首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It has been shown that inhaled cigarette smoke activates vagal pulmonary C fibers and rapidly adapting receptors (RARs) in the airways and that nicotine contained in the smoke is primarily responsible. This study was carried out to determine whether nicotine alone can activate pulmonary sensory neurons isolated from rat vagal ganglia; the response of these neurons was determined by fura-2-based ratiometric Ca(2+) imaging. The results showed: 1) Nicotine (10(-4) M, 20 s) evoked a transient increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in 175 of the 522 neurons tested (Delta[Ca(2+)](i) = 142.2 +/- 12.3 nM); the response was reproducible, with a small reduction in peak amplitude in the same neurons when the challenge was repeated 20 min later. 2) A majority (59.7%) of these nicotine-sensitive neurons were also activated by capsaicin (10(-7) M). 3) 1,1-Dimethyl-4-phenylpiperazinium iodide (DMPP; 10(-4) M, 20 s), a selective agonist of the neuronal nicotinic acetylcholine receptors (NnAChRs), evoked a pattern of response similar to that of nicotine. 4) The responses to nicotine and DMPP were either totally abrogated or markedly attenuated by hexamethonium (10(-4) M). 5) In anesthetized rats, right atrial bolus injection of nicotine (75-200 mug/kg) evoked an immediate (latency <1-2 s) and intense burst of discharge in 47.8% of the pulmonary C-fiber endings and 28.6% of the RARs tested. In conclusion, nicotine exerts a direct stimulatory effect on vagal pulmonary sensory nerves, and the effect is probably mediated through an activation of the NnAChRs expressed on the membrane of these neurons.  相似文献   

2.
The administration of selective alpha(1) (phenylephrine)-, beta (isoproterenol)-, or mixed (epinephrine) adrenergic agonists induces a marked Mg(2+) extrusion from perfused rat livers. In the absence of extracellular Ca(2+), phenylephrine does not induce a detectable Mg(2+) extrusion, isoproterenol-induced Mg(2+) mobilization is unaffected, and epinephrine induces a net Mg(2+) extrusion that is lower than in the presence of extracellular Ca(2+) and quantitatively similar to that elicited by isoproterenol. In the absence of extracellular Na(+), no Mg(2+) is extruded from the liver irrespective of the agonist used. Similar results are observed in perfused livers stimulated by glucagon or 8-chloroadenosine 3', 5'-cyclic monophosphate. In the absence of extracellular Na(+) or Ca(2+), adrenergic-induced glucose extrusion from the liver is also markedly decreased. Together, these results indicate that liver cells extrude Mg(2+) primarily via a Na(+)-dependent mechanism. This extrusion pathway can be activated by the increase in cellular cAMP that follows the stimulation by glucagon or a specific beta-adrenergic receptor agonist or, alternatively, by the changes in cellular Ca(2+) induced by the stimulation of the alpha(1)-adrenoceptor. In addition, the stimulation of the alpha(1)-adrenoceptor appears to activate an auxiliary Ca(2+)-dependent Mg(2+) extrusion pathway. Finally, our data suggest that experimental conditions that affect Mg(2+) mobilization also interfere with glucose extrusion from liver cells.  相似文献   

3.
We have investigated the effect of capsaicin on Ca(2+) release from the intracellular calcium stores. Intracellular calcium concentration ([Ca(2+)](i)) was measured in rat dorsal root ganglion (DRG) neurons using microfluorimetry with fura-2 indicator. Brief application of capsaicin (1 microM) elevated [Ca(2+)](i) in Ca(2+)-free solution. Capsaicin-induced [Ca(2+)](i) transient in Ca(2+)-free solution was evoked in a dose-dependent manner. Resiniferatoxin, an analogue of capsaicin, also raised [Ca(2+)](i) in Ca(2+)-free solution. Capsazepine, an antagonist of capsaicin receptor, completely blocked the capsaicin-induced [Ca(2+)](i) transient. Caffeine completely abolished capsaicin-induced [Ca(2+)](i) transient. Dantrolene sodium and ruthenium red, antagonists of the ryanodine receptor, blocked the effect of capsaicin on [Ca(2+)](i). However, capsaicin-induced [Ca(2+)](i) transient was not affected by 2-APB, a membrane-permeable IP(3) receptor antagonist. Furthermore, depletion of IP(3)-sensitive Ca(2+) stores by bradykinin and phospholipase C inhibitors, neomycin, and U-73122, did not block capsaicin-induced [Ca(2+)](i) transient. In conclusion, capsaicin increases [Ca(2+)](i) through Ca(2+) release from ryanodine-sensitive Ca(2+) stores, but not from IP(3)-sensitive Ca(2+) stores in addition to Ca(2+) entry through capsaicin-activated nonselective cation channel in rat DRG neurons.  相似文献   

