to be driven by a proton gradient across the plasma membrane. The uptake system showed Michaelis-Menten kinetics.Abbreviations FCCP carbonylcyanide p-trifluoromethylphenyl hydrazone - 2,4-DNP 2,4-dinitrophenol  相似文献   

10.
Cadmium(Cd) stress induced alterations in the activities of several representatives of the enzymatic antioxidant defense system such as guiacol peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were comparatively studied in green and greening barley seedlings that represent two different stages of plant development. Although roots were the main site of Cd accumulation, 1.5–3% of Cd was translocated into leaves and it induced oxidative damage which was indicated by the reduced chlorophyll and increased malondialdehyde content of the leaves. In roots of both types of seedlings exposed to various Cd concentrations, the APX activity was enhanced without any increase in the activity of POD. In leaves, however, elevated activities of both POD and APX could be observed. In roots of green seedlings at high concentration of Cd, the APX activity was reduced on the fourth day of culture but no inhibition was found in the POD activity. Leaf CAT which mainly represented the peroxisomal enzyme activity did not display any changes under Cd stress. Our results show that at both developmental stages barley seedlings exhibit a well-defined activity of the enzymatic antioxidant system, which operates differentially in roots and shoots subjected to Cd stress.  相似文献   

11.
可溶性酸性蔗糖酶是决定甜菜块根贮藏质量的关键酶。贮藏期间其活力的提高是由于蛋白质重新合成所致。不良的贮藏条件使块根汁液pH降低,膜透性增加,这两种因素与可溶性酸性蔗糖酶活力成正相关,与贮藏质量成负相关。  相似文献   

12.
Changes in the starch and sucrose contents, and the sucrose phosphate synthase, acid invertase, and starch phosphorylase activities were studied in the seedlings of salt sensitive and salt tolerant rice cultivars growing under two NaCl concentrations (7 and 14 dS m-1) for 20 d. Under salinity, the starch content in roots declined more in salt sensitive cvs. Ratna and Jaya than in salt tolerant cvs. CSR-1 and CSR-3 and was unchanged in shoots. The contents of reducing and non-reducing sugars, and the activity of sucrose phosphate synthase was increased more in the sensitive than in the tolerant cultivars. Acid invertase activity decreased in shoots of the salt tolerant cultivars, whereas increased in salt sensitive cultivars. Starch phosphorylase activity decreased in all cultivars. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The objective of this study was to assess the effect of different Cd and Si concentrations on the maize plants. The following Cd and/or Si treatments were used: 5 Cd; 10 Cd; 100 Cd; 5 Cd + 0.08 Si; 10 Cd + 0.08 Si; 100 Cd + 5 Si treatments (Cd concentration in μM, Si concentration in mM). The plant growth, photosynthetic pigments content, antioxidant enzymes activities (POX, SOD, CAT), Cd and Si accumulation, translocation and cell wall deposition of the maize plants was observed. Changes in the endodermal cell walls development and late metaxylem elements lignification due to Cd and/or Si treatment were also evaluated. The negative effect of Cd (5 and 10 μM) on the growth parameters was alleviated by Si at 0.08 mM. The positive effect of Si was not observed at higher Cd and Si concentrations. This indicates that the alleviating effect of Si on Cd toxicity depends on the Cd and Si concentrations. Plants responded to Cd toxicity by an increase of antioxidant enzyme activity. Silicon addition in Cd + Si treatment stimulated an increase in the activity of antioxidant enzymes in comparison with the Cd treatment. Chlorophyll and carotenoid content in the Cd treated plants was not significantly affected by Si. The young maize plants retained much more Cd in their roots as they translocated into the shoots. 5 Cd + 0.08 Si and 10 Cd + 0.08 Si treatments correlated with an increase in Cd concentration in the roots and shoots, and in the cell walls. Silicon caused a slight decrease of the Cd translocation into the shoots in 5 Cd + 0.08 Si and 10 Cd + 0.08 Si treatments. Negative correlation between the root Cd cell wall deposition and Cd translocation was observed. Cadmium and/or Si altered root anatomy. Cadmium enhanced suberin lamellae development and late metaxylem lignification; silicon in Cd + Si treatments accelerated suberin lamellae deposition and enhanced the tertiary endodermal cell walls formation in comparison with Cd treatments. Negative correlation between the endodermal cell walls development and Cd translocation was observed.  相似文献   

