首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Rous sarcoma virus (RSV) stimulates in quail embryo neuro-retina (NR) cultures the specific activity of glutamic acid decarboxylase (GAD), the enzyme responsible for the synthesis of gamma-aminobutyric acid, a major inhibitory neurotransmitter in NR and in central nervous system. In quail embryo NR cultures transformed by ts NY-68, a thermodependent transformation-defective mutant of RSV, stimulation of GAD activity is regulated by pp60v-src, the product of the src gene of RSV. Fibroblasts and myoblasts have a very low GAD activity that is not stimulated after transformation by RSV. Neuronal clones, previously derived from ts NY-68-transformed established NR cell lines, have a high GAD activity which is regulated by pp60v-src, while other clones have a low GAD activity apparently not regulated by pp60v-src. These data indicate that pp60v-src selectively activates the expression of GAD in distinct neuronal cells of quail embryo NR cultures transformed by RSV. GAD activity is also stimulated in NR cells infected with viruses containing v-mil.  相似文献   

3.
B Pessac 《Cell differentiation》1987,20(2-3):197-202
The effects of oncogenic retroviruses on the expression of differentiation markers were studied in monolayer cultures of chick and quail embryo neuroretinas. Transformation by Rous sarcoma virus (RSV) did not affect the appearance of synapses, and the expression of glutamic acid decarboxylase was stimulated by pp60v-src, the product of the src gene. Quail embryo neuroretina cells transformed by Mill Hill 2 (which contains the two oncogenes v-mil and v-myc) were induced to proliferate into permanent cultures that synthesized crystallins and produced lentoid bodies. In contrast, transformation with a temperature-sensitive mutant of RSV reversibly blocked the production of crystallins and lentoid bodies. These data show that given cellular genes can respond differently to distinct oncogenes.  相似文献   

4.
pp60c-src is developmentally regulated in the neural retina   总被引:60,自引:0,他引:60  
L K Sorge  B T Levy  P F Maness 《Cell》1984,36(2):249-257
We have localized normal cellular pp60c-src in the developing chick neural retina by immunocytochemical staining using antisera raised against bacterially expressed pp60v-src, the src gene product of Rous sarcoma virus. pp60c-src was expressed in developing retinal neurons at the onset of differentiation. Expression of pp60c-src persisted in mature neuronal cells that were postmitotic, fully differentiated, and functional. pp60c-src immunoreactivity was localized within processes and cell bodies of ganglion neurons, processes of rods and cones, and in some but not all neurons of the inner nuclear layer. Protein kinase assays and Western transfer analyses identified the immunoreactive protein as pp60c-src, and confirmed that its expression occurs at the time the first neuronal cells in the retina differentiate. We conclude from these studies that pp60c-src is the product of a developmentally regulated gene that is more important in neuronal differentiation or function than cell proliferation.  相似文献   

5.
《The Journal of cell biology》1990,110(6):2087-2098
Immature avian sympathetic neurons are able to proliferate in culture for a limited number of divisions albeit expressing several neuron- specific properties. The effect of avian retroviral transfer of oncogenes on proliferation and differentiation of sympathetic neurons was investigated. Primary cultures of 6-d-old quail sympathetic ganglia, consisting of 90% neuronal cells, were infected by Myelocytomatosis virus (MC29), which contains the oncogene v-myc, and by the v-src-containing Rous sarcoma virus (RSV). RSV infection, in contrast to findings in other cellular systems, resulted in a reduction of neuronal proliferation as determined by 3H-thymidine incorporation (50% of control 4 d after infection) and in increased morphological differentiation. This is reflected by increased neurite production, cell size, and expression of neurofilament protein. In addition, RSV- infected neurons, unlike uninfected cells, are able to survive in culture for time periods up to 14 d in the absence of added neurotrophic factors. In contrast, retroviral transfer of v-myc stimulated the proliferation of immature sympathetic neurons preserving many properties of uninfected cells. The neuron-specific cell surface antigen Q211 and the adrenergic marker enzyme tyrosine hydroxylase were maintained in MC29-infected cells and in the presence of chick embryo extract the cells could be propagated over several weeks and five passages. Within 7 d after infection, the number of Q211-positive neurons increased approximately 100-fold. These data demonstrate distinct and different effects of v-src and v-myc-containing retroviruses on proliferation and differentiation of sympathetic neurons: v-src transfer results in increased differentiation, whereas v- myc transfer maintains an immature status reflected by proliferation, immature morphology, and complex growth requirements. The possibility of expanding immature neuronal populations by transfer of v-myc will be of considerable importance for the molecular analysis of neuronal proliferation and differentiation.  相似文献   