4.
We elucidated the interaction of small-conductance Ca(2+)-activated K(+) (SK(Ca)) channels and L-type Ca(2+) channels in muscarinic receptor-mediated control of catecholamine secretion in the isolated perfused rat adrenal gland. The muscarinic agonist methacholine (10-300 microM) produced concentration-dependent increases in adrenal output of epinephrine and norepinephrine. The SK(Ca) channel blocker apamin (1 microM) enhanced the methacholine-induced catecholamine responses. The facilitatory effect of apamin on the methacholine-induced catecholamine responses was not observed during treatment with the L-type Ca(2+) channel blocker nifedipine (3 microM) or Ca(2+)-free solution. Nifedipine did not affect the methacholine-induced catecholamine responses, but it inhibited the responses during treatment with apamin. The L-type Ca(2+) channel activator Bay k 8644 (1 microM) enhanced the methacholine-induced catecholamine responses, whereas the enhancement of the methacholine-induced epinephrine and norepinephrine responses were prevented and attenuated by apamin, respectively. These results suggest that SK(Ca) channels are activated by muscarinic receptor stimulation, which inhibits the opening of L-type Ca(2+) channels and thereby attenuates adrenal catecholamine secretion.  相似文献   

5.
When capsaicin is applied repeatedly to dorsal root ganglion (DRG) neurons for brief periods (10-15 s) at short intervals (5-10 min), the evoked responses rapidly decline, a phenomenon termed tachyphylaxis. In addition to this phenomenon, the present study using Ca(2+) imaging revealed that repeated application of capsaicin to rat dissociated DRG neurons at longer intervals (20-40 min) or during multiple applications at short intervals elicited an enhancement of the responses, termed potentiation. The potentiation occurred in 50-60% of the capsaicin-responsive cells, on average representing a 20- to 30% increase in the peak amplitude of the Ca(2+) signal, and was maximal at a 40-min application interval. An analysis of the mechanisms underlying potentiation revealed that it was suppressed by block of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) with 5 μM KN-93 or block of the activation of extracellular signal-regulated kinase (ERK) 1/2 with 2 μM U-0126. Lowering the extracellular Ca(2+) concentration from 2 to 1 mM or pretreatment with deltamethrin (1 μM), which blocks calcineurin and tachyphylaxis, enhanced potentiation. Potentiation was not affected by: 1) inhibition of protein kinase C or protein kinase A, 2) block of the three subtypes of neurokinin receptors, or 3) block of the trafficking of transient receptor potential V1 channel to the membrane. These results indicate that the potentiation is a slowly developing Ca(2+)-modulated process that is mediated by a complex intracellular signaling pathway involving activation of CaMKII and ERK1/2. Potentiation may be an important peripheral autosensitization mechanism that occurs independently of the pronociceptive effects of inflammatory mediators and neurotrophic factors.  相似文献   

