首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obesity is considered a chronic low-grade inflammatory status and the stromal vascular fraction (SVF) cells of adipose tissue (AT) are considered a source of inflammation-related molecules. We identified YKL-40 as a major protein secreted from SVF cells in human visceral AT. YKL-40 expression levels in SVF cells from visceral AT were higher than in those from subcutaneous AT. Immunofluorescence staining revealed that YKL-40 was exclusively expressed in macrophages among SVF cells. YKL-40 purified from SVF cells inhibited the degradation of type I collagen, a major extracellular matrix of AT, by matrix metalloproteinase (MMP)-1 and increased rate of fibril formation of type I collagen. The expression of MMP-1 in preadipocytes and macrophages was enhanced by interaction between these cells. These results suggest that macrophage/preadipocyte interaction enhances degradation of type I collagen in AT, meanwhile, YKL-40 secreted from macrophages infiltrating into AT inhibits the type I collagen degradation.  相似文献   

2.
Adipogenesis represents a key process in adipose tissue development and remodeling, including during obesity. Exploring the regulation of adipogenesis by extracellular ligands is fundamental to our understanding of this process. Adenosine, an extracellular nucleoside signaling molecule found in adipose tissue depots, acts on adenosine receptors. Here we report that, among these receptors, the A2b adenosine receptor (A2bAR) is highly expressed in adipocyte progenitors. Activation of the A2bAR potently inhibits differentiation of mouse stromal vascular cells into adipocytes, whereas A2bAR knockdown stimulates adipogenesis. The A2bAR inhibits differentiation through a novel signaling cascade involving sustained expression of Krüppel-like factor 4 (KLF4), a regulator of stem cell maintenance. Knockdown of KLF4 ablates the ability of the A2bAR to inhibit differentiation. A2bAR activation also inhibits adipogenesis in a human primary preadipocyte culture system. We analyzed the A2bAR-KLF4 axis in adipose tissue of obese subjects and, intriguingly, found a strong correlation between A2bAR and KLF4 expression in both subcutaneous and visceral human fat. Hence, our study implicates the A2bAR as a regulator of adipocyte differentiation and the A2bAR-KLF4 axis as a potentially significant modulator of adipose biology.  相似文献   

3.
4.
Insulin resistance (IR) underlies metabolic disease. Visceral, but not subcutaneous, white adipose tissue (WAT) has been linked to the development of IR, potentially due to differences in regulatory protein abundance. Here we investigate how protein levels are changed in IR in different WAT depots by developing a targeted proteomics approach to quantitatively compare the abundance of 42 nuclear proteins in subcutaneous and visceral WAT from a commonly used insulin-resistant mouse model, Lepr(db/db), and from C57BL/6J control mice. The most differentially expressed proteins were important in adipogenesis, as confirmed by siRNA-mediated depletion experiments, suggesting a defect in adipogenesis in visceral, but not subcutaneous, insulin-resistant WAT. Furthermore, differentiation of visceral, but not subcutaneous, insulin-resistant stromal vascular cells (SVCs) was impaired. In an in vitro approach to understand the cause of this impaired differentiation, we compared insulin-resistant visceral SVCs to preadipocyte cell culture models made insulin resistant by different stimuli. The insulin-resistant visceral SVC protein abundance profile correlated most with preadipocyte cell culture cells treated with both palmitate and TNFα. Together, our study introduces a method to simultaneously measure and quantitatively compare nuclear protein expression patterns in primary adipose tissue and adipocyte cell cultures, which we show can reveal relationships between differentiation and disease states of different adipocyte tissue types.  相似文献   