6.
7.
During the development of the central nervous system, cell proliferation and differentiation are precisely regulated. In the vertebrate eye, progenitor cells located in the marginal-most region of the neural retina continue to proliferate for a much longer period compared to the ones in the central retina, thus showing stem-cell-like properties. Wnt2b is expressed in the anterior rim of the optic vesicles, and has been shown to control differentiation of the progenitor cells in the marginal retina. In this paper, we show that stable overexpression of Wnt2b in retinal explants inhibited cellular differentiation and induced continuous growth of the tissue. Notably, Wnt2b maintained the undifferentiated progenitor cells in the explants even under the conditions where Notch signaling was blocked. Wnt2b downregulated the expression of multiple proneural bHLH genes as well as Notch. In addition, expression of Cath5 under the control of an exogenous promoter suppressed the negative effect of Wnt2b on neuronal differentiation. Importantly, Wnt2b inhibited neuronal differentiation independently of cell cycle progression. We propose that Wnt2b maintains the naive state of marginal progenitor cells by attenuating the expression of both proneural and neurogenic genes, thus preventing those cells from launching out into the differentiation cascade regulated by proneural genes and Notch.  相似文献   

8.
9.
1. Recombinant retroviruses were used to introduce a temperature-sensitive v-src gene and oncogenic c-Ha-ras into PC12 cells, and stable cell lines expressing these genes were established. 2. As previously reported, expression of v-src (Alema et al., 1985) or c-Ha-ras (Noda et al., 1985) in PC12 cells results in neurite outgrowth resembling that induced by NGF. We report here that v-src but not oncogenic c-Ha-ras induces a stable morphologic neuronal differentiation similar to treatment with NGF. Oncogenic c-Ha-ras-induced neurite outgrowth is not stable with long-term culture, rather the cells revert to an undifferentiated morphology with altered cell cycle kinetics. 3. The stable neuronal phenotype induced by v-src and NGF is characterized by the functional expression of dihydropyridine-insensitive calcium currents.  相似文献   

10.
11.
12.
13.
14.
IL-4, primarily produced by T cells, mast cells, and basophiles, is a cytokine which has pleiotropic effects on the immune system. IL-4 induces T cells to differentiate to Th2 cells and activated B lymphocytes to proliferate and to synthesize IgE and IgG1. IL-4 is particularly important for the development and perpetuation of asthma and allergy. Stat6 is the protein activated by signal transduction through the IL-4R, and studies with knockout mice demonstrate that Stat6 is critical for a number of IL-4-mediated functions including Th2 development and production of IgE. In the present study, novel IL-4- and Stat6-regulated genes were discovered by using Stat6(-/-) mice and Affymetrix oligonucleotide arrays. Genes regulated by IL-4 were identified by comparing the gene expression profile of the wild-type T cells induced to polarize to the Th2 direction (CD3/CD28 activation + IL-4) to gene expression profile of the cells induced to proliferate (CD3/CD28 activation alone). Stat6-regulated genes were identified by comparing the cells isolated from the wild-type and Stat6(-/-) mice; in this experiment the cells were induced to differentiate to the Th2 direction (CD3/CD28 activation + IL-4). Our study demonstrates that a number a novel genes are regulated by IL-4 through Stat6-dependent and -independent pathways. Moreover, elucidation of kinetics of gene expression at early stages of cell differentiation reveals several genes regulated rapidly during the process, suggesting their importance for the differentiation process.  相似文献   