6.
Foot-shock stress changes the sensitivity of the rat right atria to beta1- and beta2-adrenoceptor (AR) agonists. We investigated whether the same stress protocol also changes the atrial sensitivity to the non conventional agonist, (+/-)-CGP12177. Concentration-response curves to (+/-)-CGP12177, a beta1- and beta2-adrenoceptor antagonist with agonist properties at the putative beta4-adrenoceptors, were obtained in the absence and presence of propranolol (200 nM or 2 microM), CGP20712A 10 nM plus ICI118,551 50 nM, or CGP20712A (1 microM or 3 microM), in right atria from rats submitted to three daily foot-shock sessions (120 mA pulses of 1.0 s duration applied at random intervals of 5-25 s over 30 min) and killed after the third session. The pD2 for (+/-)-CGP12177 was not influenced by foot-shock stress. The stimulant effect of (+/-)-CGP12177 was resistant to blockade by 200 nM and 2 microM (+/-)-propranolol, and to combined blockade by CGP20712A and IC1118,551. However, in right atria from stressed rats given 200 nM propranolol, the concentration-response curve to the agonist was shifted 2.0-fold to the right. CGP20712A shifted the concentration-response curve to (+/-)-CGP12177 to the right by 4.6- (1 microM) and 19-fold (3 microM) in atria of control rats, and by 2.2- (1 microM) and 43-fold (3 microM) in atria of stressed rats. Maximum response to CGP12177 was not affected by propranolol or CGP20712A in concentrations ranging from 0.1 nM to 10 microM. These results show that the chronotropic effect of (+/-)-CGP12177 is mediated by atypical beta4-adrenoceptors. In constrast with to beta1-and (or) beta2-AR, this receptor is resistant to the effects of foot-shock stress, suggesting that the putative beta4-AR is a different receptor from a low affinity state of beta1-adrenoceptor, as previously proposed, unless both proposed isoforms of beta1-adrenoceptor show independent stress-induced behavior.  相似文献   

7.
Zang WJ  Balke CW  Wier WG 《Cell calcium》2001,29(5):327-334
Confocal laser scanning microscopy and Fluo-4 were used to visualize Ca(2+) transients within individual smooth muscle cells (SMC) of rat resistance arteries during alpha(1)-adrenoceptor activation. The typical spatio-temporal pattern of [Ca(2+)] in an artery after exposure to a maximally effective concentration of phenylephrine (PE, 10.0 microM) was a large, brief, relatively homogeneous Ca(2+) transient, followed by Ca(2+) waves, which then declined in frequency over the course of 5 min and which were asynchronous in different SMC. Concentration-Effect (CE) curves relating the concentration of PE (range: 0.1 microM to 10.0 microM) to the effects (fraction of cells producing at least one Ca(2+) wave, and number of Ca(2+) waves during 5 min) had EC(50) values of approximately 0.5 microM and approximately 1.0 microM respectively. The initial Ca(2+) transient and the subsequent Ca(2+) waves were abolished in the presence of caffeine (10.0 mM). A repeated exposure to PE, 1.5 min after the first had ended, elicited fewer Ca(2+) waves in fewer cells than did the initial exposure. Caffeine-sensitive Ca(2+) stores were not depleted at this time, however, as caffeine alone was capable of inducing a large release of Ca(2+)1.5 min after PE. In summary, the mechanism of a graded response to graded alpha(1)-adrenoceptor activation is the progressive 'recruitment' of individual SMC, which then respond in 'all or none' fashion (viz. asynchronous Ca(2+) waves). Ca(2+) signaling continues in the arterial wall throughout the time-course (at least 5 min) of activation of alpha(1)-adrenoceptors. The fact that the Ca(2+) waves are asynchronous accounts for the previously reported fall in 'arterial wall [Ca(2+)]' (i.e. spatial average [Ca(2+)] over all cells).  相似文献   