5.
A complete functional renin-angiotensin system exists in human adipose tissue, but its regulation and the effects of angiotensin II on cells from this tissue are only beginning to be understood. In this study, we examined the effects of angiotensin II on changes in lipid accumulation, specific glycerol-3-phosphate dehydrogenase activity, and the expression of five genes of the renin-angiotensin system during the adipose conversion of human primary cultured preadipocytes. Angiotensin II leads to a distinct reduction in insulin-induced differentiation, but only has a marginal effect on the adipose conversion of cells stimulated with insulin, cortisol, and isobutyl methyl xanthine. During differentiation, angiotensinogen mRNA levels rise, renin mRNA levels decline, whereas renin-binding protein and angiotensin-converting enzyme levels are unaffected. Angiotensin II downregulates angiotensinogen and renin gene expression, but it does not affect renin-binding protein and angiotensin-converting enzyme levels. Angiotensin II thus prevents the development of adipocytes in contact with high insulin levels, while not inhibiting differentiation, which is further stimulated. Therefore, angiotensin II could be a protective factor against uncontrolled expansion of adipose tissue. Further studies are needed to find out whether the effects of angiotensin II on the renin-angiotensin system are direct feedback loops or secondary to changes in the differentiation program.  相似文献   

6.
Fat cell function and fibrinolysis.   总被引:3,自引:0,他引:3  
Plasminogen activator inhibitor-1 (PAI-1) is a specific inhibitor of plasminogen activators and may be the principal regulator of plasminogen activation in vivo. PAI-1 levels are elevated in insulin-resistant subjects and are associated with an increased risk of atherothrombosis. After adjustment for metabolic parameters, increased PAI-1 levels were no longer considered as a cardiovascular risk factor. The mechanisms underlying the strong association between PAI-1 levels and the metabolic disturbances found in insulin resistance are still not understood. Several studies have suggested that visceral adipose tissue may be a major source of PAl-1. Accordingly, adipose tissue PAI-1 production particularly that from visceral fat, was found to be elevated in obese human subjects. Within human adipose tissue, stromal cells appear to be the main cells involved in PAI-1 synthesis. This review discusses the potential mechanisms linking adipose tissue to plasma PAI-1 levels such as the intervention of cytokines (TNFalpha and TGFbeta), free fatty acids and hormones (insulin and glucocorticoids). Moreover alteration of adipose tissue cellular composition induced by the modulation of PAI-1 expression opens a novel field of interest.  相似文献   

7.
Progress has been made in elucidating the cell-surface phenotype of primary adipose progenitors; however, specific functional markers and distinct molecular signatures of fat depot-specific preadipocytes have remained elusive. In this study, we label committed murine adipose progenitors through expression of GFP from the genetic locus for Zfp423, a gene controlling preadipocyte determination. Selection of GFP-expressing fibroblasts from either subcutaneous or visceral adipose-derived stromal vascular cultures isolates stably committed preadipocytes that undergo robust adipogenesis. Immunohistochemistry for Zfp423-driven GFP expression in?vivo confirms a perivascular origin of preadipocytes within both white and brown adipose tissues. Interestingly, a small subset of capillary endothelial cells within white and brown fat also express this marker, suggesting a contribution of specialized endothelial cells to the adipose lineage. Zfp423(GFP) mice represent a simple tool for the specific localization and isolation of molecularly defined preadipocytes from distinct adipose tissue depots.  相似文献   