15.
Expression of the src gene of Rous sarcoma virus (RSV) in chicken embryo neuroretinal (NR) cells results in morphological transformation and sustained proliferation of a normally resting cell population. We have previously reported the isolation of mutants of RSV which retain full growth-promoting activity while displaying reduced transforming properties. Two such mutants, PA101 and PA104, were used to investigate whether the p60src-associated kinase activity is required for the mitogenic function of src. A comparison of the patterns of phosphorylation of wild-type and mutant p60src revealed that the phosphorylation of tyrosine residues of p60src of PA104 was markedly reduced, whereas the relative amount of phosphotyrosine in p60src of PA101 was comparable to that of the wild-type protein. In vitro kinase activity of p60src immunoprecipitated from NR cells infected with PA101 or PA104 as measured by phosphorylation of the heavy chains of specific immunoglobulin G molecules was 1/10 that of the wild-type molecule. Moreover, when NR cells infected with mutants temperature sensitive for mitogenic capacity were maintained at a temperature either permissive or restrictive for cell growth, quantitation of kinase activity indicated that proliferation of NR cells could not be linked to the absolute level of in vitro kinase activity of p60src. Transformation of NR cells by wild-type RSV resulted in a 10-fold increase in total cellular phosphotyrosine and in the phosphorylation of tyrosine residues of a 34K protein, a possible in vivo substrate for p60src. In contrast, phosphorylation of tyrosine residues of cellular targets was markedly reduced in NR cells infected with PA101 or PA104. These results indicate that the mitogenic capacity of RSV in NR cells does not require elevated levels of p60src kinase activity.  相似文献   

16.
PC12 cells treated with nerve growth factor (NGF) or infected with Rous sarcoma virus differentiate into sympathetic, neuronlike cells. To compare the differentiation programs induced by NGF and v-src, we have established a PC12 cell line expressing a temperature-sensitive v-src protein. The v-src-expressing PC12 cell line was shown to elaborate neuritic processes in a temperature-inducible manner, indicating that the differentiation process was dependent on the activity of the v-src protein. Further characterization of this cell line, in comparison with NGF-treated PC12 cells, indicated that the events associated with neurite outgrowth induced by these two agents shared features but could be distinguished by others. Both NGF- and v-src-induced neurite outgrowths were reversible. In addition, NGF and v-src could prime PC12 cells for NGF-induced neurite outgrowth, and representative early and late NGF-responsive genes were also induced by v-src. However, unlike NGF-induced neurite growth, v-src-induced neurite outgrowth was not blocked at high cell density. A comparison of phosphotyrosine containing-protein profiles showed that v-src and NGF each increase tyrosine phosphorylation of multiple cellular proteins. There was overlap in substrates; however, both NGF-specific and v-src-specific tyrosine phosphorylations were observed. One protein which was found to be phosphorylated in both the NGF- and v-src-induced PC12 cells was phospholipase C-gamma 1. Taken together, these results suggest that v-src's ability to function as an inducing agent may be a consequence of its ability to mimic critical aspects of the NGF differentiation program and raise the possibility that Src-like tyrosine kinases are involved in mediating some of the events triggered by NGF.  相似文献   

17.
dlPA105 is a spontaneous variant of Rous sarcoma virus, subgroup E, which carries a deletion in the N-terminal portion of the v-src gene coding sequence. This virus was isolated on the basis of its ability to induce proliferation of quiescent quail neuroretina cells. The altered v-src gene encodes a phosphoprotein of 45,000 daltons which possesses tyrosine kinase activity. DNA sequencing of the mutant v-src gene has shown that deletion extends from amino acid 33 to 126 of wild-type p60v-src. We investigated the tumorigenic and transforming properties of this mutant virus. dlPA105 induced fibrosarcomas in quails with an incidence identical to that induced by wild-type virus. Quail neuroretina cells infected with the mutant virus were morphologically transformed and formed colonies in soft agar. In contrast, dlPA105 induced only limited morphological alterations in quail fibroblasts and was defective in promoting anchorage-independent growth of these cells. Synthesis and tyrosine kinase activity of the mutant p45v-src were similar in both cell types. These data indicate that the portion of the v-src protein deleted in p45v-src is dispensable for the mitogenic and tumorigenic properties of wild-type p60v-src, whereas it is required for in vitro transformation of fibroblasts. The ability of dlPA105 to induce different transformation phenotypes in quail fibroblasts and quail neuroretina cells is a property unique to this Rous sarcoma virus mutant and provides evidence for the existence of cell-type-specific response to v-src proteins.  相似文献   