8.
The effect of intracellular acidification and subsequent pH recovery in sensory neurons has not been well characterized. We have studied the mechanisms underlying Ca(2+)-induced acidification and subsequent recovery of intracellular pH (pH(i)) in rat trigeminal ganglion neurons and report their effects on neuronal excitability. Glutamate (500 μM) and capsaicin (1 μM) increased intracellular Ca(2+) concentration ([Ca(2+)](i)) with a following decrease in pH(i). The recovery of [Ca(2+)](i) to the prestimulus level was inhibited by LaCl(3) (1 mM) and o-vanadate (10 mM), a plasma membrane Ca(2+)/ATPase (PMCA) inhibitor. Removal of extracellular Ca(2+) also completely inhibited the acidification induced by capsaicin. TRPV1 was expressed only in small and medium sized trigeminal ganglion neurons. mRNAs for Na(+)/H(+) exchanger type 1 (NHE1), pancreatic Na(+)-HCO(3)(-) cotransporter type 1 (pNBC1), NBC3, NBC4, and PMCA types 1-3 were detected by RT-PCR. pH(i) recovery was significantly inhibited by pretreatment with NHE1 or pNBC1 siRNA. We found that the frequency of action potentials (APs) was dependent on pH(i). Application of the NHE1 inhibitor 5'-(N-ethyl-N-isopropyl) amiloride (5 μM) or the pNBC1 inhibitor 4',4'-di-isothiocyanostilbene-2',2'-sulfonic acid (500 μM) delayed pH(i) recovery and decreased AP frequency. Simultaneous application of 5'-(N-ethyl-N-isopropyl) amiloride and 4',4'-di-isothiocyanostilbene-2',2'-sulfonic acid almost completely inhibited APs. In summary, our results demonstrate that the rise in [Ca(2+)](i) in sensory neurons by glutamate and capsaicin causes intracellular acidification by activation of PMCA type 3, that the pH(i) recovery from acidification is mediated by membrane transporters NHE1 and pNBC1 specifically, and that the activity of these transporters has direct consequences for neuronal excitability.  相似文献   

9.
Jiann BP  Lu YC  Chang HT  Huang JK  Jan CR 《Life sciences》2002,70(26):3167-3178
The effect of clomiphene, an ovulation-inducing agent, on cytosolic free Ca(2+) levels ([Ca(2+)](i)) in populations of PC3 human prostate cancer cells was explored by using fura-2 as a Ca(2+) indicator. Clomiphene at concentrations between 10-50 microM increased [Ca(2+)](i) in a concentration-dependent manner. The [Ca(2+)](i) signal was biphasic with an initial rise and a slow decay. Ca(2+) removal inhibited the Ca(2+) signal by 41%. Adding 3 mM Ca(2+) increased [Ca(2+)](i) in cells pretreated with clomiphene in Ca(2+)-free medium, confirming that clomiphene induced Ca(2+) entry. In Ca(2+)-free medium, pretreatment with 50 microM brefeldin A (to permeabilize the Golgi complex), 1 microM thapsigargin (to inhibit the endoplasmic reticulum Ca(2+) pump), and 2 microM carbonylcyanide m-chlorophenylhydrazone (to uncouple mitochondria) inhibited 25% of 50 microM clomiphene-induced store Ca(2+) release. Conversely, pretreatment with 50 microM clomiphene in Ca(2+)-free medium abolished the [Ca(2+)](i) increase induced by brefeldin A, thapsigargin or carbonylcyanide m-chlorophenylhydrazone. The 50 microM clomiphene-induced Ca(2+)release was unaltered by inhibiting phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione (U73122). Trypan blue exclusion assay suggested that incubation with clomiphene (50 microM) for 2-15 min induced time-dependent decrease in cell viability by 10-50%. Collectively, the results suggest that clomiphene induced [Ca(2+)](i) increases in PC3 cells by releasing store Ca(2+) from multiple stores in an phospholipase C-independent manner, and by activating Ca(2+) influx; and clomiphene was of mild cytotoxicity.  相似文献   

10.
Beta-amyloid protein is thought to underlie the neurodegeneration associated with Alzheimer's disease by inducing Ca(2+)-dependent apoptosis. Elevated neuronal expression of the proinflammatory cytokine interleukin-1beta is an additional feature of neurodegeneration, and in this study we demonstrate that interleukin-1beta modulates the effects of beta-amyloid on Ca(2+) homeostasis in the rat cortex. beta-Amyloid-(1-40) (1 microM) caused a significant increase in (45)Ca(2+) influx into rat cortical synaptosomes via activation of L- and N-type voltage-dependent Ca(2+) channels and also increased the amplitude of N- and P-type Ca(2+) channel currents recorded from cultured cortical neurons. In contrast, interleukin-1beta (5 ng/ml) reduced the (45)Ca(2+) influx into cortical synaptosomes and inhibited Ca(2+) channel activity in cultured cortical neurons. Furthermore, the stimulatory effects of beta-amyloid protein on Ca(2+) influx were blocked following exposure to interleukin-1beta, suggesting that interleukin-1beta may govern neuronal responses to beta-amyloid by regulating Ca(2+) homeostasis.  相似文献   