8.
Keratinocyte growth factor (KGF; also known as FGF‐7) is a well‐characterized paracrine growth factor for tissue growth and regeneration. However, its role in adipose tissue, which is known to undergo tremendous expansion in obesity, is virtually unknown. Given that we previously identified KGF as one of the up‐regulated growth factors in adipose tissue of an early‐life programmed rat model of visceral obesity, the present study was undertaken to examine the hypothesis that KGF promotes adipogenesis. Using 3T3‐L1 and rat primary preadipocytes as in vitro model systems, we demonstrated that (1) KGF stimulated preadipocyte proliferation in a concentration‐dependent manner with a maximal effect at 2.5 ng/ml (~2‐fold increase); (2) KGF mRNA was highly expressed in rat adipocytes and preadipocytes as well as 3T3‐L1 cells; (3) treatment of preadipocytes with a neutralizing antibody against KGF and siRNA‐mediated knockdown of KGF led to a 50% reduction in their proliferative capacity; (4) KGF activated the protein kinase Akt, and the PI3 kinase inhibitor LY294002 blocked KGF stimulation of preadipocyte proliferation; and (5) KGF did not promote differentiation of preadipocytes to mature adipocytes. Together, these results reveal adipocytes and their precursor cells as novel sites of KGF production. Importantly, they also demonstrate that KGF promotes preadipocyte proliferation by an autocrine mechanism that involves activation of the PI3K/Akt signaling pathway. Aberrant KGF expression may have consequences not only for normal adipose tissue growth but also for the pathogenesis of obesity. J. Cell. Biochem. 109: 737–746, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
White adipose tissues are composed mainly of white fat cells (adipocytes), which play a key role in energy storage and metabolism. White adipocytes are terminally differentiated postmitotic cells and arise from their progenitor cells (preadipocytes) or mesenchymal stem cells residing in white adipose tissues. Thus, white adipocyte number is most likely controlled by the rate of preadipocyte proliferation, which may contribute to the etiology of obesity. However, little is known about the molecular mechanisms that regulate preadipocyte proliferation during adipose tissue development. Necdin, which is expressed predominantly in postmitotic neurons, is a pleiotropic protein that possesses anti-mitotic and pro-survival activities. Here we show that necdin functions as an intrinsic regulator of white preadipocyte proliferation in developing adipose tissues. Necdin is expressed in early preadipocytes or mesenchymal stem cells residing in the stromal compartment of white adipose tissues in juvenile mice. Lentivirus-mediated knockdown of endogenous necdin expression in vivo in adipose tissues markedly increases fat mass in juvenile mice fed a high-fat diet until adulthood. Furthermore, necdin-null mutant mice exhibit a greater expansion of adipose tissues due to adipocyte hyperplasia than wild-type mice when fed the high-fat diet during the juvenile and adult periods. Adipose stromal-vascular cells prepared from necdin-null mice differentiate in vitro into a significantly larger number of adipocytes in response to adipogenic inducers than those from wild-type mice. These results suggest that necdin prevents excessive preadipocyte proliferation induced by adipogenic stimulation to control white adipocyte number during adipose tissue development.  相似文献   

10.
Leptin has been shown to reduce body fat in vivo. Adipocytes express the leptin receptor; therefore, it is realistic to expect a direct effect of leptin on adipocyte growth and metabolism. In vitro studies examining the effect of leptin on adipocyte metabolism require supraphysiological doses of the protein to see a decrease in lipogenesis or stimulation of lipolysis, implying an indirect action of leptin. It also is possible that leptin reduces adipose mass by inhibiting preadipocyte proliferation (increase in cell number) and/or differentiation (lipid filling). Thus we determined direct and indirect effects of leptin on preadipocyte proliferation and differentiation in vitro. We tested the effect of leptin (0-500 ng/ml), serum from leptin-infused rats (0.25% by volume), and adipose tissue-conditioned medium from leptin-infused rats (0-30% by volume) on preadipocyte proliferation and differentiation in a primary culture of cells from male Sprague-Dawley rat adipose tissue. Leptin (50 ng/ml) stimulated proliferation of preadipocytes (P<0.05), but 250 and 500 ng leptin/ml inhibited proliferation of both preadipocyte and stromal vascular cell fractions (P<0.01), as measured by [3H]thymidine incorporation. Serum from leptin-infused rats inhibited proliferation of the adipose and stromal vascular fractions (P=0.01), but adipose tissue-conditioned medium had no effect on proliferation of either cell fraction. None of the treatments changed preadipocyte differentiation as measured by sn-glycerophosphate dehydrogenase activity. These results suggest that leptin could inhibit preadipocyte proliferation by modifying release of a factor from tissue other than adipose tissue.  相似文献   