14.
Enhanced amylase activity was observed during a 7-day-growth period in the cotyledons of PEG imposed water stressed chickpea seedlings grown in the presence of GA3 and kinetin, when compared with stressed seedlings. During the first 5 days of seedling growth, the seedlings growing under water deficit conditions as well as those growing in the presence of PGRs had a higher amylase activity in shoots than that of control seedlings. Neither GA3 nor kinetin increased the amylase activity of roots whereas IAA reduced root amylase activity. Activity of acid and alkaline invertases was maximum in shoots and at a minimum in cotyledons. Compared with alkaline invertase, acid invertase activity was higher in all the tissues. The reduced acid and alkaline invertase activities in shoots of stressed seedlings were enhanced by GA3 and kinetin. Roots of stressed seedlings had higher alkaline invertase activity and GA3 and IAA helped in bringing the level near to those in the controls. GA3 and kinetin increased the sucrose synthase (SS) and sucrose phosphate synthase (SPS) activities in cotyledons of stressed seedlings, whereas they brought the elevated level of SPS of stressed roots to near normal level. The higher level of reducing sugars in the shoots of GA3 and kinetin treated stressed seedlings could be due to the high acid invertase activity observed in the shoots, and the high level of bound fructose in the cotyledons of stressed seedlings could be due to the high activity of SPS in this tissue.  相似文献   

15.
The OsNRAMP1 iron transporter is involved in Cd accumulation in rice   总被引:15,自引:0,他引:15  
Cadmium (Cd) is a heavy metal toxic to humans and the accumulation of Cd in the rice grain is a major agricultural problem, particularly in Asia. The role of the iron transporter OsNRAMP1 in Cd uptake and transport in rice was investigated here. An OsNRAMP1:GFP fusion protein was localized to the plasma membrane in onion epidermal cells. The growth of yeast expressing OsNRAMP1 was impaired in the presence of Cd compared with yeast transformed with an empty vector. Moreover, the Cd content of OsNRAMP1-expressing yeast exceeded that of the vector control. The expression of OsNRAMP1 in the roots was higher in a high Cd-accumulating cultivar (Habataki) than a low Cd-accumulating cultivar (Sasanishiki) regardless of the presence of Cd, and the amino acid sequence of OsNRAMP1 showed 100% identity between Sasanishiki and Habataki. Over-expression of OsNRAMP1 in rice increased Cd accumulation in the leaves. These results suggest that OsNRAMP1 participates in cellular Cd uptake and Cd transport within plants, and the higher expression of OsNRAMP1 in the roots could lead to an increase in Cd accumulation in the shoots. Our results indicated that OsNRAMP1 is an important protein in high-level Cd accumulation in rice.  相似文献   

16.
The aim of this study was to investigate carbohydrate metabolism in rice seedlings subjected to salt-alkaline stress. Two relatively salt-alkaline tolerant (Changbai 9) and sensitive (Jinongda 138) rice cultivars, grown hydroponically, were subjected to salt-alkaline stress via 50 mM of salt-alkaline solution. The carbohydrate content and the activities of metabolism-related enzymes in the leaves and roots were investigated. The results showed that the contents of sucrose, fructose, and glucose in the leaves and roots increased under salt-alkaline stress. Starch content increased in the leaves but decreased in the roots under salt-alkaline stress. The activities of sucrose-phosphate synthase, sucrose synthase, amylase, and ADP-glucose pyrophosphorylase increased whereas the activities of neutral invertase and acid invertase decreased in the leaves under salt-alkaline stress. The activities of sucrose-phosphate synthase, sucrose synthase, amylase, neutral invertase, and acid invertase increased in the roots under salt-alkaline stress. In conclusion, salt-alkaline stress caused the accumulation of photosynthetic assimilates in the leaves and decreased assimilation export to the roots.  相似文献   

17.
通过盆栽试验,研究了Cd、Zn及其交互作用下互花米草中Cd、Zn的含量及积累量,并分析了Cd、Zn在互花米草中的亚细胞分布及化学形态。结果表明:Cd-Zn处理组互花米草地上部及根部Cd含量显著高于Cd处理组;Cd-Zn处理组根部Zn含量显著低于Zn处理组,但地上部差异不显著,说明Zn促进Cd的吸收,Cd抑制Zn的吸收。Cd-Zn处理组互花米草地上部Cd积累量显著高于Cd处理组,但是根部Cd积累量却显著低于Cd处理组;Zn处理组地上部及根部Zn积累量均显著高于对照组及Cd-Zn处理组。Cd单因素胁迫下,Cd主要分布在细胞壁,Cd-Zn交互作用下,Cd在胞液中的分配比例高于其他细胞组分;Zn单因素及Cd-Zn交互作用下,Zn在胞液中的分配比例均较高,总的分配比例呈现以下趋势:胞液>细胞壁>细胞器,说明Zn的添加影响了Cd的亚细胞分布,Cd的出现对Zn在互花米草细胞中的分布影响不明显。Cd和Zn在互花米草叶中主要以氯化钠提取态存在,表明互花米草中Cd和Zn多以果胶酸盐结合态或蛋白质结合态存在。  相似文献   