11.
Stimulation of cardiac beta(2)-adrenergic receptor (beta(2)-AR) or delta-opioid receptor (DOR) exerts a similar degree of cardioprotection against myocardial ischemia in experimental models. We hypothesized that delta-opioid-initiated cardioprotection is mediated by the intrinsic cardiac adrenergic (ICA) cell via enhanced epinephrine release. Using immunohistochemical and in situ hybridization methods, we detected in situ tyrosine hydroxylase (TH) mRNA and TH immunoreactivity that was colocalized with DOR immunoreactivity in ICA cells in human and rat hearts. Western blot analysis detected DOR protein in ICA cells isolated from rat ventricular myocytes. The physiology of DOR expression was examined by determining changes of cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients in isolated rat ICA cells using fluorescence spectrophotometry. Exposing the selective delta-opioid agonist D-[Pen(2,5)]enkephalin (DPDPE) to ICA cells increased [Ca(2+)](i) transients in a concentration-dependent manner. Such an effect was abolished by the Ca(2+) channel blocker nifedipine. HPLC-electrochemical detection demonstrated a 2.4-fold increase in epinephrine release from ICA cells following DPDPE application. The significance of the ICA cell and its epinephrine release in delta-opioid-initiated cardioprotection was demonstrated in the rat myocardial infarction model and ICA cell-ventricular myocyte coculture. DPDPE administered before coronary artery occlusion or simulated ischemia-reperfusion reduced left ventricular infarct size by 54 +/- 15% or myocyte death by 26 +/- 4%, respectively. beta(2)-AR blockade markedly attenuated delta-opioid-initiated infarct size-limiting effect and abolished delta-opioid-initiated myocyte survival protection in rat ICA cell-myocyte coculture. Furthermore, delta-opioid agonist exerted no myocyte survival protection in the absence of cocultured ICA cells during ischemia-reperfusion. We conclude that delta-opioid-initiated myocardial infarct size reduction is primarily mediated via endogenous epinephrine/beta(2)-AR signaling pathway as a result of ICA cell activation.  相似文献   

12.
The effect of nordihydroguaiaretic acid (NDGA) on Ca(2+) signaling in C6 glioma cells has been investigated. NDGA (5-100 microM) increased [Ca(2+)]i concentration-dependently. The [Ca(2+)]i increase comprised an initial rise and an elevated phase over a time period of 4 min. Removal of extracellular Ca(2+) reduced NDGA-induced [Ca(2+)]i signals by 52+/-2%. After incubation of cells with NDGA in Ca(2+)-free medium for 4 min, addition of 3 mM CaCl2 induced a concentration-dependent increase in [Ca(2+)]i. NDGA (100 microM)-induced [Ca(2+)]i increases in Ca(2+)-containing medium was not changed by pretreatment with 10 microM nifedipine or verapamil. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (1 microM) abolished 100 microM NDGA-induced [Ca(2+)]i increases. Inhibition of phospholipase C with 2 microM U73122 had little effect on 100 microM NDGA-induced Ca(2+) release. Several other lipoxygenase inhibitors had no effect on basal [Ca(2+)]i. Collectively, the results suggest that NDGA increased [Ca(2+)]i in glioma cells in a lipoxygenase-independent manner, by releasing Ca(2+) from the endoplasmic reticulum in a manner independent of phospholipase C activity and by causing Ca(2+) influx.  相似文献   