11.
Haptoglobin is a putative adiposity marker because its concentration in blood is increased in obese humans. The present studies examined haptoglobin release by explants of adipose tissue in primary culture. Haptoglobin was released by explants of human visceral and subcutaneous adipose tissue at a nearly linear rate over 48 h. Explants of visceral adipose tissue released more haptoglobin than did explants of subcutaneous adipose tissue. The release of haptoglobin was quite variable, but there was a close correlation between haptoglobin release by visceral adipose tissue and that by explants of subcutaneous tissue from the same individual. Dexamethasone and niflumic acid, a cyclooxygenase-2 inhibitor, both inhibited haptoglobin release. There was release of haptoglobin by both isolated adipocytes and the adipose tissue matrix remaining after collagenase digestion of human adipose tissue. However, the amount of haptoglobin released by human adipose tissue explants in primary culture was quite low in relationship to the circulating level of haptoglobin.  相似文献   

12.
Renin and Angiotensin-Converting Enzyme in Human Neuroblastoma Tissue   总被引:1,自引:0,他引:1  
High activity of renin was demonstrated in human neuroblastoma tissue. This activity was inhibited by specific antibody raised against human renal renin, indicating that it was not due to the nonspecific action of proteases. The specific activity of renin was 122.8 ng of angiotensin I generated mg of protein-1 h-1. It shared some biochemical features with well-known kidney renin, such as molecular weight, optimum pH, the presence of trypsin-activatable inactive renin, and glycoprotein nature. Furthermore, angiotensin-converting enzyme (ACE) activity (2.64 nmol mg of protein-1 min-1) was found in the tissue. This activity was inhibited by captopril, a specific ACE inhibitor, or by omission of chloride ion. These results suggest that true renin in addition to ACE exists in human neuroblastoma tissue.  相似文献   

13.
Objective: Elevated levels of tumor necrosis factor‐α (TNF‐α) protein and mRNA have been reported in adipose tissue from obese humans and rodents. However, TNF‐α has catabolic and antiadipogenic effects on adipocytes. Addressing this paradox, we tested the hypothesis that paracrine levels of TNF‐α, alone or together with insulin‐like growth factor‐I (IGF‐I), support preadipocyte development. Research Methods and Procedures: Cultured stromal‐vascular cells from rat inguinal fat depots were exposed to serum‐free media containing insulin and 0.2 nM TNF‐α, 2.0 nM TNF‐α, or 0.2 nM TNF‐α + 1.0 nM IGF‐I at different times during 7 days of culture. Results: TNF‐α inhibited adipocyte differentiation as indicated by a reduction in both immunocytochemical reactivity for the preadipocyte‐specific antigen (AD3; early differentiation marker) and glycerol‐3‐phosphate dehydrogenase activity (late differentiation marker). Early exposure (Days 1 through 3 of culture) to 0.2 nM TNF‐α did not have a long term effect on inhibiting differentiation. Continuous exposure to 0.2 nM TNF‐α from Days 1 through 7 of culture resulted in a 75% increase in cell number from control. There was a synergistic effect of 0.2 nM TNF‐α + 1 nM IGF‐I on increasing cell number by Day 7 of culture to levels greater than those observed with either treatment applied alone. Discussion: These data suggest that paracrine levels (0.2 nM) of TNF‐α alone or in combination with IGF‐I may support adipose tissue development by increasing the total number of stromal‐vascular and/or uncommitted cells within the tissue. These cells may then be recruited to become preadipocytes or may alternatively serve as infrastructure to support adipose tissue growth.  相似文献   