18.
The ability of cloned Rous sarcoma virus (RSV) DNA encoding the v-src oncogene to neoplastically transform normal, diploid Syrian hamster embryo (SHE) cells was examined. Transfection of RSV DNA into early passage SHE cells resulted in a low but significant number of tumors when treated cells were injected into nude mice. Tumors formed with a low frequency (two tumors out of ten sites injected) and only after a long latency period (14 weeks). In contrast to the normal SHE cells, several different carcinogen-induced preneoplastic immortal SHE cell lines were highly susceptible to transformation by the v-src oncogene to the neoplastic phenotype. Tumors formed with high efficiency and a short latency period (less than 3 weeks). Further studies were performed to determine the basis for the inefficient transformation of the normal SHE cells. NeoR clones isolated after cotransfection of SHE cells with pSV2-neo and RSV DNAs were neither morphologically altered nor immortal and did not contain detectable levels of the v-src gene product. These results suggest that neoplastic transformation by v-src DNA in the normal cells is initially suppressed. However, cells from a v-src-induced tumor expressed v-src RNA, and antibody to v-src protein precipitated from the tumor cells a 60,000-molecular-weight protein which displayed protein kinase activity. Karyotypic analyses confirmed that the tumor was derived from Syrian hamster cells and suggested that it was clonal in nature. These results indicate that the v-src oncogene was primarily responsible for neoplastic transformation of SHE cells. In contrast to the results with the v-src oncogene, our previous studies showed that v-Ha-ras oncogene alone is unable to induce neoplastic transformation of SHE cells. Furthermore, the v-myc oncogene was able to compliment v-Ha-ras to neoplastically transform SHE cells, while cotransfection with v-src plus v-myc did not increase the incidence of tumors.  相似文献   

19.
P19 embryonal carcinoma cells provide an in vitro model system to analyze the events involved in neural differentiation. These multipotential stem cells can be induced by retinoic acid (RA) to differentiate into neural cells. We have investigated the ability of several variant forms of the protein-tyrosine kinase (PTK) pp60src to modulate cell fate determination in this system. Normally, P19 cells are induced to differentiate along a neural lineage when allowed to form extensive cell-cell contacts in large multicellular aggregates during exposure to RA. Through analysis of markers of epithelial (keratin and desmosomal proteins) and neuronal (neurofilament) cells we have found that RA-induced P19 cells transiently express epithelial markers before neuronal differentiation. Under these inductive conditions, expression of pp60v-src or expression of the neuronal variant pp60c-src+ inhibited neuronal differentiation, and resulted in maintained expression of an epithelial phenotype. Morphological analysis showed that expression of pp60src PTKs results in decreased cell-cell adhesion during the critical cell aggregation stage of the neural differentiation procedure. The effects of pp60v-src on cell fate and cell-cell adhesion could be mimicked by direct modulation of Ca+(+)-dependent cell-cell contact during RA induction of normal P19 cells. We conclude that the neural lineage of P19 cells includes an early epithelial intermediate and suggest that tyrosine phosphorylation can modulate cell fate determination during an early cell-cell adhesion-dependent event in neurogenesis.  相似文献   

20.
Stem cells resident in adult tissues are principally quiescent, yet harbor enormous capacity for proliferation to achieve self renewal and to replenish their tissue constituents. Although a single hematopoietic stem cell (HSC) can generate sufficient primitive progeny to repopulate many recipients, little is known about the molecular mechanisms that maintain their potency or regulate their self renewal. Here we have examined the gene expression changes that occur over a time course when HSCs are induced to proliferate and return to quiescence in vivo. These data were compared to data representing differences between naturally proliferating fetal HSCs and their quiescent adult counterparts. Bioinformatic strategies were used to group time-ordered gene expression profiles generated from microarrays into signatures of quiescent and dividing stem cells. A novel method for calculating statistically significant enrichments in Gene Ontology groupings for our gene lists revealed elemental subgroups within the signatures that underlie HSC behavior, and allowed us to build a molecular model of the HSC activation cycle. Initially, quiescent HSCs evince a state of readiness. The proliferative signal induces a preparative state, which is followed by active proliferation divisible into early and late phases. Re-induction of quiescence involves changes in migratory molecule expression, prior to reestablishment of homeostasis. We also identified two genes that increase in both gene and protein expression during activation, and potentially represent new markers for proliferating stem cells. These data will be of use in attempts to recapitulate the HSC self renewal process for therapeutic expansion of stem cells, and our model may correlate with acquisition of self renewal characteristics by cancer stem cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号