13.
The effect of gossypol on Ca(2+) signaling in Madin Darby canine kidney (MDCK) cells was investigated by using fura-2 as a Ca(2+) probe. Gossypol evoked a rise in cytosolic free Ca(2+) levels ([Ca(2+)](i)) concentration-dependently between 2 and 20 microM. The response was decreased by external Ca(2+) removal. In Ca(2+)-free medium pretreatment with gossypol nearly abolished the [Ca(2+)](i) increase induced by carbonylcyanide m-chlorophenylhydrazone (CCCP), a mitochondrial uncoupler, and thapsigargin, an inhibitor of the endoplasmic reticulum Ca(2+) pump; but pretreatment with CCCP and thapsigargin only partly inhibited gossypol-induced Ca(2+) release. Addition of 3 mM Ca(2+) induced a [Ca(2+)](i) increase after pretreatment with 5 microM gossypol in Ca(2+)-free medium. This Ca(2+) entry was decreased by 25 microM econazole, 50 microM SKF96365 and 40 microM aristolochic acid (a phospholipase A(2) inhibitor). Pretreatment with aristolochic acid inhibited 5 microM gossypol-induced internal Ca(2+) release by 55%, but suppression of phospholipase C with 2 microM 1-(6-((17beta-3-methoxyestra-1,3, 5(10)-trien-17-yl)amino)hexyl)-1H-pyrrole-2,5-dione) had no effect. Gossypol (5 microM) also increased [Ca(2+)](i) in human bladder cancer cells and neutrophils. Collectively, we have found that gossypol increased [Ca(2+)](i) in MDCK cells by releasing Ca(2+) from multiple Ca(2+) stores in a manner independent of the production of inositol-1,4,5-trisphosphate, followed by Ca(2+) influx from external space.  相似文献   

14.
Capsaicin is the pungent ingredient present in hot peppers of the genus Capsicum. Capsaicin's effect on sensory neurons has been well studied; however, its effect on non-neuronal cells is still not fully understood. This study was undertaken to evaluate the effect of capsaicin on erythrocyte membrane enzymes: Na+/K(+)-ATPase and Ca(2+)-ATPase. Treatment with capsaicin (0.01-100 microM) caused a transient increase in the activities of both enzymes; the effect declined at lower concentrations of capsaicin, and no significant effect was observed at 0.01 microM capsaicin. The effect of capsaicin was fast with a significant (p<0.01) activation of enzyme activity observed within minutes of incubation. The findings on the effect of capsaicin on human erythrocyte membrane enzymes Na+/K(+)-ATPase and Ca(2+)-ATPase signify the importance of the non-neuronal effects of capsaicin, and the need for evaluating the physiological impact of high capsaicin (capsicum) consumption in some regions of the world.  相似文献   

15.
The vanilloid receptor VR1 is a nonspecific Ca(2+) channel, expressed in sensory neurons in the peripheral nervous system and in various brain regions, which is believed to be an important molecular integrator of several chemical (acid, vanilloids) and physical stimuli (heat) that cause pain. Recently, several endogenous ligands for VR1 have been identified such as arachidonyl ethanolamide (anandamide) and the more potent arachidonyl dopamine (AA-DO). Here, we further characterize AA-DO as a ligand for rat VR1, heterologously expressed in CHO and HEK293 cells. AA-DO inhibited the binding of [3H]RTX to VR1 with a K(d) value of 5.49 +/- 0.68 microM and with positive cooperativity (p = 1.89 +/- 0.27), indicating that AA-DO was about 5-fold more potent than anandamide in this system. The K(d) (9.7 +/- 3.3 microM), and p values (1.54 +/- 0.04) for the binding of AA-DO to spinal cord membranes are in good correlation with the CHO-VR1 data. AA-DO stimulated 45Ca(2+) uptake on CHO-VR1 and HEK-VR1 cells with EC(50) values of 4.76 +/- 1.43 and 7.17 +/- 1.64 microM and Hill coefficients of 1.28 +/- 0.11 and 1.13 +/- 0.13, respectively, consistent with the binding measurements. In contrast to anandamide, AA-DO induced virtually the same level of 45Ca(2+) uptake as did capsaicin (90 +/- 6.6% in the CHO cells expressing VR1 and 89.3 +/- 9.4% in HEK293 cells expressing VR1). In a time dependent fashion following activation, AA-DO partially desensitized VR1 both in 45Ca(2+) uptake assays (IC(50) = 3.24 +/- 0.84 microM, inhibition is 68.5 +/- 6.85%) as well as in Ca(2+) imaging experiments (35.8 +/- 5.1% inhibition) using the CHO-VR1 system. The extent of desensitization was similar to that caused by capsaicin itself. We conclude that AA-DO is a full agonist for VR1 with a potency in the low micromolar range and is able to significantly desensitize the cells in a time and dose dependent manner.  相似文献   