14.
Objective: The ability to form new adipose cells is important to adipose tissue physiology; however, the mechanisms controlling the recruitment of adipocyte progenitors are poorly understood. A role for locally generated angiotensin II in this process is currently proposed. Given that visceral adipose tissue reportedly expresses higher levels of angiotensinogen compared with other depots and the strong association of augmented visceral fat mass with the adverse consequences of obesity, we studied the role of angiotensin II in regulating adipogenic differentiation in omental fat of obese and non‐obese humans. Research Methods and Procedures: The angiotensin II effect on adipose cell formation was evaluated in human omental adipocyte progenitor cells that were stimulated to adipogenic differentiation in vitro. The adipogenic response was measured by the activity of the differentiation marker glycerol‐3‐phosphate dehydrogenase. Results: Angiotensin II reduced the adipogenic response of adipocyte progenitor cells, and the extent of the decrease correlated directly with the subjects’ BMI (p = 0.01, R2 = 0.30). A 56.3 ± 3.4% and 44.5 ± 2.7% reduction of adipogenesis was found in obese and non‐obese donors’ cells, respectively (p < 0.01). The effect of angiotensin II was reversed by type 1 angiotensin receptor antagonist losartan. Discussion: A greater anti‐adipogenic response to angiotensin II in omental adipose progenitor cells from obese subjects opens a venue to understand the deregulation of visceral fat tissue cellularity that has been associated with severe functional abnormalities of the obese condition.  相似文献   

15.
The objective of this study was to characterize differences in the secretome of human omental compared with subcutaneous adipose tissue using global gene expression profiling. Gene expression was measured using Affymetrix microarrays (Affymetrix, Santa Clara, CA) in subcutaneous and omental adipose tissue in two independent experiments (n = 5 and n = 3 independent subjects; n = 16 arrays in total, 2 for each subject). Predictive bioinformatic algorithms were employed to identify secreted proteins. Microarray analysis identified 22 gene probe sets whose expression was significantly different with a fold change (FC) greater than 5 in expression in both experiments between omental and subcutaneous adipose tissue. Using bioinformatic predictive programs 11 of these 22 probe sets potentially coded for secreted proteins. Pathway network analysis of the secreted proteins showed that three of the proteins are part of a common pathway network. These proteins gremlin 1 (GREM1), pleiotrophin (PTN), and secretory leukocyte peptidase inhibitor (SLPI) are expressed respectively 43×, 23×, and 5× in omental adipose tissue relative to subcutaneous adipose tissue as determined by real-time PCR. The presence of GREM1, PTN, and SLPI protein in human adipose tissue was confirmed by western blotting. All three proteins are expressed in the human Simpson-Golabi-Behmel syndrome (SGBS) preadipocyte cell line. The expression of GREM1, PTN, and SLPI changed with the differentiation of the preadipocytes into mature adipocytes. Gene expression coupled with predictive bioinformatic algorithms have identified several genes coding for secreted proteins which are expressed differently in omental adipose tissue compared to subcutaneous adipose tissue proving a valid alternative approach to help further define the adipocyte secretome.  相似文献   

16.
17.
Central (visceral) obesity is more closely associated with insulin resistance, type 2 diabetes, and cardiovascular disease than is peripheral [subcutaneous (sc)] obesity, but the underlying mechanism for this pathophysiological difference is largely unknown. To understand the molecular basis of this difference, we sequenced 10,437 expressed sequence tags (ESTs) from a human omental fat cDNA library and discovered a novel visceral fat depot-specific secretory protein, which we have named omentin. Omentin ESTs were more abundant than many known adipose genes, such as perilipin, adiponectin, and leptin in the cDNA library. Protein sequence analysis indicated that omentin mRNA encodes a peptide of 313 amino acids, containing a secretory signal sequence and a fibrinogen-related domain. Northern analysis demonstrated that omentin mRNA was predominantly expressed in visceral adipose tissue and was barely detectable in sc fat depots in humans and rhesus monkeys. Quantative real-time PCR showed that omentin mRNA was expressed in stromal vascular cells, but not fat cells, isolated from omental adipose tissue, with >150-fold less in sc cell fractions. Accordingly, omentin protein was secreted into the culture medium of omental, but not sc, fat explants. Omentin was detectable in human serum by Western blot analysis. Addition of recombinant omentin in vitro did not affect basal but enhanced insulin-stimulated glucose uptake in both sc (47%, n = 9, P = 0.003) and omental (approximately 30%, n = 3, P < 0.05) human adipocytes. Omentin increased Akt phosphorylation in the absence and presence of insulin. In conclusion, omentin is a new adipokine that is expressed in omental adipose tissue in humans and may regulate insulin action.  相似文献   