18.
Abstract The free 4-desmethylsterol composition of plasma-membrane-enriched preparations from white fibrous roots of Rangpur lime (Citrus reticulata var. austera hybrid?), Kharna khatta (C. kharna Raf.) and Etrog citron (C. medica L.) seedlings grown in the presence of 0, 50, or 100 mol m?3 NaCl for 28 d was quantitated by gas chromatography (GC) on analytical capillary (SE-54 fused silica) columns and the sterols were identified by combined gas chromatography-mass spectrometry (GC-MS). Only three 4-desmethylsterols were positively identified by GC-MS, viz. campesterol, stigmasterol and sitosterol. Cholesterol could not be positively identified in any of the membrane preparations. Campesterol levels were generally similar for all treatments and for all three genotypes, approximating 30% of the total free 4-desmethylsterol content of the plasma membranes. At all levels of salinity (0, 50 or 100 mol m?3 NaCl) sitosterol levels decreased in the order Rangpur lime > Kharna khatta > Etrog citron and stigmasterol levels decreased in the reverse order. The ratio of sitosterol to stigmasterol was highest in Rangpur lime and lowest in Etrog citron at each level of salinity and was reduced by salt treatment in all three genotypes. Salt-induced reductions in the ratio of ‘more planar’ to ‘less planar’ sterols correlated inversely with the accumulation of Cl? in the leaves of the three genotypes suggesting a role for plasma membrane sterols in the Cl? exclusion mechanism. A model relating sterol structure, membrane sterol composition and membrane permeability to Cl? exclusion ability in citrus is presented.  相似文献   

19.
The effects of cadmium chloride concentration on root, bulb and shoot growth of garlic (Allium sativum L.), and the uptake and accumulation of Cd2+ by garlic roots, bulbs and shoots were investigated. The range of cadmium chloride (CdCl2 x 2.5H2O) concentrations was 10(-6) - 10(-2) M. Cadmium stimulated root length at lower concentrations (10(-6) - 10(-5) M) significantly (P < 0.005) during the entire treatment period. The seedlings exposed to 10(-3) - 10(-2) M Cd exhibited substantial growth reduction (P < 0.005), but did not develop chlorosis. Garlic has considerable ability to remove Cd from solutions and accumulate it. The Cd content in roots of garlic increased with increasing solution concentration of Cd2+. The roots in plants exposed to 10(-2) M Cd accumulated a large amount of Cd. approximately 1,826 times the control. The Cd contents in roots of plants treated with 10(-3), 10(-4), 10(-5) and 10(-6) M Cd were approximately 114, 59, 24 and 4 times the control, respectively. However, the plants transported only a small amount of Cd to their bulbs and shoots and concentrations in these tissues were low.  相似文献   

20.
In this study, the effect of cadmium (Cd) uptake and concentration on some growth and biochemical responses were investigated in Malva parviflora under Cd treatments including 0, 10, 50 and 100 µM. The shoots and roots were able to accumulate Cd. However, increased Cd dose led to a considerable Cd content in the roots. Cd stress decreased growth, increased lipid peroxidation and also enhanced proline and ascorbic acid contents in both shoots and roots. Chlorophyll and carotenoid contents decreased in the plants with the increasing Cd concentration. While the activities of catalase (CAT) and superoxide dismutase (SOD) increased in the shoots under different Cd doses, these activities decreased in the roots as compared to the control. Both shoots and roots demonstrated a significant increase in guaiacol peroxidase activity in response to Cd stress. Contrary to the aboveground parts, the roots subjected to Cd doses showed a rise in protein content. Despite higher Cd content in the roots, it seems that CAT and SOD do not play a key role in detoxification of Cd-induced oxidative stress. These findings confirm that reduced biomass and growth under Cd stress can be due to an increase in oxidative stress and a decrease in photosynthetic pigment content. The present study clearly indicates that the shoots and roots exploit different tolerance behaviors to alleviate Cd-induced oxidative stress in M. parviflora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号