16.
Small cell lung cancer (SCLC) patients suffer from pulmonary stresses such as dyspnea and chest pain, and the pathogenic mechanisms are not known. SCLC cells secrete a variety of bioactive neuropeptides, including bombesin-like peptides. We hypothesize that these peptides may enhance the sensitivity of the pulmonary chemosensitive nerve endings, contributing to the development of these pulmonary stresses in SCLC patients. This study was therefore carried out to determine the effects of bombesin and gastrin-releasing peptide (GRP), a major bombesin-like peptide, on the sensitivities of pulmonary chemoreflex and isolated pulmonary vagal chemosensitive neurons. In anesthetized, spontaneously breathing rats, intravenous infusion of bombesin or GRP significantly amplified the pulmonary chemoreflex responses to chemical stimulants such as capsaicin and ATP. The enhanced responses were completely abolished by perineural capsaicin treatment of both cervical vagi, suggesting the involvement of pulmonary C-fiber afferents. In isolated pulmonary vagal chemosensitive neurons, pretreatment with bombesin or GRP potentiated the capsaicin-induced Ca(2+) transient. This sensitizing effect was further demonstrated in patch-clamp recording studies; the sensitivities of these neurons to both chemical (capsaicin and ATP) and electrical stimuli were significantly enhanced by the presence of either bombesin or GRP. In summary, our results have demonstrated that bombesin and GRP upregulate the pulmonary chemoreflex sensitivity in vivo and the excitability of isolated pulmonary chemosensitive neurons in vitro.  相似文献   

17.
Overall proteolysis and the activity of skeletal muscle proteolytic systems were investigated in rats 1, 2, or 4 days after adrenodemedullation. Adrenodemedullation reduced plasma epinephrine by 95% and norepinephrine by 35% but did not affect muscle norepinephrine content. In soleus and extensor digitorum longus (EDL) muscles, rates of overall proteolysis increased by 15-20% by 2 days after surgery but returned to normal levels after 4 days. The rise in rates of protein degradation was accompanied by an increased activity of Ca(2+)-dependent proteolysis in both muscles, with no significant change in the activity of lysosomal and ATP-dependent proteolytic systems. In vitro rates of Ca(2+)-dependent proteolysis in soleus and EDL from normal rats decreased by ~35% in the presence of either 10(-5) M clenbuterol, a beta(2)-adrenergic agonist, or epinephrine or norepinephrine. In the presence of dibutyryl cAMP, proteolysis was reduced by 62% in soleus and 34% in EDL. The data suggest that catecholamines secreted by the adrenal medulla exert an inhibitory control of Ca(2+)-dependent proteolysis in rat skeletal muscle, mediated by beta(2)-adrenoceptors, with the participation of a cAMP-dependent pathway.  相似文献   

18.
Selective stimulation of beta(2)-adrenergic receptors (ARs) in newborn rabbit ventricular myocardium invokes a positive inotropic effect that is lost during postnatal maturation. The underlying mechanisms for this age-related stimulatory response remain unresolved. We examined the effects of beta(2)-AR stimulation on L-type Ca(2+) current (I(Ca,L)) during postnatal development. I(Ca,L) was measured (37 degrees C; either Ca(2+) or Ba(2+) as the charge carrier) using the whole-cell patch-clamp technique in newborn (1 to 5 days old) and adult rabbit ventricular myocytes. Ca(2+) transients were measured concomitantly by dialyzing the cell with indo-1. Activation of beta(2)-ARs (with either 100 nM zinterol or 1 microM isoproterenol in the presence of the beta(1)-AR antagonist, CGP20712A) stimulated I(Ca,L) twofold in newborns but not in adults. The beta(2)-AR-mediated increase in Ca(2+) transient amplitude in newborns was due exclusively to the augmentation of I(Ca,L). Zinterol increased the rate of inactivation of I(Ca,L) and increased the Ca(2+) flux integral. The beta(2)-AR inverse agonist, ICI-118551 (500 nM), but not the beta(1)-AR antagonist, CGP20712A (500 nM), blocked the response to zinterol. Unexpectedly, the PKA blockers, H-89 (10 microM), PKI 6-22 amide (10 microM), and Rp-cAMP (100 microM), all failed to prevent the response to zinterol but completely blocked responses to selective beta(1)-AR stimulation of I(Ca,L) in newborns. Our results demonstrate that in addition to the conventional beta(1)-AR/cAMP/PKA pathway, newborn rabbit myocardium exhibits a novel beta(2)-AR-mediated, PKA-insensitive pathway that stimulates I(Ca,L). This striking developmental difference plays a major role in the age-related differences in inotropic responses to beta(2)-AR agonists.  相似文献   