18.
The role of PPARs in the regulation of human adipose tissue secretome has received little attention despite its potential importance in the therapeutic actions of PPAR agonists. Here, we have investigated the effect of selective PPARgamma, PPARalpha, and PPARbeta/delta agonists on the production of adipokines by human subcutaneous adipose tissue. Antibody arrays were used to measure secreted factors in media from cultured adipose tissue explants. Sixteen proteins were produced in significant amounts. Activation of PPARs regulated the production of five proteins. Treatments with the three PPAR agonists decreased the secretion of leptin and interleukin-6. PPARalpha and beta/delta agonists markedly enhanced hepatocyte growth factor secretion whereas PPARbeta/delta down-regulated angiogenin and up-regulated TIMP-1 release. Hepatocyte growth factor, interleukin-6, and TIMP-1 are chiefly expressed in cells from the stromal vascular fraction whereas angiogenin is expressed in both adipocytes and cells from the stromal vascular fraction. Our data show that PPAR agonists modulate secretion of bioactive molecules from the different cell types composing human adipose tissue.  相似文献   

19.
The renin-angiotensin system (RAS) is classically known for its role in regulation of blood pressure, fluid and electrolyte balance. In this system, angiotensinogen (Agt), the obligate precursor of all bioactive angiotensin peptides, undergoes two enzymatic cleavages by renin and angiotensin converting enzyme (ACE) to produce angiotensin I (Ang I) and angiotensin II (Ang II), respectively. The contemporary view of RAS has become more complex with the discovery of additional angiotensin degradation pathways such as ACE2. All components of the RAS are expressed in and have independent regulation of adipose tissue. This local adipose RAS exerts important auto/paracrine functions in modulating lipogenesis, lipolysis, adipogenesis as well as systemic and adipose tissue inflammation. Mice with adipose-specific Agt overproduction have a 30% increase in plasma Agt levels and develop hypertension and insulin resistance, while mice with adipose-specific Agt knockout have a 25% reduction in Agt plasma levels, demonstrating endocrine actions of adipose RAS. Emerging evidence also points towards a role of RAS in regulation of energy balance. Because adipose RAS is overactivated in many obesity conditions, it is considered a potential candidate linking obesity to hypertension, insulin resistance and other metabolic derangements.  相似文献   

20.
Overfeeding of rodents leads to increased local formation of angiotensin II due to increased secretion of angiotensinogen from adipocytes. Whereas angiotensin II promotes adipocyte growth and preadipocyte recruitment, increased secretion of angiotensinogen from adipocytes also directly contributes to the close relationship between adipose-tissue mass and blood pressure in mice. In contrast, angiotensin II acts as an antiadipogenic substance in human adipose tissue, and the total increase in adipose-tissue mass may be more important in determining human plasma angiotensinogen levels than changes within the single adipocyte. However, as increased local formation of angiotensin II in adipose tissue may be increased especially in obese hypertensive subjects, a contribution of the adipose-tissue renin-angiotensin system to the development of insulin resistance and hypertension is conceivable in humans, but not yet proven. Insulin resistance may be aggravated by the inhibition of preadipocyte recruitment, which results in the redistribution of triglycerides to the liver and skeletal muscle, and blood pressure may be influenced by local formation of angiotensin II in perivascular adipose tissue. Thus, although the mechanisms are still speculative, the beneficial effects of ACE-inhibition and angiotensin-receptor blockade on the development of type 2 diabetes in large clinical trials suggest a pathophysiological role of the adipose-tissue renin-angiotensin system in the metabolic syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号