首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
Campomelic dysplasia (CD) is a semilethal skeletal malformation syndrome with or without XY sex reversal. In addition to the multiple mutations found within the sex-determining region Y-related high-mobility group box gene (SOX9) on 17q24.3, several chromosome anomalies (translocations, inversions, and deletions) with breakpoints scattered over 1 Mb upstream of SOX9 have been described. Here, we present a balanced translocation, t(4;17)(q28.3;q24.3), segregating in a family with a mild acampomelic CD with Robin sequence. Both chromosome breakpoints have been identified by fluorescence in situ hybridization and have been sequenced using a somatic cell hybrid. The 17q24.3 breakpoint maps approximately 900 kb upstream of SOX9, which is within the same bacterial artificial chromosome clone as the breakpoints of two other reported patients with mild CD. We also report a prenatal identification of acampomelic CD with male-to-female sex reversal in a fetus with a de novo balanced complex karyotype, 46,XY,t(4;7;8;17)(4qter-->4p15.1::17q25.1-->17qter;7qter-->7p15.3::4p15.1-->4pter;8pter-->8q12.1::7p15.3-->7pter;17pter-->17q25.1::8q12.1-->8qter). Surprisingly, the 17q breakpoint maps approximately 1.3 Mb downstream of SOX9, making this the longest-range position effect found in the field of human genetics and the first report of a patient with CD with the chromosome breakpoint mapping 3' of SOX9. By using the Regulatory Potential score in conjunction with analysis of the rearrangement breakpoints, we identified a candidate upstream cis-regulatory element, SOX9cre1. We provide evidence that this 1.1-kb evolutionarily conserved element and the downstream breakpoint region colocalize with SOX9 in the interphase nucleus, despite being located 1.1 Mb upstream and 1.3 Mb downstream of it, respectively. The potential molecular mechanism responsible for the position effect is discussed.  相似文献   

9.
10.
11.
Quantitative evaluation of binding affinity changes upon mutations is crucial for protein engineering and drug design. Machine learning-based methods are gaining increasing momentum in this field. Due to the limited number of experimental data, using a small number of sensitive predictive features is vital to the generalization and robustness of such machine learning methods. Here we introduce a fast and reliable predictor of binding affinity changes upon single point mutation, based on a random forest approach. Our method, iSEE, uses a limited number of interface Structure, Evolution, and Energy-based features for the prediction. iSEE achieves, using only 31 features, a high prediction performance with a Pearson correlation coefficient (PCC) of 0.80 and a root mean square error of 1.41 kcal/mol on a diverse training dataset consisting of 1102 mutations in 57 protein-protein complexes. It competes with existing state-of-the-art methods on two blind test datasets. Predictions for a new dataset of 487 mutations in 56 protein complexes from the recently published SKEMPI 2.0 database reveals that none of the current methods perform well (PCC < 0.42), although their combination does improve the predictions. Feature analysis for iSEE underlines the significance of evolutionary conservations for quantitative prediction of mutation effects. As an application example, we perform a full mutation scanning of the interface residues in the MDM2–p53 complex.  相似文献   

12.
13.
The apoptosome is an Apaf-1 cytochrome c complex that activates procaspase-9. The three-dimensional structure of the apoptosome has been determined at 27 A resolution, to reveal a wheel-like particle with 7-fold symmetry. Molecular modeling was used to identify the caspase recruitment and WD40 domains within the apoptosome and to infer likely positions of the CED4 homology motif and cytochrome c. This analysis suggests a plausible role for cytochrome c in apoptosome assembly. In a subsequent structure, a noncleavable mutant of procaspase-9 was localized to the central region of the apoptosome. This complex promotes the efficient activation of procaspase-3. Therefore, the cleavage of procaspase-9 is not required to form an active cell death complex.  相似文献   

14.
15.
16.
17.
Two members of the C/EBP family of basic region-leucine zipper proteins enriched in the liver, C/EBP (C/EBP alpha) and CRP2 (C/EBP beta), were previously shown to transactivate the albumin promoter in a cell type-dependent manner. These proteins function efficiently in HepG2 hepatoma cells, but inefficiently in HeLa (epithelial) and L (fibroblastic) cells. Here we have investigated the mechanism for cell-specific control of CRP2 activity. We show that CRP2 contains a negative regulatory region composed of two elements, RD1 and RD2. Deletions of RD2 relieve the inhibition of CRP2 activity in L cells, but do not affect CRP2 function in HepG2 cells. These deletions also increase the DNA binding activity of CRP2 approximately 3-fold, suggesting that RD2-mediated repression of DNA binding activity is responsible for CRP2 inhibition in L cells. The adjacent RD1 element functions independently of RD2 and modulates the CRP2 activation domain, which we show to be composed of three subdomains that are conserved within the C/EBP protein family. RD1 does not affect cell type specificity, but inhibits the transactivation potential of GAL4-CRP2 hybrid proteins by 50-fold. These findings suggest that CRP2 assumes a tightly folded conformation in which the DNA binding and activation domains are masked by interactions with the regulatory domain and that to function efficiently in HepG2 cells the protein must undergo an activation step. We propose that relief of inhibition conferred by the regulatory domains also accounts for CRP2 activation in response to extracellular signals.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号