19.
The effects of calmodulin (CaM) and CaM antagonists on microsomal Ca(2+) release through a ryanodine-sensitive mechanism were investigated in rat pancreatic acinar cells. When caffeine (10 mM) was added after a steady state of ATP-dependent (45)Ca(2+) uptake into the microsomal vesicles, the caffeine-induced (45)Ca(2+) release was significantly increased by pretreatment with ryanodine (10 microM). The presence of W-7 (60 microM), a potent inhibitor of CaM, strongly inhibited the release, while W-5 (60 microM), an inactive CaM antagonist, showed no inhibition. Inhibition of the release by W-7 was observed at all caffeine concentrations (5-30 mM) tested. The presence of exogenously added CaM (10 microg/ml) markedly increased the caffeine (5-10 mM)-induced (45)Ca(2+) release and shifted the dose-response curve of caffeine-induced (45)Ca(2+) release to the left. Cyclic ADP-ribose (cADPR, 2 microM)-induced (45)Ca(2+) release was enhanced by the presence of ryanodine (10 microM). cADPR (2 microM)- or ryanodine (500 microM)-induced (45)Ca(2+) release was also inhibited by W-7 (60 microM), but not by W-5 (60 microM), and was stimulated by CaM (10 microg/ml). These results suggest that the ryanodine-sensitive Ca(2+) release mechanism of rat pancreatic acinar cells is modulated by CaM.  相似文献   

20.
Calcium influx through voltage-activated Ca(2+) channels (VACCs) plays a critical role in neurotransmission. Capsaicin application inhibits VACCs and desensitizes nociceptors. In this study, we determined the signaling mechanisms of the inhibitory effect of capsaicin on VACCs in primary sensory neurons. Whole-cell voltage clamp recordings were performed in acutely isolated rat dorsal root ganglion neurons. Capsaicin caused a profound decrease in the Ca(2+) current (I(Ca)) density in capsaicin-sensitive, but not -insensitive, dorsal root ganglion neurons. At 1 mum, capsaicin suppressed about 60% of N-, P/Q-, L-, and R-type I(Ca) density. Pretreatment with iodoresiniferatoxin, a specific transient receptor potential vanilloid type 1 (TRPV1) antagonist, or intracellular application of 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid blocked the inhibitory effect of capsaicin on I(ca). However, neither W-7, a calmodulin blocker, nor KN-93, a CaMKII inhibitor, attenuated the inhibitory effect of capsaicin on I(Ca). Furthermore, intracellular dialysis of deltamethrin or cyclosporin A, the specific calcineurin (protein phosphatase 2B) inhibitors, but not okadaic acid (a selective protein phosphatase 1/protein phosphatase 2A inhibitor), abolished the effect of capsaicin on I(Ca). Interestingly, 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid, deltamethrin, cyclosporin A, and okadaic acid each alone significantly increased the I(Ca) density and caused a depolarizing shift in the voltage dependence of activation. Immunofluorescence labeling revealed that capsaicin induced a rapid internalization of Ca(V)2.2 channels on the membrane. Thus, this study provides novel information that VACCs are tonically modulated by the intracellular Ca(2+) level and endogenous phosphatases in sensory neurons. Stimulation of TRPV1 by capsaicin down-regulates VACCs by dephosphorylation through Ca(2+)-dependent activation of calcineurin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号